/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BCACHEFS_FORMAT_H #define _BCACHEFS_FORMAT_H /* * bcachefs on disk data structures * * OVERVIEW: * * There are three main types of on disk data structures in bcachefs (this is * reduced from 5 in bcache) * * - superblock * - journal * - btree * * The btree is the primary structure; most metadata exists as keys in the * various btrees. There are only a small number of btrees, they're not * sharded - we have one btree for extents, another for inodes, et cetera. * * SUPERBLOCK: * * The superblock contains the location of the journal, the list of devices in * the filesystem, and in general any metadata we need in order to decide * whether we can start a filesystem or prior to reading the journal/btree * roots. * * The superblock is extensible, and most of the contents of the superblock are * in variable length, type tagged fields; see struct bch_sb_field. * * Backup superblocks do not reside in a fixed location; also, superblocks do * not have a fixed size. To locate backup superblocks we have struct * bch_sb_layout; we store a copy of this inside every superblock, and also * before the first superblock. * * JOURNAL: * * The journal primarily records btree updates in the order they occurred; * journal replay consists of just iterating over all the keys in the open * journal entries and re-inserting them into the btrees. * * The journal also contains entry types for the btree roots, and blacklisted * journal sequence numbers (see journal_seq_blacklist.c). * * BTREE: * * bcachefs btrees are copy on write b+ trees, where nodes are big (typically * 128k-256k) and log structured. We use struct btree_node for writing the first * entry in a given node (offset 0), and struct btree_node_entry for all * subsequent writes. * * After the header, btree node entries contain a list of keys in sorted order. * Values are stored inline with the keys; since values are variable length (and * keys effectively are variable length too, due to packing) we can't do random * access without building up additional in memory tables in the btree node read * path. * * BTREE KEYS (struct bkey): * * The various btrees share a common format for the key - so as to avoid * switching in fastpath lookup/comparison code - but define their own * structures for the key values. * * The size of a key/value pair is stored as a u8 in units of u64s, so the max * size is just under 2k. The common part also contains a type tag for the * value, and a format field indicating whether the key is packed or not (and * also meant to allow adding new key fields in the future, if desired). * * bkeys, when stored within a btree node, may also be packed. In that case, the * bkey_format in that node is used to unpack it. Packed bkeys mean that we can * be generous with field sizes in the common part of the key format (64 bit * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost. */ #include #include #include #include #ifdef __KERNEL__ typedef uuid_t __uuid_t; #endif #define LE_BITMASK(_bits, name, type, field, offset, end) \ static const unsigned name##_OFFSET = offset; \ static const unsigned name##_BITS = (end - offset); \ static const __u##_bits name##_MAX = (1ULL << (end - offset)) - 1; \ \ static inline __u64 name(const type *k) \ { \ return (__le##_bits##_to_cpu(k->field) >> offset) & \ ~(~0ULL << (end - offset)); \ } \ \ static inline void SET_##name(type *k, __u64 v) \ { \ __u##_bits new = __le##_bits##_to_cpu(k->field); \ \ new &= ~(~(~0ULL << (end - offset)) << offset); \ new |= (v & ~(~0ULL << (end - offset))) << offset; \ k->field = __cpu_to_le##_bits(new); \ } #define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e) #define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e) #define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e) struct bkey_format { __u8 key_u64s; __u8 nr_fields; /* One unused slot for now: */ __u8 bits_per_field[6]; __le64 field_offset[6]; }; /* Btree keys - all units are in sectors */ struct bpos { /* * Word order matches machine byte order - btree code treats a bpos as a * single large integer, for search/comparison purposes * * Note that wherever a bpos is embedded in another on disk data * structure, it has to be byte swabbed when reading in metadata that * wasn't written in native endian order: */ #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ __u32 snapshot; __u64 offset; __u64 inode; #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ __u64 inode; __u64 offset; /* Points to end of extent - sectors */ __u32 snapshot; #else #error edit for your odd byteorder. #endif } __attribute__((packed, aligned(4))); #define KEY_INODE_MAX ((__u64)~0ULL) #define KEY_OFFSET_MAX ((__u64)~0ULL) #define KEY_SNAPSHOT_MAX ((__u32)~0U) #define KEY_SIZE_MAX ((__u32)~0U) static inline struct bpos POS(__u64 inode, __u64 offset) { struct bpos ret; ret.inode = inode; ret.offset = offset; ret.snapshot = 0; return ret; } #define POS_MIN POS(0, 0) #define POS_MAX POS(KEY_INODE_MAX, KEY_OFFSET_MAX) /* Empty placeholder struct, for container_of() */ struct bch_val { __u64 __nothing[0]; }; struct bversion { #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ __u64 lo; __u32 hi; #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ __u32 hi; __u64 lo; #endif } __attribute__((packed, aligned(4))); struct bkey { /* Size of combined key and value, in u64s */ __u8 u64s; /* Format of key (0 for format local to btree node) */ #if defined(__LITTLE_ENDIAN_BITFIELD) __u8 format:7, needs_whiteout:1; #elif defined (__BIG_ENDIAN_BITFIELD) __u8 needs_whiteout:1, format:7; #else #error edit for your odd byteorder. #endif /* Type of the value */ __u8 type; #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ __u8 pad[1]; struct bversion version; __u32 size; /* extent size, in sectors */ struct bpos p; #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ struct bpos p; __u32 size; /* extent size, in sectors */ struct bversion version; __u8 pad[1]; #endif } __attribute__((packed, aligned(8))); struct bkey_packed { __u64 _data[0]; /* Size of combined key and value, in u64s */ __u8 u64s; /* Format of key (0 for format local to btree node) */ /* * XXX: next incompat on disk format change, switch format and * needs_whiteout - bkey_packed() will be cheaper if format is the high * bits of the bitfield */ #if defined(__LITTLE_ENDIAN_BITFIELD) __u8 format:7, needs_whiteout:1; #elif defined (__BIG_ENDIAN_BITFIELD) __u8 needs_whiteout:1, format:7; #endif /* Type of the value */ __u8 type; __u8 key_start[0]; /* * We copy bkeys with struct assignment in various places, and while * that shouldn't be done with packed bkeys we can't disallow it in C, * and it's legal to cast a bkey to a bkey_packed - so padding it out * to the same size as struct bkey should hopefully be safest. */ __u8 pad[sizeof(struct bkey) - 3]; } __attribute__((packed, aligned(8))); #define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64)) #define BKEY_U64s_MAX U8_MAX #define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s) #define KEY_PACKED_BITS_START 24 #define KEY_FORMAT_LOCAL_BTREE 0 #define KEY_FORMAT_CURRENT 1 enum bch_bkey_fields { BKEY_FIELD_INODE, BKEY_FIELD_OFFSET, BKEY_FIELD_SNAPSHOT, BKEY_FIELD_SIZE, BKEY_FIELD_VERSION_HI, BKEY_FIELD_VERSION_LO, BKEY_NR_FIELDS, }; #define bkey_format_field(name, field) \ [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8) #define BKEY_FORMAT_CURRENT \ ((struct bkey_format) { \ .key_u64s = BKEY_U64s, \ .nr_fields = BKEY_NR_FIELDS, \ .bits_per_field = { \ bkey_format_field(INODE, p.inode), \ bkey_format_field(OFFSET, p.offset), \ bkey_format_field(SNAPSHOT, p.snapshot), \ bkey_format_field(SIZE, size), \ bkey_format_field(VERSION_HI, version.hi), \ bkey_format_field(VERSION_LO, version.lo), \ }, \ }) /* bkey with inline value */ struct bkey_i { __u64 _data[0]; union { struct { /* Size of combined key and value, in u64s */ __u8 u64s; }; struct { struct bkey k; struct bch_val v; }; }; }; #define KEY(_inode, _offset, _size) \ ((struct bkey) { \ .u64s = BKEY_U64s, \ .format = KEY_FORMAT_CURRENT, \ .p = POS(_inode, _offset), \ .size = _size, \ }) static inline void bkey_init(struct bkey *k) { *k = KEY(0, 0, 0); } #define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64)) #define __BKEY_PADDED(key, pad) \ struct { struct bkey_i key; __u64 key ## _pad[pad]; } /* * - DELETED keys are used internally to mark keys that should be ignored but * override keys in composition order. Their version number is ignored. * * - DISCARDED keys indicate that the data is all 0s because it has been * discarded. DISCARDs may have a version; if the version is nonzero the key * will be persistent, otherwise the key will be dropped whenever the btree * node is rewritten (like DELETED keys). * * - ERROR: any read of the data returns a read error, as the data was lost due * to a failing device. Like DISCARDED keys, they can be removed (overridden) * by new writes or cluster-wide GC. Node repair can also overwrite them with * the same or a more recent version number, but not with an older version * number. * * - WHITEOUT: for hash table btrees */ #define BCH_BKEY_TYPES() \ x(deleted, 0) \ x(discard, 1) \ x(error, 2) \ x(cookie, 3) \ x(whiteout, 4) \ x(btree_ptr, 5) \ x(extent, 6) \ x(reservation, 7) \ x(inode, 8) \ x(inode_generation, 9) \ x(dirent, 10) \ x(xattr, 11) \ x(alloc, 12) \ x(quota, 13) \ x(stripe, 14) \ x(reflink_p, 15) \ x(reflink_v, 16) \ x(inline_data, 17) \ x(btree_ptr_v2, 18) \ x(indirect_inline_data, 19) enum bch_bkey_type { #define x(name, nr) KEY_TYPE_##name = nr, BCH_BKEY_TYPES() #undef x KEY_TYPE_MAX, }; struct bch_cookie { struct bch_val v; __le64 cookie; }; /* Extents */ /* * In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally * preceded by checksum/compression information (bch_extent_crc32 or * bch_extent_crc64). * * One major determining factor in the format of extents is how we handle and * represent extents that have been partially overwritten and thus trimmed: * * If an extent is not checksummed or compressed, when the extent is trimmed we * don't have to remember the extent we originally