// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2017 Facebook */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include struct bpf_test_timer { enum { NO_PREEMPT, NO_MIGRATE } mode; u32 i; u64 time_start, time_spent; }; static void bpf_test_timer_enter(struct bpf_test_timer *t) __acquires(rcu) { rcu_read_lock(); if (t->mode == NO_PREEMPT) preempt_disable(); else migrate_disable(); t->time_start = ktime_get_ns(); } static void bpf_test_timer_leave(struct bpf_test_timer *t) __releases(rcu) { t->time_start = 0; if (t->mode == NO_PREEMPT) preempt_enable(); else migrate_enable(); rcu_read_unlock(); } static bool bpf_test_timer_continue(struct bpf_test_timer *t, int iterations, u32 repeat, int *err, u32 *duration) __must_hold(rcu) { t->i += iterations; if (t->i >= repeat) { /* We're done. */ t->time_spent += ktime_get_ns() - t->time_start; do_div(t->time_spent, t->i); *duration = t->time_spent > U32_MAX ? U32_MAX : (u32)t->time_spent; *err = 0; goto reset; } if (signal_pending(current)) { /* During iteration: we've been cancelled, abort. */ *err = -EINTR; goto reset; } if (need_resched()) { /* During iteration: we need to reschedule between runs. */ t->time_spent += ktime_get_ns() - t->time_start; bpf_test_timer_leave(t); cond_resched(); bpf_test_timer_enter(t); } /* Do another round. */ return true; reset: t->i = 0; return false; } /* We put this struct at the head of each page with a context and frame * initialised when the page is allocated, so we don't have to do this on each * repetition of the test run. */ struct xdp_page_head { struct xdp_buff orig_ctx; struct xdp_buff ctx; struct xdp_frame frm; u8 data[]; }; struct xdp_test_data { struct xdp_buff *orig_ctx; struct xdp_rxq_info rxq; struct net_device *dev; struct page_pool *pp; struct xdp_frame **frames; struct sk_buff **skbs; struct xdp_mem_info mem; u32 batch_size; u32 frame_cnt; }; #define TEST_XDP_FRAME_SIZE (PAGE_SIZE - sizeof(struct xdp_page_head)) #define TEST_XDP_MAX_BATCH 256 static void xdp_test_run_init_page(struct page *page, void *arg) { struct xdp_page_head *head = phys_to_virt(page_to_phys(page)); struct xdp_buff *new_ctx, *orig_ctx; u32 headroom = XDP_PACKET_HEADROOM; struct xdp_test_data *xdp = arg; size_t frm_len, meta_len; struct xdp_frame *frm; void *data; orig_ctx = xdp->orig_ctx; frm_len = orig_ctx->data_end - orig_ctx->data_meta; meta_len = orig_ctx->data - orig_ctx->data_meta; headroom -= meta_len; new_ctx = &head->ctx; frm = &head->frm; data = &head->data; memcpy(data + headroom, orig_ctx->data_meta, frm_len); xdp_init_buff(new_ctx, TEST_XDP_FRAME_SIZE, &xdp->rxq); xdp_prepare_buff(new_ctx, data, headroom, frm_len, true); new_ctx->data = new_ctx->data_meta + meta_len; xdp_update_frame_from_buff(new_ctx, frm); frm->mem = new_ctx->rxq->mem; memcpy(&head->orig_ctx, new_ctx, sizeof(head->orig_ctx)); } static int xdp_test_run_setup(struct xdp_test_data *xdp, struct xdp_buff *orig_ctx) { struct page_pool *pp; int err = -ENOMEM; struct page_pool_params pp_params = { .order = 0, .flags = 0, .pool_size = xdp->batch_size, .nid = NUMA_NO_NODE, .init_callback = xdp_test_run_init_page, .init_arg = xdp, }; xdp->frames = kvmalloc_array(xdp->batch_size, sizeof(void *), GFP_KERNEL); if (!xdp->frames) return -ENOMEM; xdp->skbs = kvmalloc_array(xdp->batch_size, sizeof(void *), GFP_KERNEL); if (!xdp->skbs) goto err_skbs; pp = page_pool_create(&pp_params); if (IS_ERR(pp)) { err = PTR_ERR(pp); goto err_pp; } /* will copy 'mem.id' into pp->xdp_mem_id */ err = xdp_reg_mem_model(&xdp->mem, MEM_TYPE_PAGE_POOL, pp); if (err) goto err_mmodel; xdp->pp = pp; /* We create a 'fake' RXQ referencing the original dev, but with an * xdp_mem_info pointing to our page_pool */ xdp_rxq_info_reg(&xdp->rxq, orig_ctx->rxq->dev, 0, 0); xdp->rxq.mem.type = MEM_TYPE_PAGE_POOL; xdp->rxq.mem.id = pp->xdp_mem_id; xdp->dev = orig_ctx->rxq->dev; xdp->orig_ctx = orig_ctx; return 0; err_mmodel: page_pool_destroy(pp); err_pp: kvfree(xdp->skbs); err_skbs: kvfree(xdp->frames); return err; } static void xdp_test_run_teardown(struct xdp_test_data *xdp) { xdp_unreg_mem_model(&xdp->mem); page_pool_destroy(xdp->pp); kfree(xdp->frames); kfree(xdp->skbs); } static bool ctx_was_changed(struct xdp_page_head *head) { return head->orig_ctx.data != head->ctx.data || head->orig_ctx.data_meta != head->ctx.data_meta || head->orig_ctx.data_end != head->ctx.data_end; } static void reset_ctx(struct xdp_page_head *head) { if (likely(!ctx_was_changed(head))) return; head->ctx.data = head->orig_ctx.data; head->ctx.data_meta = head->orig_ctx.data_meta; head->ctx.data_end = head->orig_ctx.data_end; xdp_update_frame_from_buff(&head->ctx, &head->frm); } static