/* * Copyright (c) Microsoft Corporation. * * Author: * Jake Oshins * * This driver acts as a paravirtual front-end for PCI Express root buses. * When a PCI Express function (either an entire device or an SR-IOV * Virtual Function) is being passed through to the VM, this driver exposes * a new bus to the guest VM. This is modeled as a root PCI bus because * no bridges are being exposed to the VM. In fact, with a "Generation 2" * VM within Hyper-V, there may seem to be no PCI bus at all in the VM * until a device as been exposed using this driver. * * Each root PCI bus has its own PCI domain, which is called "Segment" in * the PCI Firmware Specifications. Thus while each device passed through * to the VM using this front-end will appear at "device 0", the domain will * be unique. Typically, each bus will have one PCI function on it, though * this driver does support more than one. * * In order to map the interrupts from the device through to the guest VM, * this driver also implements an IRQ Domain, which handles interrupts (either * MSI or MSI-X) associated with the functions on the bus. As interrupts are * set up, torn down, or reaffined, this driver communicates with the * underlying hypervisor to adjust the mappings in the I/O MMU so that each * interrupt will be delivered to the correct virtual processor at the right * vector. This driver does not support level-triggered (line-based) * interrupts, and will report that the Interrupt Line register in the * function's configuration space is zero. * * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V * facilities. For instance, the configuration space of a function exposed * by Hyper-V is mapped into a single page of memory space, and the * read and write handlers for config space must be aware of this mechanism. * Similarly, device setup and teardown involves messages sent to and from * the PCI back-end driver in Hyper-V. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * */ #include #include #include #include #include #include #include #include #include #include /* * Protocol versions. The low word is the minor version, the high word the * major version. */ #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (major))) #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) enum { PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), PCI_PROTOCOL_VERSION_CURRENT = PCI_PROTOCOL_VERSION_1_1 }; #define PCI_CONFIG_MMIO_LENGTH 0x2000 #define CFG_PAGE_OFFSET 0x1000 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) #define MAX_SUPPORTED_MSI_MESSAGES 0x400 /* * Message Types */ enum pci_message_type { /* * Version 1.1 */ PCI_MESSAGE_BASE = 0x42490000, PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, PCI_EJECT = PCI_MESSAGE_BASE + 0xB, PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, PCI_MESSAGE_MAXIMUM }; /* * Structures defining the virtual PCI Express protocol. */ union pci_version { struct { u16 minor_version; u16 major_version; } parts; u32 version; } __packed; /* * Function numbers are 8-bits wide on Express, as interpreted through ARI, * which is all this driver does. This representation is the one used in * Windows, which is what is expected when sending this back and forth with * the Hyper-V parent partition. */ union win_slot_encoding { struct { u32 func:8; u32 reserved:24; } bits; u32 slot; } __packed; /* * Pretty much as defined in the PCI Specifications. */ struct pci_function_description { u16 v_id; /* vendor ID */ u16 d_id; /* device ID */ u8 rev; u8 prog_intf; u8 subclass; u8 base_class; u32 subsystem_id; union win_slot_encoding win_slot; u32 ser; /* serial number */ } __packed; /** * struct hv_msi_desc * @vector: IDT entry * @delivery_mode: As defined in Intel's Programmer's * Reference Manual, Volume 3, Chapter 8. * @vector_count: Number of contiguous entries in the * Interrupt Descriptor Table that are * occupied by this Message-Signaled * Interrupt. For "MSI", as first defined * in PCI 2.2, this can be between 1 and * 32. For "MSI-X," as first defined in PCI * 3.0, this must be 1, as each MSI-X table * entry would have its own descriptor. * @reserved: Empty space * @cpu_mask: All the target virtual processors. */ struct hv_msi_desc { u8 vector; u8 delivery_mode; u16 vector_count; u32 reserved; u64 cpu_mask; } __packed; /** * struct tran_int_desc * @reserved: unused, padding * @vector_count: same as in hv_msi_desc * @data: This is the "data payload" value that is * written by the device when it generates * a message-signaled interrupt, either MSI * or MSI-X. * @address: This is