allocated and wrote: we can * merely adjust ptr->offset to point to the start of the data that is currently * live. The size field in struct bkey records the current (live) size of the * extent, and is also used to mean "size of region on disk that we point to" in * this case. * * Thus an extent that is not checksummed or compressed will consist only of a * list of bch_extent_ptrs, with none of the fields in * bch_extent_crc32/bch_extent_crc64. * * When an extent is checksummed or compressed, it's not possible to read only * the data that is currently live: we have to read the entire extent that was * originally written, and then return only the part of the extent that is * currently live. * * Thus, in addition to the current size of the extent in struct bkey, we need * to store the size of the originally allocated space - this is the * compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also, * when the extent is trimmed, instead of modifying the offset field of the * pointer, we keep a second smaller offset field - "offset into the original * extent of the currently live region". * * The other major determining factor is replication and data migration: * * Each pointer may have its own bch_extent_crc32/64. When doing a replicated * write, we will initially write all the replicas in the same format, with the * same checksum type and compression format - however, when copygc runs later (or * tiering/cache promotion, anything that moves data), it is not in general * going to rewrite all the pointers at once - one of the replicas may be in a * bucket on one device that has very little fragmentation while another lives * in a bucket that has become heavily fragmented, and thus is being rewritten * sooner than the rest. * * Thus it will only move a subset of the pointers (or in the case of * tiering/cache promotion perhaps add a single pointer without dropping any * current pointers), and if the extent has been partially overwritten it must * write only the currently live portion (or copygc would not be able to reduce * fragmentation!) - which necessitates a different bch_extent_crc format for * the new pointer. * * But in the interests of space efficiency, we don't want to store one * bch_extent_crc for each pointer if we don't have to. * * Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and * bch_extent_ptrs appended arbitrarily one after the other. We determine the * type of a given entry with a scheme similar to utf8 (except we're encoding a * type, not a size), encoding the type in the position of the first set bit: * * bch_extent_crc32 - 0b1 * bch_extent_ptr - 0b10 * bch_extent_crc64 - 0b100 * * We do it this way because bch_extent_crc32 is _very_ constrained on bits (and * bch_extent_crc64 is the least constrained). * * Then, each bch_extent_crc32/64 applies to the pointers that follow after it, * until the next bch_extent_crc32/64. * * If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer * is neither checksummed nor compressed. */ /* 128 bits, sufficient for cryptographic MACs: */ struct bch_csum { __le64 lo; __le64 hi; } __attribute__((packed, aligned(8))); #define BCH_EXTENT_ENTRY_TYPES() \ x(ptr, 0) \ x(crc32, 1) \ x(crc64, 2) \ x(crc128, 3) \ x(stripe_ptr, 4) #define BCH_EXTENT_ENTRY_MAX 5 enum bch_extent_entry_type { #define x(f, n) BCH_EXTENT_ENTRY_##f = n, BCH_EXTENT_ENTRY_TYPES() #undef x }; /* Compressed/uncompressed size are stored biased by 1: */ struct bch_extent_crc32 { #if defined(__LITTLE_ENDIAN_BITFIELD) __u32 type:2, _compressed_size:7, _uncompressed_size:7, offset:7, _unused:1, csum_type:4, compression_type:4; __u32 csum; #elif defined (__BIG_ENDIAN_BITFIELD) __u32 csum; __u32 compression_type:4, csum_type:4, _unused:1, offset:7, _uncompressed_size:7, _compressed_size:7, type:2; #endif } __attribute__((packed, aligned(8))); #define CRC32_SIZE_MAX (1U << 7) #define CRC32_NONCE_MAX 0 struct bch_extent_crc64 { #if defined(__LITTLE_ENDIAN_BITFIELD) __u64 type:3, _compressed_size:9, _uncompressed_size:9, offset:9, nonce:10, csum_type:4, compression_type:4, csum_hi:16; #elif defined (__BIG_ENDIAN_BITFIELD) __u64 csum_hi:16, compression_type:4, csum_type:4, nonce:10, offset:9, _uncompressed_size:9, _compressed_size:9, type:3; #endif __u64 csum_lo; } __attribute__((packed, aligned(8))); #define CRC64_SIZE_MAX (1U << 9) #define CRC64_NONCE_MAX ((1U << 10) - 1) struct bch_extent_crc128 { #if defined(__LITTLE_ENDIAN_BITFIELD) __u64 type:4, _compressed_size:13, _uncompressed_size:13, offset:13, nonce:13, csum_type:4, compression_type:4; #elif defined (__BIG_ENDIAN_BITFIELD) __u64 compression_type:4, csum_type:4, nonce:13, offset:13, _uncompressed_size:13, _compressed_size:13, type:4; #endif struct bch_csum csum; } __attribute__((packed, aligned(8))); #define CRC128_SIZE_MAX (1U << 13) #define CRC128_NONCE_MAX ((1U << 13) - 1) /* * @reservation - pointer hasn't been written to, just reserved */ struct bch_extent_ptr { #if defined(__LITTLE_ENDIAN_BITFIELD) __u64 type:1, cached:1, unused:1, reservation:1, offset:44, /* 8 petabytes */ dev:8, gen:8; #elif