int xdp_recv_frames(struct xdp_frame **frames, int nframes, struct sk_buff **skbs, struct net_device *dev) { gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; int i, n; LIST_HEAD(list); n = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, (void **)skbs); if (unlikely(n == 0)) { for (i = 0; i < nframes; i++) xdp_return_frame(frames[i]); return -ENOMEM; } for (i = 0; i < nframes; i++) { struct xdp_frame *xdpf = frames[i]; struct sk_buff *skb = skbs[i]; skb = __xdp_build_skb_from_frame(xdpf, skb, dev); if (!skb) { xdp_return_frame(xdpf); continue; } list_add_tail(&skb->list, &list); } netif_receive_skb_list(&list); return 0; } static int xdp_test_run_batch(struct xdp_test_data *xdp, struct bpf_prog *prog, u32 repeat) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); int err = 0, act, ret, i, nframes = 0, batch_sz; struct xdp_frame **frames = xdp->frames; struct xdp_page_head *head; struct xdp_frame *frm; bool redirect = false; struct xdp_buff *ctx; struct page *page; batch_sz = min_t(u32, repeat, xdp->batch_size); local_bh_disable(); xdp_set_return_frame_no_direct(); for (i = 0; i < batch_sz; i++) { page = page_pool_dev_alloc_pages(xdp->pp); if (!page) { err = -ENOMEM; goto out; } head = phys_to_virt(page_to_phys(page)); reset_ctx(head); ctx = &head->ctx; frm = &head->frm; xdp->frame_cnt++; act = bpf_prog_run_xdp(prog, ctx); /* if program changed pkt bounds we need to update the xdp_frame */ if (unlikely(ctx_was_changed(head))) { ret = xdp_update_frame_from_buff(ctx, frm); if (ret) { xdp_return_buff(ctx); continue; } } switch (act) { case XDP_TX: /* we can't do a real XDP_TX since we're not in the * driver, so turn it into a REDIRECT back to the same * index */ ri->tgt_index = xdp->dev->ifindex; ri->map_id = INT_MAX; ri->map_type = BPF_MAP_TYPE_UNSPEC; fallthrough; case XDP_REDIRECT: redirect = true; ret = xdp_do_redirect_frame(xdp->dev, ctx, frm, prog); if (ret) xdp_return_buff(ctx); break; case XDP_PASS: frames[nframes++] = frm; break; default: bpf_warn_invalid_xdp_action(NULL, prog, act); fallthrough; case XDP_DROP: xdp_return_buff(ctx); break; } } out: if (redirect) xdp_do_flush(); if (nframes) { ret = xdp_recv_frames(frames, nframes, xdp->skbs, xdp->dev); if (ret) err = ret; } xdp_clear_return_frame_no_direct(); local_bh_enable(); return err; } static int bpf_test_run_xdp_live(struct bpf_prog *prog, struct xdp_buff *ctx, u32 repeat, u32 batch_size, u32 *time) { struct xdp_test_data xdp = { .batch_size = batch_size }; struct bpf_test_timer t = { .mode = NO_MIGRATE }; int ret; if (!repeat) repeat = 1; ret = xdp_test_run_setup(&xdp, ctx); if (ret) return ret; bpf_test_timer_enter(&t); do { xdp.frame_cnt = 0; ret = xdp_test_run_batch(&xdp, prog, repeat - t.i); if (unlikely(ret < 0)) break; } while (bpf_test_timer_continue(&t, xdp.frame_cnt, repeat, &ret, time)); bpf_test_timer_leave(&t); xdp_test_run_teardown(&xdp); return ret; } static int bpf_test_run(struct bpf_prog *prog, void *ctx, u32 repeat, u32 *retval, u32 *time, bool xdp) { struct bpf_prog_array_item item = {.prog = prog}; struct bpf_run_ctx *old_ctx; struct bpf_cg_run_ctx run_ctx; struct bpf_test_timer t = { NO_MIGRATE }; enum bpf_cgroup_storage_type stype; int ret; for_each_cgroup_storage_type(stype) { item.cgroup_storage[stype] = bpf_cgroup_storage_alloc(prog, stype); if (IS_ERR(item.cgroup_storage[stype])) { item.cgroup_storage[stype] = NULL; for_each_cgroup_storage_type(stype) bpf_cgroup_storage_free(item.cgroup_storage[stype]); return -ENOMEM; } } if (!repeat) repeat = 1; bpf_test_timer_enter(&t); old_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); do { run_ctx.prog_item = &item; if (xdp) *retval = bpf_prog_run_xdp(prog, ctx); else *retval = bpf_prog_run(prog, ctx); } while (bpf_test_timer_continue(&t, 1, repeat, &ret, time)); bpf_reset_run_ctx(old_ctx); bpf_test_timer_leave(&t); for_each_cgroup_storage_type(stype) bpf_cgroup_storage_free(item.cgroup_storage[stype]); return ret; } static int bpf_test_finish(const union bpf_attr *kattr, union bpf_attr __user *uattr, const void *data, struct skb_shared_info *sinfo, u32 size, u32 retval, u32 duration) { void __user *data_out = u64_to_user_ptr(kattr->test.data_out); int err = -EFAULT; u32 copy_size = size; /* Clamp copy if the user has provided a size hint, but copy the full * buffer if not to retain old behaviour. */ if (kattr->test.data_size_out && copy_size > kattr->test.data_size_out) { copy_size = kattr->test.data_size_out; err = -ENOSPC; } if (data_out) { int len = sinfo ? copy_size - sinfo->xdp_frags_size : copy_size; if (len < 0) { err = -ENOSPC; goto out; } if (copy_to_user(data_out, data, len)) goto