the address to which the data * payload is written on interrupt * generation. */ struct tran_int_desc { u16 reserved; u16 vector_count; u32 data; u64 address; } __packed; /* * A generic message format for virtual PCI. * Specific message formats are defined later in the file. */ struct pci_message { u32 type; } __packed; struct pci_child_message { struct pci_message message_type; union win_slot_encoding wslot; } __packed; struct pci_incoming_message { struct vmpacket_descriptor hdr; struct pci_message message_type; } __packed; struct pci_response { struct vmpacket_descriptor hdr; s32 status; /* negative values are failures */ } __packed; struct pci_packet { void (*completion_func)(void *context, struct pci_response *resp, int resp_packet_size); void *compl_ctxt; struct pci_message message[0]; }; /* * Specific message types supporting the PCI protocol. */ /* * Version negotiation message. Sent from the guest to the host. * The guest is free to try different versions until the host * accepts the version. * * pci_version: The protocol version requested. * is_last_attempt: If TRUE, this is the last version guest will request. * reservedz: Reserved field, set to zero. */ struct pci_version_request { struct pci_message message_type; enum pci_message_type protocol_version; } __packed; /* * Bus D0 Entry. This is sent from the guest to the host when the virtual * bus (PCI Express port) is ready for action. */ struct pci_bus_d0_entry { struct pci_message message_type; u32 reserved; u64 mmio_base; } __packed; struct pci_bus_relations { struct pci_incoming_message incoming; u32 device_count; struct pci_function_description func[0]; } __packed; struct pci_q_res_req_response { struct vmpacket_descriptor hdr; s32 status; /* negative values are failures */ u32 probed_bar[6]; } __packed; struct pci_set_power { struct pci_message message_type; union win_slot_encoding wslot; u32 power_state; /* In Windows terms */ u32 reserved; } __packed; struct pci_set_power_response { struct vmpacket_descriptor hdr; s32 status; /* negative values are failures */ union win_slot_encoding wslot; u32 resultant_state; /* In Windows terms */ u32 reserved; } __packed; struct pci_resources_assigned { struct pci_message message_type; union win_slot_encoding wslot; u8 memory_range[0x14][6]; /* not used here */ u32 msi_descriptors; u32 reserved[4]; } __packed; struct pci_create_interrupt { struct pci_message message_type; union win_slot_encoding wslot; struct hv_msi_desc int_desc; } __packed; struct pci_create_int_response { struct pci_response response; u32 reserved; struct tran_int_desc int_desc; } __packed; struct pci_delete_interrupt { struct pci_message message_type; union win_slot_encoding wslot; struct tran_int_desc int_desc; } __packed; struct pci_dev_incoming { struct pci_incoming_message incoming; union win_slot_encoding wslot; } __packed; struct pci_eject_response { struct pci_message message_type; union win_slot_encoding wslot; u32 status; } __packed; static int pci_ring_size = (4 * PAGE_SIZE); /* * Definitions or interrupt steering hypercall. */ #define HV_PARTITION_ID_SELF ((u64)-1) #define HVCALL_RETARGET_INTERRUPT 0x7e struct retarget_msi_interrupt { u64 partition_id; /* use "self" */ u64 device_id; u32 source; /* 1 for MSI(-X) */ u32 reserved1; u32 address; u32 data; u64 reserved2; u32 vector; u32 flags; u64 vp_mask; } __packed; /* * Driver specific state. */ enum hv_pcibus_state { hv_pcibus_init = 0, hv_pcibus_probed, hv_pcibus_installed, hv_pcibus_maximum }; struct hv_pcibus_device { struct pci_sysdata sysdata; enum hv_pcibus_state state; atomic_t remove_lock; struct hv_device *hdev; resource_size_t low_mmio_space; resource_size_t high_mmio_space; struct resource *mem_config; struct resource *low_mmio_res; struct resource *high_mmio_res; struct completion *survey_event; struct completion remove_event; struct pci_bus *pci_bus; spinlock_t config_lock; /* Avoid two threads writing index page */ spinlock_t device_list_lock; /* Protect lists below */ void __iomem *cfg_addr; struct semaphore enum_sem; struct list_head resources_for_children; struct list_head children; struct list_head dr_list; struct msi_domain_info msi_info; struct msi_controller msi_chip; struct irq_domain *irq_domain; }; /* * Tracks "Device Relations" messages from the host, which must be both * processed in order and deferred so that they don't run in the context * of the incoming packet callback. */ struct hv_dr_work { struct work_struct wrk; struct hv_pcibus_device *bus; }; struct hv_dr_state { struct list_head list_entry; u32 