defined (__BIG_ENDIAN_BITFIELD) __u64 gen:8, dev:8, offset:44, reservation:1, unused:1, cached:1, type:1; #endif } __attribute__((packed, aligned(8))); struct bch_extent_stripe_ptr { #if defined(__LITTLE_ENDIAN_BITFIELD) __u64 type:5, block:8, idx:51; #elif defined (__BIG_ENDIAN_BITFIELD) __u64 idx:51, block:8, type:5; #endif }; struct bch_extent_reservation { #if defined(__LITTLE_ENDIAN_BITFIELD) __u64 type:6, unused:22, replicas:4, generation:32; #elif defined (__BIG_ENDIAN_BITFIELD) __u64 generation:32, replicas:4, unused:22, type:6; #endif }; union bch_extent_entry { #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || __BITS_PER_LONG == 64 unsigned long type; #elif __BITS_PER_LONG == 32 struct { unsigned long pad; unsigned long type; }; #else #error edit for your odd byteorder. #endif #define x(f, n) struct bch_extent_##f f; BCH_EXTENT_ENTRY_TYPES() #undef x }; struct bch_btree_ptr { struct bch_val v; __u64 _data[0]; struct bch_extent_ptr start[]; } __attribute__((packed, aligned(8))); struct bch_btree_ptr_v2 { struct bch_val v; __u64 mem_ptr; __le64 seq; __le16 sectors_written; /* In case we ever decide to do variable size btree nodes: */ __le16 sectors; struct bpos min_key; __u64 _data[0]; struct bch_extent_ptr start[]; } __attribute__((packed, aligned(8))); struct bch_extent { struct bch_val v; __u64 _data[0]; union bch_extent_entry start[]; } __attribute__((packed, aligned(8))); struct bch_reservation { struct bch_val v; __le32 generation; __u8 nr_replicas; __u8 pad[3]; } __attribute__((packed, aligned(8))); /* Maximum size (in u64s) a single pointer could be: */ #define BKEY_EXTENT_PTR_U64s_MAX\ ((sizeof(struct bch_extent_crc128) + \ sizeof(struct bch_extent_ptr)) / sizeof(u64)) /* Maximum possible size of an entire extent value: */ #define BKEY_EXTENT_VAL_U64s_MAX \ (1 + BKEY_EXTENT_PTR_U64s_MAX * (BCH_REPLICAS_MAX + 1)) #define BKEY_PADDED(key) __BKEY_PADDED(key, BKEY_EXTENT_VAL_U64s_MAX) /* * Maximum possible size of an entire extent, key + value: */ #define BKEY_EXTENT_U64s_MAX (BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX) /* Btree pointers don't carry around checksums: */ #define BKEY_BTREE_PTR_VAL_U64s_MAX \ ((sizeof(struct bch_btree_ptr_v2) + \ sizeof(struct bch_extent_ptr) * BCH_REPLICAS_MAX) / sizeof(u64)) #define BKEY_BTREE_PTR_U64s_MAX \ (BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX) /* Inodes */ #define BLOCKDEV_INODE_MAX 4096 #define BCACHEFS_ROOT_INO 4096 struct bch_inode { struct bch_val v; __le64 bi_hash_seed; __le32 bi_flags; __le16 bi_mode; __u8 fields[0]; } __attribute__((packed, aligned(8))); struct bch_inode_generation { struct bch_val v; __le32 bi_generation; __le32 pad; } __attribute__((packed, aligned(8))); #define BCH_INODE_FIELDS() \ x(bi_atime, 96) \ x(bi_ctime, 96) \ x(bi_mtime, 96) \ x(bi_otime, 96) \ x(bi_size, 64) \ x(bi_sectors, 64) \ x(bi_uid, 32) \ x(bi_gid, 32) \ x(bi_nlink, 32) \ x(bi_generation, 32) \ x(bi_dev, 32) \ x(bi_data_checksum, 8) \ x(bi_compression, 8) \ x(bi_project, 32) \ x(bi_background_compression, 8) \ x(bi_data_replicas, 8) \ x(bi_promote_target, 16) \ x(bi_foreground_target, 16) \ x(bi_background_target, 16) \ x(bi_erasure_code, 16) \ x(bi_fields_set, 16) /* subset of BCH_INODE_FIELDS */ #define BCH_INODE_OPTS() \ x(data_checksum, 8) \ x(compression, 8) \ x(project, 32) \ x(background_compression, 8) \ x(data_replicas, 8) \ x(promote_target, 16) \ x(foreground_target, 16) \ x(background_target, 16) \ x(erasure_code, 16) enum inode_opt_id { #define x(name, ...) \ Inode_opt_##name, BCH_INODE_OPTS() #undef x Inode_opt_nr, }; enum { /* * User flags (get/settable with FS_IOC_*FLAGS, correspond to FS_*_FL * flags) */ __BCH_INODE_SYNC = 0, __BCH_INODE_IMMUTABLE = 1, __BCH_INODE_APPEND = 2, __BCH_INODE_NODUMP = 3, __BCH_INODE_NOATIME = 4, __BCH_INODE_I_SIZE_DIRTY= 5, __BCH_INODE_I_SECTORS_DIRTY= 6, __BCH_INODE_UNLINKED = 7, /* bits 20+ reserved for packed fields below: */ }; #define BCH_INODE_SYNC (1 << __BCH_INODE_SYNC) #define BCH_INODE_IMMUTABLE (1 << __BCH_INODE_IMMUTABLE) #define BCH_INODE_APPEND (1 << __BCH_INODE_APPEND) #define BCH_INODE_NODUMP (1 << __BCH_INODE_NODUMP) #define BCH_INODE_NOATIME (1 << __BCH_INODE_NOATIME) #define BCH_INODE_I_SIZE_DIRTY (1 << __BCH_INODE_I_SIZE_DIRTY) #define BCH_INODE_I_SECTORS_DIRTY (1 << __BCH_INODE_I_SECTORS_DIRTY) #define BCH_INODE_UNLINKED (1 << __BCH_INODE_UNLINKED) LE32_BITMASK(INODE_STR_HASH, struct bch_inode, bi_flags, 20, 24); LE32_BITMASK(INODE_NR_FIELDS, struct bch_inode, bi_flags, 24, 31); LE32_BITMASK(INODE_NEW_VARINT, struct bch_inode, bi_flags, 31, 32); /* Dirents */ /* * Dirents (and xattrs) have to implement string lookups; since our b-tree * doesn't support arbitrary length strings for the key, we instead index by a * 64 bit hash (currently truncated sha1) of the string, stored in the offset * field of the key - using linear probing to resolve hash collisions. This also * provides us with the readdir cookie posix requires. * * Linear probing requires us to use whiteouts for deletions, in the event of a * collision: */ struct