out; if (sinfo) { int i, offset = len; u32 data_len; for (i = 0; i < sinfo->nr_frags; i++) { skb_frag_t *frag = &sinfo->frags[i]; if (offset >= copy_size) { err = -ENOSPC; break; } data_len = min_t(u32, copy_size - offset, skb_frag_size(frag)); if (copy_to_user(data_out + offset, skb_frag_address(frag), data_len)) goto out; offset += data_len; } } } if (copy_to_user(&uattr->test.data_size_out, &size, sizeof(size))) goto out; if (copy_to_user(&uattr->test.retval, &retval, sizeof(retval))) goto out; if (copy_to_user(&uattr->test.duration, &duration, sizeof(duration))) goto out; if (err != -ENOSPC) err = 0; out: trace_bpf_test_finish(&err); return err; } /* Integer types of various sizes and pointer combinations cover variety of * architecture dependent calling conventions. 7+ can be supported in the * future. */ __diag_push(); __diag_ignore_all("-Wmissing-prototypes", "Global functions as their definitions will be in vmlinux BTF"); int noinline bpf_fentry_test1(int a) { return a + 1; } EXPORT_SYMBOL_GPL(bpf_fentry_test1); int noinline bpf_fentry_test2(int a, u64 b) { return a + b; } int noinline bpf_fentry_test3(char a, int b, u64 c) { return a + b + c; } int noinline bpf_fentry_test4(void *a, char b, int c, u64 d) { return (long)a + b + c + d; } int noinline bpf_fentry_test5(u64 a, void *b, short c, int d, u64 e) { return a + (long)b + c + d + e; } int noinline bpf_fentry_test6(u64 a, void *b, short c, int d, void *e, u64 f) { return a + (long)b + c + d + (long)e + f; } struct bpf_fentry_test_t { struct bpf_fentry_test_t *a; }; int noinline bpf_fentry_test7(struct bpf_fentry_test_t *arg) { return (long)arg; } int noinline bpf_fentry_test8(struct bpf_fentry_test_t *arg) { return (long)arg->a; } int noinline bpf_modify_return_test(int a, int *b) { *b += 1; return a + *b; } u64 noinline bpf_kfunc_call_test1(struct sock *sk, u32 a, u64 b, u32 c, u64 d) { return a + b + c + d; } int noinline bpf_kfunc_call_test2(struct sock *sk, u32 a, u32 b) { return a + b; } struct sock * noinline bpf_kfunc_call_test3(struct sock *sk) { return sk; } struct prog_test_member1 { int a; }; struct prog_test_member { struct prog_test_member1 m; int c; }; struct prog_test_ref_kfunc { int a; int b; struct prog_test_member memb; struct prog_test_ref_kfunc *next; refcount_t cnt; }; static struct prog_test_ref_kfunc prog_test_struct = { .a = 42, .b = 108, .next = &prog_test_struct, .cnt = REFCOUNT_INIT(1), }; noinline struct prog_test_ref_kfunc * bpf_kfunc_call_test_acquire(unsigned long *scalar_ptr) { refcount_inc(&prog_test_struct.cnt); return &prog_test_struct; } noinline struct prog_test_member * bpf_kfunc_call_memb_acquire(void) { WARN_ON_ONCE(1); return NULL; } noinline void bpf_kfunc_call_test_release(struct prog_test_ref_kfunc *p) { if (!p) return; refcount_dec(&p->cnt); } noinline void bpf_kfunc_call_memb_release(struct prog_test_member *p) { } noinline void bpf_kfunc_call_memb1_release(struct prog_test_member1 *p) { WARN_ON_ONCE(1); } static int *__bpf_kfunc_call_test_get_mem(struct prog_test_ref_kfunc *p, const int size) { if (size > 2 * sizeof(int)) return NULL; return (int *)p; } noinline int *bpf_kfunc_call_test_get_rdwr_mem(struct prog_test_ref_kfunc *p, const int rdwr_buf_size) { return __bpf_kfunc_call_test_get_mem(p, rdwr_buf_size); } noinline int *bpf_kfunc_call_test_get_rdonly_mem(struct prog_test_ref_kfunc *p, const int rdonly_buf_size) { return __bpf_kfunc_call_test_get_mem(p, rdonly_buf_size); } /* the next 2 ones can't be really used for testing expect to ensure * that the verifier rejects the call. * Acquire functions must return struct pointers, so these ones are * failing. */ noinline int *bpf_kfunc_call_test_acq_rdonly_mem(struct prog_test_ref_kfunc *p, const int rdonly_buf_size) { return __bpf_kfunc_call_test_get_mem(p, rdonly_buf_size); } noinline void bpf_kfunc_call_int_mem_release(int *p) { } noinline struct prog_test_ref_kfunc * bpf_kfunc_call_test_kptr_get(struct prog_test_ref_kfunc **pp, int a, int b) { struct prog_test_ref_kfunc *p = READ_ONCE(*pp); if (!p) return NULL; refcount_inc(&p->cnt); return p; } struct prog_test_pass1 { int x0; struct { int x1; struct { int x2; struct { int x3; }; }; }; }; struct prog_test_pass2 { int len; short arr1[4]; struct { char arr2[4]; unsigned long arr3[8]; } x; }; struct prog_test_fail1 { void *p; int x; }; struct prog_test_fail2 { int x8; struct prog_test_pass1 x; }; struct prog_test_fail3 { int len; char arr1[2]; char arr2[]; }; noinline void bpf_kfunc_call_test_pass_ctx(struct __sk_buff *skb) { } noinline void bpf_kfunc_call_test_pass1(struct prog_test_pass1 *p) { } noinline void bpf_kfunc_call_test_pass2(struct