device_count; struct pci_function_description func[0]; }; enum hv_pcichild_state { hv_pcichild_init = 0, hv_pcichild_requirements, hv_pcichild_resourced, hv_pcichild_ejecting, hv_pcichild_maximum }; enum hv_pcidev_ref_reason { hv_pcidev_ref_invalid = 0, hv_pcidev_ref_initial, hv_pcidev_ref_by_slot, hv_pcidev_ref_packet, hv_pcidev_ref_pnp, hv_pcidev_ref_childlist, hv_pcidev_irqdata, hv_pcidev_ref_max }; struct hv_pci_dev { /* List protected by pci_rescan_remove_lock */ struct list_head list_entry; atomic_t refs; enum hv_pcichild_state state; struct pci_function_description desc; bool reported_missing; struct hv_pcibus_device *hbus; struct work_struct wrk; /* * What would be observed if one wrote 0xFFFFFFFF to a BAR and then * read it back, for each of the BAR offsets within config space. */ u32 probed_bar[6]; }; struct hv_pci_compl { struct completion host_event; s32 completion_status; }; /** * hv_pci_generic_compl() - Invoked for a completion packet * @context: Set up by the sender of the packet. * @resp: The response packet * @resp_packet_size: Size in bytes of the packet * * This function is used to trigger an event and report status * for any message for which the completion packet contains a * status and nothing else. */ static void hv_pci_generic_compl(void *context, struct pci_response *resp, int resp_packet_size) { struct hv_pci_compl *comp_pkt = context; if (resp_packet_size >= offsetofend(struct pci_response, status)) comp_pkt->completion_status = resp->status; else comp_pkt->completion_status = -1; complete(&comp_pkt->host_event); } static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, u32 wslot); static void get_pcichild(struct hv_pci_dev *hv_pcidev, enum hv_pcidev_ref_reason reason); static void put_pcichild(struct hv_pci_dev *hv_pcidev, enum hv_pcidev_ref_reason reason); static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus); static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus); /** * devfn_to_wslot() - Convert from Linux PCI slot to Windows * @devfn: The Linux representation of PCI slot * * Windows uses a slightly different representation of PCI slot. * * Return: The Windows representation */ static u32 devfn_to_wslot(int devfn) { union win_slot_encoding wslot; wslot.slot = 0; wslot.bits.func = PCI_SLOT(devfn) | (PCI_FUNC(devfn) << 5); return wslot.slot; } /** * wslot_to_devfn() - Convert from Windows PCI slot to Linux * @wslot: The Windows representation of PCI slot * * Windows uses a slightly different representation of PCI slot. * * Return: The Linux representation */ static int wslot_to_devfn(u32 wslot) { union win_slot_encoding slot_no; slot_no.slot = wslot; return PCI_DEVFN(0, slot_no.bits.func); } /* * PCI Configuration Space for these root PCI buses is implemented as a pair * of pages in memory-mapped I/O space. Writing to the first page chooses * the PCI function being written or read. Once the first page has been * written to, the following page maps in the entire configuration space of * the function. */ /** * _hv_pcifront_read_config() - Internal PCI config read * @hpdev: The PCI driver's representation of the device * @where: Offset within config space * @size: Size of the transfer * @val: Pointer to the buffer receiving the data */ static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, int size, u32 *val) { unsigned long flags; void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; /* * If the attempt is to read the IDs or the ROM BAR, simulate that. */ if (where + size <= PCI_COMMAND) { memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); } else if (where >= PCI_CLASS_REVISION && where + size <= PCI_CACHE_LINE_SIZE) { memcpy(val, ((u8 *)&hpdev->desc.rev) + where - PCI_CLASS_REVISION, size); } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= PCI_ROM_ADDRESS) { memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - PCI_SUBSYSTEM_VENDOR_ID, size); } else if (where >= PCI_ROM_ADDRESS && where + size <= PCI_CAPABILITY_LIST) { /* ROM BARs are unimplemented */ *val = 0; } else if (where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) { /* * Interrupt Line and Interrupt PIN are hard-wired to zero * because this front-end only supports message-signaled * interrupts. */ *val = 0; } else if (where + size <= CFG_PAGE_SIZE) { spin_lock_irqsave(&hpdev->hbus->config_lock, flags); /* Choose the function to be read. (See comment above) */ writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); /* Make sure the function was chosen before we start reading. */ mb(); /* Read from that function's config space. */ switch (size) { case 1: *val = readb(addr); break; case 2: *val = readw(addr); break; default: *val = readl(addr); break; } /* * Make sure the write was done before we release the spinlock * allowing consecutive reads/writes. */ mb(); spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); } else { dev_err(&hpdev->hbus->hdev->device, "Attempt to read beyond a function's config space.