bch_dirent { struct bch_val v; /* Target inode number: */ __le64 d_inum; /* * Copy of mode bits 12-15 from the target inode - so userspace can get * the filetype without having to do a stat() */ __u8 d_type; __u8 d_name[]; } __attribute__((packed, aligned(8))); #define BCH_NAME_MAX (U8_MAX * sizeof(u64) - \ sizeof(struct bkey) - \ offsetof(struct bch_dirent, d_name)) /* Xattrs */ #define KEY_TYPE_XATTR_INDEX_USER 0 #define KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS 1 #define KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT 2 #define KEY_TYPE_XATTR_INDEX_TRUSTED 3 #define KEY_TYPE_XATTR_INDEX_SECURITY 4 struct bch_xattr { struct bch_val v; __u8 x_type; __u8 x_name_len; __le16 x_val_len; __u8 x_name[]; } __attribute__((packed, aligned(8))); /* Bucket/allocation information: */ struct bch_alloc { struct bch_val v; __u8 fields; __u8 gen; __u8 data[]; } __attribute__((packed, aligned(8))); #define BCH_ALLOC_FIELDS() \ x(read_time, 16) \ x(write_time, 16) \ x(data_type, 8) \ x(dirty_sectors, 16) \ x(cached_sectors, 16) \ x(oldest_gen, 8) enum { #define x(name, bytes) BCH_ALLOC_FIELD_##name, BCH_ALLOC_FIELDS() #undef x BCH_ALLOC_FIELD_NR }; static const unsigned BCH_ALLOC_FIELD_BYTES[] = { #define x(name, bits) [BCH_ALLOC_FIELD_##name] = bits / 8, BCH_ALLOC_FIELDS() #undef x }; #define x(name, bits) + (bits / 8) static const unsigned BKEY_ALLOC_VAL_U64s_MAX = DIV_ROUND_UP(offsetof(struct bch_alloc, data) BCH_ALLOC_FIELDS(), sizeof(u64)); #undef x #define BKEY_ALLOC_U64s_MAX (BKEY_U64s + BKEY_ALLOC_VAL_U64s_MAX) /* Quotas: */ enum quota_types { QTYP_USR = 0, QTYP_GRP = 1, QTYP_PRJ = 2, QTYP_NR = 3, }; enum quota_counters { Q_SPC = 0, Q_INO = 1, Q_COUNTERS = 2, }; struct bch_quota_counter { __le64 hardlimit; __le64 softlimit; }; struct bch_quota { struct bch_val v; struct bch_quota_counter c[Q_COUNTERS]; } __attribute__((packed, aligned(8))); /* Erasure coding */ struct bch_stripe { struct bch_val v; __le16 sectors; __u8 algorithm; __u8 nr_blocks; __u8 nr_redundant; __u8 csum_granularity_bits; __u8 csum_type; __u8 pad; struct bch_extent_ptr ptrs[]; } __attribute__((packed, aligned(8))); /* Reflink: */ struct bch_reflink_p { struct bch_val v; __le64 idx; __le32 reservation_generation; __u8 nr_replicas; __u8 pad[3]; }; struct bch_reflink_v { struct bch_val v; __le64 refcount; union bch_extent_entry start[0]; __u64 _data[0]; }; struct bch_indirect_inline_data { struct bch_val v; __le64 refcount; u8 data[0]; }; /* Inline data */ struct bch_inline_data { struct bch_val v; u8 data[0]; }; /* Optional/variable size superblock sections: */ struct bch_sb_field { __u64 _data[0]; __le32 u64s; __le32 type; }; #define BCH_SB_FIELDS() \ x(journal, 0) \ x(members, 1) \ x(crypt, 2) \ x(replicas_v0, 3) \ x(quota, 4) \ x(disk_groups, 5) \ x(clean, 6) \ x(replicas, 7) \ x(journal_seq_blacklist, 8) enum bch_sb_field_type { #define x(f, nr) BCH_SB_FIELD_##f = nr, BCH_SB_FIELDS() #undef x BCH_SB_FIELD_NR }; /* BCH_SB_FIELD_journal: */ struct bch_sb_field_journal { struct bch_sb_field field; __le64 buckets[0]; }; /* BCH_SB_FIELD_members: */ #define BCH_MIN_NR_NBUCKETS (1 << 6) struct bch_member { __uuid_t uuid; __le64 nbuckets; /* device size */ __le16 first_bucket; /* index of first bucket used */ __le16 bucket_size; /* sectors */ __le32 pad; __le64 last_mount; /* time_t */ __le64 flags[2]; }; LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags[0], 0, 4) /* 4-10 unused, was TIER, HAS_(META)DATA */ LE64_BITMASK(BCH_MEMBER_REPLACEMENT, struct bch_member, flags[0], 10, 14) LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags[0], 14, 15) LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags[0], 15, 20) LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags[0], 20, 28) LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags[0], 28, 30) #define BCH_TIER_MAX 4U #if 0 LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20); LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40); #endif enum bch_member_state { BCH_MEMBER_STATE_RW = 0, BCH_MEMBER_STATE_RO = 1, BCH_MEMBER_STATE_FAILED = 2, BCH_MEMBER_STATE_SPARE = 3, BCH_MEMBER_STATE_NR = 4, }; enum cache_replacement { CACHE_REPLACEMENT_LRU = 0, CACHE_REPLACEMENT_FIFO = 1, CACHE_REPLACEMENT_RANDOM = 2, CACHE_REPLACEMENT_NR = 3, }; struct bch_sb_field_members { struct bch_sb_field field; struct bch_member members[0]; }; /* BCH_SB_FIELD_crypt: */ struct nonce { __le32 d[4]; }; struct bch_key { __le64 key[4]; }; #define BCH_KEY_MAGIC \ (((u64) 'b' << 0)|((u64) 'c' << 8)| \ ((u64) 'h' << 16)|((u64) '*' << 24)| \ ((u64) '*' << 32)|((u64) 'k' << 40)| \ ((u64) 'e' << 48)|((u64) 'y' << 56)) struct bch_encrypted_key { __le64 magic; struct bch_key key; }; /* * If this field is present in the superblock, it stores an encryption key which * is used encrypt all other data/metadata. The key will normally be encrypted * with the key userspace provides, but if encryption has been turned off we'll * just store the master key unencrypted in the superblock so we can access the * previously encrypted data. */ struct bch_sb_field_crypt { struct bch_sb_field field; __le64 flags; __le64 kdf_flags; struct bch_encrypted_key key; }; LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4); enum bch_kdf_types { BCH_KDF_SCRYPT = 0, BCH_KDF_NR = 1, }; /* stored as base 2 log of scrypt params: */ LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16); LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32); LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48); /* BCH_SB_FIELD_replicas: */ #define BCH_DATA_TYPES() \ x(none, 0) \ x(sb, 1) \ x(journal, 2) \ x(btree, 3) \ x(user, 4) \ x(cached, 5) \ x(parity, 6) enum bch_data_type { #define x(t, n) BCH_DATA_##t, BCH_DATA_TYPES() #undef x BCH_DATA_NR }; struct bch_replicas_entry_v0 { __u8 data_type; __u8 nr_devs; __u8 devs[]; } __attribute__((packed)); struct bch_sb_field_replicas_v0 { struct bch_sb_field field; struct bch_replicas_entry_v0 entries[]; } __attribute__((packed, aligned(8))); struct bch_replicas_entry { __u8 data_type; __u8 nr_devs; __u8 nr_required; __u8 devs[]; } __attribute__((packed)); #define replicas_entry_bytes(_i) \ (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs) struct bch_sb_field_replicas { struct bch_sb_field field; struct bch_replicas_entry entries[]; } __attribute__((packed, aligned(8))); /* BCH_SB_FIELD_quota: */ struct bch_sb_quota_counter { __le32 timelimit; __le32 warnlimit; }; struct bch_sb_quota_type { __le64 flags; struct bch_sb_quota_counter c[Q_COUNTERS]; }; struct bch_sb_field_quota { struct bch_sb_field field; struct bch_sb_quota_type q[QTYP_NR]; } __attribute__((packed, aligned(8))); /* BCH_SB_FIELD_disk_groups: */ #define BCH_SB_LABEL_SIZE 32 struct bch_disk_group { __u8 label[BCH_SB_LABEL_SIZE]; __le64 flags[2]; } __attribute__((packed, aligned(8))); LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1) LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6) LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24) struct bch_sb_field_disk_groups { struct bch_sb_field field; struct bch_disk_group entries[0]; } __attribute__((packed, aligned(8))); /* * On clean shutdown, store btree roots and current journal sequence number in * the superblock: */ struct jset_entry { __le16 u64s; __u8 btree_id; __u8 level; __u8 type; /* designates what this jset holds */ __u8 pad[3]; union { struct bkey_i start[0]; __u64 _data[0]; }; }; struct bch_sb_field_clean { struct bch_sb_field field; __le32 flags; __le16 read_clock; __le16 write_clock; __le64 journal_seq; union { struct jset_entry start[0]; __u64 _data[0]; }; }; struct journal_seq_blacklist_entry { __le64 start; __le64 end; }; struct bch_sb_field_journal_seq_blacklist { struct bch_sb_field field; union { struct journal_seq_blacklist_entry start[0]; __u64 _data[0]; }; }; /* Superblock: */ /* * New versioning scheme: * One common version number for all on disk data structures - superblock, btree * nodes, journal entries */ #define BCH_JSET_VERSION_OLD 2 #define BCH_BSET_VERSION_OLD 3 enum bcachefs_metadata_version { bcachefs_metadata_version_min = 9, bcachefs_metadata_version_new_versioning = 10, bcachefs_metadata_version_bkey_renumber = 10, bcachefs_metadata_version_inode_btree_change = 11, bcachefs_metadata_version_max = 12, }; #define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1) #define BCH_SB_SECTOR 8 #define BCH_SB_MEMBERS_MAX 64 /* XXX kill */ struct bch_sb_layout { __uuid_t magic; /* bcachefs superblock UUID */ __u8 layout_type; __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */ __u8 nr_superblocks; __u8 pad[5]; __le64 sb_offset[61]; } __attribute__((packed, aligned(8))); #define BCH_SB_LAYOUT_SECTOR 7 /* * @offset - sector where this sb was written * @version - on disk format version * @version_min - Oldest metadata version this filesystem contains; so we can * safely drop compatibility code and refuse to mount filesystems * we'd need it for * @magic - identifies as a bcachefs superblock (BCACHE_MAGIC) * @seq - incremented each time superblock is written * @uuid - used for generating various magic numbers and identifying * member devices, never changes * @user_uuid - user visible UUID, may be changed * @label - filesystem label * @seq - identifies most recent superblock, incremented each time * superblock is written * @features - enabled incompatible features */ struct bch_sb { struct bch_csum csum; __le16 version; __le16 version_min; __le16 pad[2]; __uuid_t magic; __uuid_t uuid; __uuid_t user_uuid; __u8 label[BCH_SB_LABEL_SIZE]; __le64 offset; __le64 seq; __le16 block_size; __u8 dev_idx; __u8 nr_devices; __le32 u64s; __le64 time_base_lo; __le32 time_base_hi; __le32 time_precision; __le64 flags[8]; __le64 features[2]; __le64 compat[2]; struct bch_sb_layout layout; union { struct bch_sb_field start[0]; __le64 _data[0]; }; } __attribute__((packed, aligned(8))); /* * Flags: * BCH_SB_INITALIZED - set on first mount * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect * behaviour of mount/recovery path: * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides * DATA/META_CSUM_TYPE. Also indicates encryption * algorithm in use, if/when we get