prog_test_pass2 *p) { } noinline void bpf_kfunc_call_test_fail1(struct prog_test_fail1 *p) { } noinline void bpf_kfunc_call_test_fail2(struct prog_test_fail2 *p) { } noinline void bpf_kfunc_call_test_fail3(struct prog_test_fail3 *p) { } noinline void bpf_kfunc_call_test_mem_len_pass1(void *mem, int mem__sz) { } noinline void bpf_kfunc_call_test_mem_len_fail1(void *mem, int len) { } noinline void bpf_kfunc_call_test_mem_len_fail2(u64 *mem, int len) { } noinline void bpf_kfunc_call_test_ref(struct prog_test_ref_kfunc *p) { } noinline void bpf_kfunc_call_test_destructive(void) { } __diag_pop(); BTF_SET8_START(bpf_test_modify_return_ids) BTF_ID_FLAGS(func, bpf_modify_return_test) BTF_ID_FLAGS(func, bpf_fentry_test1, KF_SLEEPABLE) BTF_SET8_END(bpf_test_modify_return_ids) static const struct btf_kfunc_id_set bpf_test_modify_return_set = { .owner = THIS_MODULE, .set = &bpf_test_modify_return_ids, }; BTF_SET8_START(test_sk_check_kfunc_ids) BTF_ID_FLAGS(func, bpf_kfunc_call_test1) BTF_ID_FLAGS(func, bpf_kfunc_call_test2) BTF_ID_FLAGS(func, bpf_kfunc_call_test3) BTF_ID_FLAGS(func, bpf_kfunc_call_test_acquire, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_kfunc_call_memb_acquire, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_kfunc_call_test_release, KF_RELEASE) BTF_ID_FLAGS(func, bpf_kfunc_call_memb_release, KF_RELEASE) BTF_ID_FLAGS(func, bpf_kfunc_call_memb1_release, KF_RELEASE) BTF_ID_FLAGS(func, bpf_kfunc_call_test_get_rdwr_mem, KF_RET_NULL) BTF_ID_FLAGS(func, bpf_kfunc_call_test_get_rdonly_mem, KF_RET_NULL) BTF_ID_FLAGS(func, bpf_kfunc_call_test_acq_rdonly_mem, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_kfunc_call_int_mem_release, KF_RELEASE) BTF_ID_FLAGS(func, bpf_kfunc_call_test_kptr_get, KF_ACQUIRE | KF_RET_NULL | KF_KPTR_GET) BTF_ID_FLAGS(func, bpf_kfunc_call_test_pass_ctx) BTF_ID_FLAGS(func, bpf_kfunc_call_test_pass1) BTF_ID_FLAGS(func, bpf_kfunc_call_test_pass2) BTF_ID_FLAGS(func, bpf_kfunc_call_test_fail1) BTF_ID_FLAGS(func, bpf_kfunc_call_test_fail2) BTF_ID_FLAGS(func, bpf_kfunc_call_test_fail3) BTF_ID_FLAGS(func, bpf_kfunc_call_test_mem_len_pass1) BTF_ID_FLAGS(func, bpf_kfunc_call_test_mem_len_fail1) BTF_ID_FLAGS(func, bpf_kfunc_call_test_mem_len_fail2) BTF_ID_FLAGS(func, bpf_kfunc_call_test_ref, KF_TRUSTED_ARGS) BTF_ID_FLAGS(func, bpf_kfunc_call_test_destructive, KF_DESTRUCTIVE) BTF_SET8_END(test_sk_check_kfunc_ids) static void *bpf_test_init(const union bpf_attr *kattr, u32 user_size, u32 size, u32 headroom, u32 tailroom) { void __user *data_in = u64_to_user_ptr(kattr->test.data_in); void *data; if (size < ETH_HLEN || size > PAGE_SIZE - headroom - tailroom) return ERR_PTR(-EINVAL); if (user_size > size) return ERR_PTR(-EMSGSIZE); size = SKB_DATA_ALIGN(size); data = kzalloc(size + headroom + tailroom, GFP_USER); if (!data) return ERR_PTR(-ENOMEM); if (copy_from_user(data + headroom, data_in, user_size)) { kfree(data); return ERR_PTR(-EFAULT); } return data; } int bpf_prog_test_run_tracing(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { struct bpf_fentry_test_t arg = {}; u16 side_effect = 0, ret = 0; int b = 2, err = -EFAULT; u32 retval = 0; if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size) return -EINVAL; switch (prog->expected_attach_type) { case BPF_TRACE_FENTRY: case BPF_TRACE_FEXIT: if (bpf_fentry_test1(1) != 2 || bpf_fentry_test2(2, 3) != 5 || bpf_fentry_test3(4, 5, 6) != 15 || bpf_fentry_test4((void *)7, 8, 9, 10) != 34 || bpf_fentry_test5(11, (void *)12, 13, 14, 15) != 65 || bpf_fentry_test6(16, (void *)17, 18, 19, (void *)20, 21) != 111 || bpf_fentry_test7((struct bpf_fentry_test_t *)0) != 0 || bpf_fentry_test8(&arg) != 0) goto out; break; case BPF_MODIFY_RETURN: ret = bpf_modify_return_test(1, &b); if (b != 2) side_effect = 1; break; default: goto out; } retval = ((u32)side_effect << 16) | ret; if (copy_to_user(&uattr->test.retval, &retval, sizeof(retval))) goto out; err = 0; out: trace_bpf_test_finish(&err); return err; } struct bpf_raw_tp_test_run_info { struct bpf_prog *prog; void *ctx; u32 retval; }; static void __bpf_prog_test_run_raw_tp(void *data) { struct bpf_raw_tp_test_run_info *info = data; rcu_read_lock(); info->retval = bpf_prog_run(info->prog, info->ctx); rcu_read_unlock(); } int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { void __user *ctx_in = u64_to_user_ptr(kattr->test.ctx_in); __u32 ctx_size_in = kattr->test.ctx_size_in; struct bpf_raw_tp_test_run_info info; int cpu = kattr->test.cpu, err = 0; int current_cpu; /* doesn't support data_in/out, ctx_out, duration, or repeat */ if (kattr->test.data_in || kattr->test.data_out || kattr->test.ctx_out || kattr->test.duration || kattr->test.repeat || kattr->test.batch_size) return -EINVAL; if (ctx_size_in < prog->aux->max_ctx_offset || ctx_size_in > MAX_BPF_FUNC_ARGS * sizeof(u64)) return -EINVAL; if ((kattr->test.flags & BPF_F_TEST_RUN_ON_CPU) == 0 && cpu != 0) return -EINVAL; if (ctx_size_in) { info.ctx = memdup_user(ctx_in, ctx_size_in); if (IS_ERR(info.ctx)) return PTR_ERR(info.ctx); } else { info.ctx = NULL; } info.prog = prog; current_cpu = get_cpu(); if ((kattr->test.flags & BPF_F_TEST_RUN_ON_CPU) == 0 || cpu == current_cpu) { __bpf_prog_test_run_raw_tp(&info); } else if (cpu >= nr_cpu_ids || !cpu_online(cpu)) { /* smp_call_function_single() also checks cpu_online() * after csd_lock(). However, since cpu is from user * space, let's do an extra quick check to filter out * invalid value before smp_call_function_single(). */ err = -ENXIO; } else { err = smp_call_function_single(cpu, __bpf_prog_test_run_raw_tp, &info, 1); } put_cpu(); if (!err && copy_to_user(&uattr->test.retval, &info.retval, sizeof(u32))) err = -EFAULT; kfree(info.ctx); return err; } static void *bpf_ctx_init(const union bpf_attr *kattr, u32 max_size) { void __user *data_in = u64_to_user_ptr(kattr->test.ctx_in); void __user *data_out = u64_to_user_ptr(kattr->test.ctx_out); u32 size = kattr->test.ctx_size_in; void *data; int err; if (!data_in && !data_out) return NULL; data = kzalloc(max_size, GFP_USER); if (!data) return ERR_PTR(-ENOMEM); if (data_in) { err = bpf_check_uarg_tail_zero(USER_BPFPTR(data_in), max_size, size); if (err) { kfree(data); return ERR_PTR(err); } size = min_t(u32, max_size, size); if (copy_from_user(data, data_in, size)) { kfree(data); return ERR_PTR(-EFAULT); } } return data; } static int bpf_ctx_finish(const union bpf_attr *kattr, union bpf_attr __user *uattr, const void *data, u32 size) { void __user *data_out = u64_to_user_ptr(kattr->test.ctx_out); int err = -EFAULT; u32 copy_size = size; if (!data || !data_out) return 0; if (copy_size > kattr->test.ctx_size_out) { copy_size = kattr->test.ctx_size_out; err = -ENOSPC; } if (copy_to_user(data_out, data, copy_size)) goto out; if (copy_to_user(&uattr->test.ctx_size_out, &size, sizeof(size))) goto out; if (err != -ENOSPC) err = 0; out: return err; } /** * range_is_zero - test whether buffer is initialized * @buf: buffer to check * @from: check from this position * @to: check up until (excluding) this position * * This function returns true if the there is a non-zero byte * in the buf in the range [from,to). */ static inline bool range_is_zero(void *buf, size_t from, size_t to) { return !memchr_inv((u8 *)buf + from, 0, to - from); } static int convert___skb_to_skb(struct sk_buff *skb, struct __sk_buff *__skb) { struct qdisc_skb_cb *cb = (struct qdisc_skb_cb *)skb->cb; if (!__skb) return 0; /* make sure the fields we don't use are zeroed */ if (!range_is_zero(__skb, 0, offsetof(struct __sk_buff, mark))) return -EINVAL; /* mark is allowed */ if (!range_is_zero(__skb, offsetofend(struct __sk_buff, mark), offsetof(struct __sk_buff, priority))) return -EINVAL; /* priority is allowed */ /* ingress_ifindex is allowed */ /* ifindex is allowed */ if (!range_is_zero(__skb, offsetofend(struct __sk_buff, ifindex), offsetof(struct __sk_buff, cb))) return -EINVAL; /* cb is allowed */ if (!range_is_zero(__skb, offsetofend(struct __sk_buff, cb), offsetof(struct __sk_buff, tstamp))) return -EINVAL; /* tstamp is allowed */ /* wire_len is allowed */ /* gso_segs is allowed */ if (!range_is_zero(__skb, offsetofend(struct __sk_buff, gso_segs), offsetof(struct __sk_buff, gso_size))) return -EINVAL; /* gso_size is allowed */ if (!range_is_zero(__skb, offsetofend(struct __sk_buff, gso_size), offsetof(struct __sk_buff, hwtstamp))) return -EINVAL; /* hwtstamp is allowed */ if (!range_is_zero(__skb, offsetofend(struct __sk_buff, hwtstamp), sizeof(struct __sk_buff))) return -EINVAL; skb->mark = __skb->mark; skb->priority = __skb->priority; skb->skb_iif = __skb->ingress_ifindex; skb->tstamp = __skb->tstamp; memcpy(&cb->data, __skb->cb, QDISC_CB_PRIV_LEN); if (__skb->wire_len == 0) { cb->pkt_len = skb->len; } else { if (__skb->wire_len < skb->len || __skb->wire_len > GSO_LEGACY_MAX_SIZE) return -EINVAL; cb->pkt_len = __skb->wire_len; } if (__skb->gso_segs > GSO_MAX_SEGS) return -EINVAL; skb_shinfo(skb)->gso_segs = __skb->gso_segs; skb_shinfo(skb)->gso_size = __skb->gso_size; skb_shinfo(skb)->hwtstamps.hwtstamp = __skb->hwtstamp; return 0; } static void convert_skb_to___skb(struct sk_buff *skb, struct __sk_buff *__skb) { struct qdisc_skb_cb *cb = (struct qdisc_skb_cb *)skb->cb; if (!