more than one */ LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16); LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1); LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2); LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8); LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12); LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28); LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33); LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40); LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44); LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48); LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52); LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56); LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57); LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58); LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59); LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60); LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61); LE64_BITMASK(BCH_SB_REFLINK, struct bch_sb, flags[0], 61, 62); /* 61-64 unused */ LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4); LE64_BITMASK(BCH_SB_COMPRESSION_TYPE, struct bch_sb, flags[1], 4, 8); LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9); LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10); LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14); /* * Max size of an extent that may require bouncing to read or write * (checksummed, compressed): 64k */ LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS, struct bch_sb, flags[1], 14, 20); LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24); LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28); LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40); LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52); LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64); LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE, struct bch_sb, flags[2], 0, 4); LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64); LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16); /* * Features: * * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist * reflink: gates KEY_TYPE_reflink * inline_data: gates KEY_TYPE_inline_data * new_siphash: gates BCH_STR_HASH_SIPHASH * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE */ #define BCH_SB_FEATURES() \ x(lz4, 0) \ x(gzip, 1) \ x(zstd, 2) \ x(atomic_nlink, 3) \ x(ec, 4) \ x(journal_seq_blacklist_v3, 5) \ x(reflink, 6) \ x(new_siphash, 7) \ x(inline_data, 8) \ x(new_extent_overwrite, 9) \ x(incompressible, 10) \ x(btree_ptr_v2, 11) \ x(extents_above_btree_updates, 12) \ x(btree_updates_journalled, 13) \ x(reflink_inline_data, 14) \ x(new_varint, 15) \ x(journal_no_flush, 16) #define BCH_SB_FEATURES_ALL \ ((1ULL << BCH_FEATURE_new_siphash)| \ (1ULL << BCH_FEATURE_new_extent_overwrite)| \ (1ULL << BCH_FEATURE_btree_ptr_v2)| \ (1ULL << BCH_FEATURE_extents_above_btree_updates)|\ (1ULL << BCH_FEATURE_new_varint)| \ (1ULL << BCH_FEATURE_journal_no_flush)) enum bch_sb_feature { #define x(f, n) BCH_FEATURE_##f, BCH_SB_FEATURES() #undef x BCH_FEATURE_NR, }; enum bch_sb_compat { BCH_COMPAT_FEAT_ALLOC_INFO = 0, BCH_COMPAT_FEAT_ALLOC_METADATA = 1, }; /* options: */ #define BCH_REPLICAS_MAX 4U #define BCH_BKEY_PTRS_MAX 16U enum bch_error_actions { BCH_ON_ERROR_CONTINUE = 0, BCH_ON_ERROR_RO = 1, BCH_ON_ERROR_PANIC = 2, BCH_NR_ERROR_ACTIONS = 3, }; enum bch_str_hash_type { BCH_STR_HASH_CRC32C = 0, BCH_STR_HASH_CRC64 = 1, BCH_STR_HASH_SIPHASH_OLD = 2, BCH_STR_HASH_SIPHASH = 3, BCH_STR_HASH_NR = 4, }; enum bch_str_hash_opts { BCH_STR_HASH_OPT_CRC32C = 0, BCH_STR_HASH_OPT_CRC64 = 1, BCH_STR_HASH_OPT_SIPHASH = 2, BCH_STR_HASH_OPT_NR = 3, }; enum bch_csum_type { BCH_CSUM_NONE = 0, BCH_CSUM_CRC32C_NONZERO = 1, BCH_CSUM_CRC64_NONZERO = 2, BCH_CSUM_CHACHA20_POLY1305_80 = 3, BCH_CSUM_CHACHA20_POLY1305_128 = 4, BCH_CSUM_CRC32C = 5, BCH_CSUM_CRC64 = 6, BCH_CSUM_NR = 7, }; static const unsigned bch_crc_bytes[] = { [BCH_CSUM_NONE] = 0, [BCH_CSUM_CRC32C_NONZERO] = 4, [BCH_CSUM_CRC32C] = 4, [BCH_CSUM_CRC64_NONZERO] = 8, [BCH_CSUM_CRC64] = 8, [BCH_CSUM_CHACHA20_POLY1305_80] = 10, [BCH_CSUM_CHACHA20_POLY1305_128] = 16, }; static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type) { switch (type) { case BCH_CSUM_CHACHA20_POLY1305_80: case BCH_CSUM_CHACHA20_POLY1305_128: return true; default: return false; } } enum bch_csum_opts { BCH_CSUM_OPT_NONE = 0, BCH_CSUM_OPT_CRC32C = 1, BCH_CSUM_OPT_CRC64 = 2, BCH_CSUM_OPT_NR = 3, }; #define BCH_COMPRESSION_TYPES() \ x(none, 0) \ x(lz4_old, 1) \ x(gzip, 2) \ x(lz4, 3) \ x(zstd, 4) \ x(incompressible, 5) enum bch_compression_type { #define x(t, n) BCH_COMPRESSION_TYPE_##t, BCH_COMPRESSION_TYPES() #undef x BCH_COMPRESSION_TYPE_NR }; #define BCH_COMPRESSION_OPTS() \ x(none, 0) \ x(lz4, 1) \ x(gzip, 2) \ x(zstd, 3) enum bch_compression_opts { #define x(t, n) BCH_COMPRESSION_OPT_##t, BCH_COMPRESSION_OPTS() #undef x BCH_COMPRESSION_OPT_NR }; /* * Magic numbers * * The various other data structures have their own magic numbers, which