__skb) return; __skb->mark = skb->mark; __skb->priority = skb->priority; __skb->ingress_ifindex = skb->skb_iif; __skb->ifindex = skb->dev->ifindex; __skb->tstamp = skb->tstamp; memcpy(__skb->cb, &cb->data, QDISC_CB_PRIV_LEN); __skb->wire_len = cb->pkt_len; __skb->gso_segs = skb_shinfo(skb)->gso_segs; __skb->hwtstamp = skb_shinfo(skb)->hwtstamps.hwtstamp; } static struct proto bpf_dummy_proto = { .name = "bpf_dummy", .owner = THIS_MODULE, .obj_size = sizeof(struct sock), }; int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { bool is_l2 = false, is_direct_pkt_access = false; struct net *net = current->nsproxy->net_ns; struct net_device *dev = net->loopback_dev; u32 size = kattr->test.data_size_in; u32 repeat = kattr->test.repeat; struct __sk_buff *ctx = NULL; u32 retval, duration; int hh_len = ETH_HLEN; struct sk_buff *skb; struct sock *sk; void *data; int ret; if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size) return -EINVAL; data = bpf_test_init(kattr, kattr->test.data_size_in, size, NET_SKB_PAD + NET_IP_ALIGN, SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); if (IS_ERR(data)) return PTR_ERR(data); ctx = bpf_ctx_init(kattr, sizeof(struct __sk_buff)); if (IS_ERR(ctx)) { kfree(data); return PTR_ERR(ctx); } switch (prog->type) { case BPF_PROG_TYPE_SCHED_CLS: case BPF_PROG_TYPE_SCHED_ACT: is_l2 = true; fallthrough; case BPF_PROG_TYPE_LWT_IN: case BPF_PROG_TYPE_LWT_OUT: case BPF_PROG_TYPE_LWT_XMIT: is_direct_pkt_access = true; break; default: break; } sk = sk_alloc(net, AF_UNSPEC, GFP_USER, &bpf_dummy_proto, 1); if (!sk) { kfree(data); kfree(ctx); return -ENOMEM; } sock_init_data(NULL, sk); skb = slab_build_skb(data); if (!skb) { kfree(data); kfree(ctx); sk_free(sk); return -ENOMEM; } skb->sk = sk; skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); __skb_put(skb, size); if (ctx && ctx->ifindex > 1) { dev = dev_get_by_index(net, ctx->ifindex); if (!dev) { ret = -ENODEV; goto out; } } skb->protocol = eth_type_trans(skb, dev); skb_reset_network_header(skb); switch (skb->protocol) { case htons(ETH_P_IP): sk->sk_family = AF_INET; if (sizeof(struct iphdr) <= skb_headlen(skb)) { sk->sk_rcv_saddr = ip_hdr(skb)->saddr; sk->sk_daddr = ip_hdr(skb)->daddr; } break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): sk->sk_family = AF_INET6; if (sizeof(struct ipv6hdr) <= skb_headlen(skb)) { sk->sk_v6_rcv_saddr = ipv6_hdr(skb)->saddr; sk->sk_v6_daddr = ipv6_hdr(skb)->daddr; } break; #endif default: break; } if (is_l2) __skb_push(skb, hh_len); if (is_direct_pkt_access) bpf_compute_data_pointers(skb); ret = convert___skb_to_skb(skb, ctx); if (ret) goto out; ret = bpf_test_run(prog, skb, repeat, &retval, &duration, false); if (ret) goto out; if (!is_l2) { if (skb_headroom(skb) < hh_len) { int nhead = HH_DATA_ALIGN(hh_len - skb_headroom(skb)); if (pskb_expand_head(skb, nhead, 0, GFP_USER)) { ret = -ENOMEM; goto out; } } memset(__skb_push(skb, hh_len), 0, hh_len); } convert_skb_to___skb(skb, ctx); size = skb->len; /* bpf program can never convert linear skb to non-linear */ if (WARN_ON_ONCE(skb_is_nonlinear(skb))) size = skb_headlen(skb); ret = bpf_test_finish(kattr, uattr, skb->data, NULL, size, retval, duration); if (!ret) ret = bpf_ctx_finish(kattr, uattr, ctx, sizeof(struct __sk_buff)); out: if (dev && dev != net->loopback_dev) dev_put(dev); kfree_skb(skb); sk_free(sk); kfree(ctx); return ret; } static int xdp_convert_md_to_buff(struct xdp_md *xdp_md, struct xdp_buff *xdp) { unsigned int ingress_ifindex, rx_queue_index; struct netdev_rx_queue *rxqueue; struct net_device *device; if (!xdp_md) return 0; if (xdp_md->egress_ifindex != 0) return -EINVAL; ingress_ifindex = xdp_md->ingress_ifindex; rx_queue_index = xdp_md->rx_queue_index; if (!ingress_ifindex && rx_queue_index) return -EINVAL; if (ingress_ifindex) { device = dev_get_by_index(current->nsproxy->net_ns, ingress_ifindex); if (!device) return -ENODEV; if (rx_queue_index >= device->real_num_rx_queues) goto free_dev; rxqueue = __netif_get_rx_queue(device, rx_queue_index); if (!xdp_rxq_info_is_reg(&rxqueue->xdp_rxq)) goto free_dev; xdp->rxq = &rxqueue->xdp_rxq; /* The device is now tracked in the xdp->rxq for later * dev_put() */ } xdp->data = xdp->data_meta + xdp_md->data; return 0; free_dev: dev_put(device); return -EINVAL; } static void xdp_convert_buff_to_md(struct xdp_buff *xdp, struct xdp_md *xdp_md) { if (!xdp_md) return; xdp_md->data = xdp->data - xdp->data_meta; xdp_md->data_end = xdp->data_end - xdp->data_meta; if (xdp_md->ingress_ifindex) dev_put(xdp->rxq->dev); } int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { bool do_live = (kattr->test.flags & BPF_F_TEST_XDP_LIVE_FRAMES); u32 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); u32 batch_size = kattr->test.batch_size; u32 retval = 0, duration, max_data_sz; u32 size = kattr->test.data_size_in; u32 headroom = XDP_PACKET_HEADROOM; u32 repeat = kattr->test.repeat; struct netdev_rx_queue *rxqueue; struct skb_shared_info *sinfo; struct xdp_buff xdp = {}; int i, ret = -EINVAL; struct xdp_md *ctx; void *data; if (prog->expected_attach_type == BPF_XDP_DEVMAP || prog->expected_attach_type == BPF_XDP_CPUMAP) return -EINVAL; if (kattr->test.flags & ~BPF_F_TEST_XDP_LIVE_FRAMES) return -EINVAL; if (bpf_prog_is_dev_bound(prog->aux)) return -EINVAL; if (do_live) { if (!batch_size) batch_size = NAPI_POLL_WEIGHT; else if (batch_size > TEST_XDP_MAX_BATCH) return -E2BIG; headroom += sizeof(struct xdp_page_head); } else if (batch_size) { return -EINVAL; } ctx = bpf_ctx_init(kattr, sizeof(struct xdp_md)); if (IS_ERR(ctx)) return PTR_ERR(ctx); if (ctx) { /* There can't be user provided data before the meta data */ if (ctx->data_meta || ctx->data_end != size || ctx->data > ctx->data_end || unlikely(xdp_metalen_invalid(ctx->data)) || (do_live && (kattr->test.data_out || kattr->test.ctx_out))) goto free_ctx; /* Meta data is allocated from the headroom */ headroom -= ctx->data; } max_data_sz = 4096 - headroom - tailroom; if (size > max_data_sz) { /* disallow live data mode for jumbo frames */ if (do_live) goto free_ctx; size = max_data_sz; } data = bpf_test_init(kattr, size, max_data_sz, headroom, tailroom); if (IS_ERR(data)) { ret = PTR_ERR(data); goto free_ctx; } rxqueue = __netif_get_rx_queue(current->nsproxy->net_ns->loopback_dev, 0); rxqueue->xdp_rxq.frag_size = headroom + max_data_sz + tailroom; xdp_init_buff(&xdp, rxqueue->xdp_rxq.frag_size, &rxqueue->xdp_rxq); xdp_prepare_buff(&xdp, data, headroom, size, true); sinfo = xdp_get_shared_info_from_buff(&xdp); ret = xdp_convert_md_to_buff(ctx, &xdp); if (ret) goto free_data; if (unlikely(kattr->test.data_size_in > size)) { void __user *data_in = u64_to_user_ptr(kattr->test.data_in); while (size < kattr->test.data_size_in) { struct page *page; skb_frag_t *frag; u32 data_len; if (sinfo->nr_frags == MAX_SKB_FRAGS) { ret = -ENOMEM; goto out; } page = alloc_page(GFP_KERNEL); if (!page) { ret = -ENOMEM; goto out; } frag = &sinfo->frags[sinfo->nr_frags++]; __skb_frag_set_page(frag, page); data_len = min_t(u32, kattr->test.data_size_in - size, PAGE_SIZE); skb_frag_size_set(frag, data_len); if (copy_from_user(page_address(page), data_in + size, data_len)) { ret = -EFAULT; goto out; } sinfo->xdp_frags_size += data_len; size += data_len; } xdp_buff_set_frags_flag(&xdp); } if (repeat > 1) bpf_prog_change_xdp(NULL, prog); if (do_live) ret = bpf_test_run_xdp_live(prog, &xdp, repeat, batch_size, &duration); else ret = bpf_test_run(prog, &xdp, repeat, &retval, &duration, true); /* We convert the xdp_buff back to an xdp_md before checking the return * code so the reference count of any held netdevice will be decremented * even if the test run failed. */ xdp_convert_buff_to_md(&xdp, ctx); if (ret) goto out; size = xdp.data_end - xdp.data_meta + sinfo->xdp_frags_size; ret = bpf_test_finish(kattr, uattr, xdp.data_meta, sinfo, size, retval, duration); if (!ret) ret = bpf_ctx_finish(kattr, uattr, ctx, sizeof(struct xdp_md)); out: if (repeat > 1) bpf_prog_change_xdp(prog, NULL); free_data: for (i = 0; i < sinfo->nr_frags; i++) __free_page(skb_frag_page(&sinfo->frags[i])); kfree(data); free_ctx: kfree(ctx); return ret; } static int verify_user_bpf_flow_keys(struct bpf_flow_keys *ctx) { /* make sure the fields we don't use are zeroed */ if (!range_is_zero(ctx, 0, offsetof(struct bpf_flow_keys, flags))) return -EINVAL; /* flags is allowed */ if (!range_is_zero(ctx, offsetofend(struct bpf_flow_keys, flags), sizeof(struct bpf_flow_keys))) return -EINVAL; return 0; } int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { struct bpf_test_timer t = { NO_PREEMPT }; u32 size = kattr->test.data_size_in; struct bpf_flow_dissector ctx = {}; u32 repeat = kattr->test.repeat; struct bpf_flow_keys *user_ctx; struct bpf_flow_keys flow_keys; const struct ethhdr *eth; unsigned int flags = 0; u32 retval, duration; void *data; int ret; if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size) return -EINVAL; if (size < ETH_HLEN) return -EINVAL; data = bpf_test_init(kattr, kattr->test.data_size_in, size, 0, 0); if (IS_ERR(data)) return PTR_ERR(data); eth = (struct ethhdr *)data; if (!repeat) repeat = 1; user_ctx = bpf_ctx_init(kattr, sizeof(struct bpf_flow_keys)); if (IS_ERR(user_ctx)) { kfree(data); return PTR_ERR(user_ctx); } if (user_ctx) { ret = verify_user_bpf_flow_keys(user_ctx); if (ret) goto out; flags = user_ctx->flags; } ctx.flow_keys = &flow_keys; ctx.data = data; ctx.data_end = (__u8 *)data + size; bpf_test_timer_enter(&t); do { retval = bpf_flow_dissect(prog, &ctx, eth->h_proto, ETH_HLEN, size, flags); } while (bpf_test_timer_continue(&t, 1, repeat, &ret, &duration)); bpf_test_timer_leave(&t); if (ret < 0) goto out; ret = bpf_test_finish(kattr, uattr, &flow_keys, NULL, sizeof(flow_keys), retval, duration); if (!ret) ret = bpf_ctx_finish(kattr, uattr, user_ctx, sizeof(struct bpf_flow_keys)); out: kfree(user_ctx); kfree(data); return ret; } int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { struct bpf_test_timer t = { NO_PREEMPT }; struct bpf_prog_array *progs = NULL; struct bpf_sk_lookup_kern ctx = {}; u32 repeat = kattr->test.repeat; struct bpf_sk_lookup *user_ctx; u32 retval, duration; int ret = -EINVAL; if (kattr->test.flags || kattr->test.cpu || kattr->test.batch_size) return -EINVAL; if (kattr->test.data_in || kattr->test.data_size_in || kattr->test.data_out || kattr->test.data_size_out) return -EINVAL; if (!repeat) repeat = 1; user_ctx = bpf_ctx_init(kattr, sizeof(*user_ctx)); if (IS_ERR(user_ctx)) return PTR_ERR(user_ctx); if (!user_ctx) return -EINVAL; if (user_ctx->sk) goto out; if (!range_is_zero(user_ctx, offsetofend(typeof(*user_ctx), local_port), sizeof(*user_ctx))) goto out; if (user_ctx->local_port > U16_MAX) { ret = -ERANGE; goto out; } ctx.family = (u16)user_ctx->family; ctx.protocol = (u16)user_ctx->protocol; ctx.dport = (u16)user_ctx->local_port; ctx.sport = user_ctx->remote_port; switch (ctx.family) { case AF_INET: ctx.v4.daddr = (__force __be32)user_ctx->local_ip4; ctx.v4.saddr = (__force __be32)user_ctx->remote_ip4; break; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: ctx.v6.daddr = (struct in6_addr *)user_ctx->local_ip6; ctx.v6.saddr = (struct in6_addr *)user_ctx->remote_ip6; break; #endif default: ret = -EAFNOSUPPORT; goto out; } progs = bpf_prog_array_alloc(1, GFP_KERNEL); if (!progs) { ret = -ENOMEM; goto out; } progs->items[0].prog = prog; bpf_test_timer_enter(&t); do { ctx.selected_sk = NULL; retval = BPF_PROG_SK_LOOKUP_RUN_ARRAY(progs, ctx, bpf_prog_run); } while (bpf_test_timer_continue(&t, 1, repeat, &ret, &duration)); bpf_test_timer_leave(&t); if (ret < 0) goto out; user_ctx->cookie = 0; if (ctx.selected_sk) { if (ctx.selected_sk->sk_reuseport && !ctx.no_reuseport) { ret = -EOPNOTSUPP; goto out; } user_ctx->cookie = sock_gen_cookie(ctx.selected_sk); } ret = bpf_test_finish(kattr, uattr, NULL, NULL, 0, retval, duration); if (!ret) ret = bpf_ctx_finish(kattr, uattr, user_ctx, sizeof(*user_ctx)); out: bpf_prog_array_free(progs); kfree(user_ctx); return ret; } int bpf_prog_test_run_syscall(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { void __user *ctx_in = u64_to_user_ptr(kattr->test.ctx_in); __u32 ctx_size_in = kattr->test.ctx_size_in; void *ctx = NULL; u32 retval; int err = 0; /* doesn't support data_in/out, ctx_out, duration, or repeat or flags */ if (kattr->test.data_in || kattr->test.data_out || kattr->test.ctx_out || kattr->test.duration || kattr->test.repeat || kattr->test.flags || kattr->test.batch_size) return -EINVAL; if (ctx_size_in < prog->aux->max_ctx_offset || ctx_size_in > U16_MAX) return -EINVAL; if (ctx_size_in) { ctx = memdup_user(ctx_in, ctx_size_in); if (IS_ERR(ctx)) return PTR_ERR(ctx); } rcu_read_lock_trace(); retval = bpf_prog_run_pin_on_cpu(prog, ctx); rcu_read_unlock_trace(); if (copy_to_user(&uattr->test.retval, &retval, sizeof(u32))) { err = -EFAULT; goto out; } if (ctx_size_in) if (copy_to_user(ctx_in, ctx, ctx_size_in)) err = -EFAULT; out: kfree(ctx); return err; } static const struct btf_kfunc_id_set bpf_prog_test_kfunc_set = { .owner = THIS_MODULE, .set = &test_sk_check_kfunc_ids, }; BTF_ID_LIST(bpf_prog_test_dtor_kfunc_ids) BTF_ID(struct, prog_test_ref_kfunc) BTF_ID(func, bpf_kfunc_call_test_release) BTF_ID(struct, prog_test_member) BTF_ID(func, bpf_kfunc_call_memb_release) static int __init bpf_prog_test_run_init(void) { const struct btf_id_dtor_kfunc bpf_prog_test_dtor_kfunc[] = { { .btf_id = bpf_prog_test_dtor_kfunc_ids[0], .kfunc_btf_id = bpf_prog_test_dtor_kfunc_ids[1] }, { .btf_id = bpf_prog_test_dtor_kfunc_ids[2], .kfunc_btf_id = bpf_prog_test_dtor_kfunc_ids[3], }, }; int ret; ret = register_btf_fmodret_id_set(&bpf_test_modify_return_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_prog_test_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_prog_test_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &bpf_prog_test_kfunc_set); return ret ?: register_btf_id_dtor_kfuncs(bpf_prog_test_dtor_kfunc, ARRAY_SIZE(bpf_prog_test_dtor_kfunc), THIS_MODULE); } late_initcall(bpf_prog_test_run_init);