are * xored with the first part of the cache set's UUID */ #define BCACHE_MAGIC \ UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \ 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81) #define BCHFS_MAGIC \ UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \ 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef) #define BCACHEFS_STATFS_MAGIC 0xca451a4e #define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL) #define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL) static inline __le64 __bch2_sb_magic(struct bch_sb *sb) { __le64 ret; memcpy(&ret, &sb->uuid, sizeof(ret)); return ret; } static inline __u64 __jset_magic(struct bch_sb *sb) { return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC); } static inline __u64 __bset_magic(struct bch_sb *sb) { return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC); } /* Journal */ #define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64)) #define BCH_JSET_ENTRY_TYPES() \ x(btree_keys, 0) \ x(btree_root, 1) \ x(prio_ptrs, 2) \ x(blacklist, 3) \ x(blacklist_v2, 4) \ x(usage, 5) \ x(data_usage, 6) enum { #define x(f, nr) BCH_JSET_ENTRY_##f = nr, BCH_JSET_ENTRY_TYPES() #undef x BCH_JSET_ENTRY_NR }; /* * Journal sequence numbers can be blacklisted: bsets record the max sequence * number of all the journal entries they contain updates for, so that on * recovery we can ignore those bsets that contain index updates newer that what * made it into the journal. * * This means that we can't reuse that journal_seq - we have to skip it, and * then record that we skipped it so that the next time we crash and recover we * don't think there was a missing journal entry. */ struct jset_entry_blacklist { struct jset_entry entry; __le64 seq; }; struct jset_entry_blacklist_v2 { struct jset_entry entry; __le64 start; __le64 end; }; enum { FS_USAGE_RESERVED = 0, FS_USAGE_INODES = 1, FS_USAGE_KEY_VERSION = 2, FS_USAGE_NR = 3 }; struct jset_entry_usage { struct jset_entry entry; __le64 v; } __attribute__((packed)); struct jset_entry_data_usage { struct jset_entry entry; __le64 v; struct bch_replicas_entry r; } __attribute__((packed)); /* * On disk format for a journal entry: * seq is monotonically increasing; every journal entry has its own unique * sequence number. * * last_seq is the oldest journal entry that still has keys the btree hasn't * flushed to disk yet. * * version is for on disk format changes. */ struct jset { struct bch_csum csum; __le64 magic; __le64 seq; __le32 version; __le32 flags; __le32 u64s; /* size of d[] in u64s */ __u8 encrypted_start[0]; __le16 read_clock; __le16 write_clock; /* Sequence number of oldest dirty journal entry */ __le64 last_seq; union { struct jset_entry start[0]; __u64 _data[0]; }; } __attribute__((packed, aligned(8))); LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4); LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5); LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6); #define BCH_JOURNAL_BUCKETS_MIN 8 /* Btree: */ #define BCH_BTREE_IDS() \ x(EXTENTS, 0, "extents") \ x(INODES, 1, "inodes") \ x(DIRENTS, 2, "dirents") \ x(XATTRS, 3, "xattrs") \ x(ALLOC, 4, "alloc") \ x(QUOTAS, 5, "quotas") \ x(EC, 6, "stripes") \ x(REFLINK, 7, "reflink") enum btree_id { #define x(kwd, val, name) BTREE_ID_##kwd = val, BCH_BTREE_IDS() #undef x BTREE_ID_NR }; #define BTREE_MAX_DEPTH 4U /* Btree nodes */ /* * Btree nodes * * On disk a btree node is a list/log of these; within each set the keys are * sorted */ struct bset { __le64 seq; /* * Highest journal entry this bset contains keys for. * If on recovery we don't see that journal entry, this bset is ignored: * this allows us to preserve the order of all index updates after a * crash, since the journal records a total order of all index updates * and anything that didn't make it to the journal doesn't get used. */ __le64 journal_seq; __le32 flags; __le16 version; __le16 u64s; /* count of d[] in u64s */ union { struct bkey_packed start[0]; __u64 _data[0]; }; } __attribute__((packed, aligned(8))); LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4); LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5); LE32_BITMASK(BSET_SEPARATE_WHITEOUTS, struct bset, flags, 5, 6); struct btree_node { struct bch_csum csum; __le64 magic; /* this flags field is encrypted, unlike bset->flags: */ __le64 flags; /* Closed interval: */ struct bpos min_key; struct bpos max_key; struct bch_extent_ptr ptr; struct bkey_format format; union { struct bset keys; struct { __u8 pad[22]; __le16 u64s; __u64 _data[0]; }; }; } __attribute__((packed, aligned(8))); LE64_BITMASK(BTREE_NODE_ID, struct btree_node, flags, 0, 4); LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8); LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE, struct btree_node, flags, 8, 9); /* 9-32 unused */ LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64); struct btree_node_entry { struct bch_csum csum; union { struct bset keys; struct { __u8 pad[22]; __le16 u64s; __u64 _data[0]; }; }; } __attribute__((packed, aligned(8))); #endif /* _BCACHEFS_FORMAT_H */