\n"); } } /** * _hv_pcifront_write_config() - Internal PCI config write * @hpdev: The PCI driver's representation of the device * @where: Offset within config space * @size: Size of the transfer * @val: The data being transferred */ static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, int size, u32 val) { unsigned long flags; void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= PCI_CAPABILITY_LIST) { /* SSIDs and ROM BARs are read-only */ } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { spin_lock_irqsave(&hpdev->hbus->config_lock, flags); /* Choose the function to be written. (See comment above) */ writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); /* Make sure the function was chosen before we start writing. */ wmb(); /* Write to that function's config space. */ switch (size) { case 1: writeb(val, addr); break; case 2: writew(val, addr); break; default: writel(val, addr); break; } /* * Make sure the write was done before we release the spinlock * allowing consecutive reads/writes. */ mb(); spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); } else { dev_err(&hpdev->hbus->hdev->device, "Attempt to write beyond a function's config space.\n"); } } /** * hv_pcifront_read_config() - Read configuration space * @bus: PCI Bus structure * @devfn: Device/function * @where: Offset from base * @size: Byte/word/dword * @val: Value to be read * * Return: PCIBIOS_SUCCESSFUL on success * PCIBIOS_DEVICE_NOT_FOUND on failure */ static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct hv_pcibus_device *hbus = container_of(bus->sysdata, struct hv_pcibus_device, sysdata); struct hv_pci_dev *hpdev; hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); if (!hpdev) return PCIBIOS_DEVICE_NOT_FOUND; _hv_pcifront_read_config(hpdev, where, size, val); put_pcichild(hpdev, hv_pcidev_ref_by_slot); return PCIBIOS_SUCCESSFUL; } /** * hv_pcifront_write_config() - Write configuration space * @bus: PCI Bus structure * @devfn: Device/function * @where: Offset from base * @size: Byte/word/dword * @val: Value to be written to device * * Return: PCIBIOS_SUCCESSFUL on success * PCIBIOS_DEVICE_NOT_FOUND on failure */ static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct hv_pcibus_device *hbus = container_of(bus->sysdata, struct hv_pcibus_device, sysdata); struct hv_pci_dev *hpdev; hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); if (!hpdev) return PCIBIOS_DEVICE_NOT_FOUND; _hv_pcifront_write_config(hpdev, where, size, val); put_pcichild(hpdev, hv_pcidev_ref_by_slot); return PCIBIOS_SUCCESSFUL; } /* PCIe operations */ static struct pci_ops hv_pcifront_ops = { .read = hv_pcifront_read_config, .write = hv_pcifront_write_config, }; /* Interrupt management hooks */ static void hv_int_desc_free(struct hv_pci_dev *hpdev, struct tran_int_desc *int_desc) { struct pci_delete_interrupt *int_pkt; struct { struct pci_packet pkt; u8 buffer[sizeof(struct pci_delete_interrupt)]; } ctxt; memset(&ctxt, 0, sizeof(ctxt)); int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; int_pkt->message_type.type = PCI_DELETE_INTERRUPT_MESSAGE; int_pkt->wslot.slot = hpdev->desc.win_slot.slot; int_pkt->int_desc = *int_desc; vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); kfree(int_desc); } /** * hv_msi_free() - Free the MSI. * @domain: The interrupt domain pointer * @info: Extra MSI-related context * @irq: Identifies the IRQ. * * The Hyper-V parent partition and hypervisor are tracking the * messages that are in use, keeping the interrupt redirection * table up to date. This callback sends a message that frees * the IRT entry and related tracking nonsense. */ static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, unsigned int irq) { struct hv_pcibus_device *hbus; struct hv_pci_dev *hpdev; struct pci_dev *pdev; struct tran_int_desc *int_desc; struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); struct msi_desc *msi = irq_data_get_msi_desc(irq_data); pdev = msi_desc_to_pci_dev(msi); hbus = info->data; int_desc = irq_data_get_irq_chip_data(irq_data); if (!int_desc) return; irq_data->chip_data = NULL; hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); if (!hpdev) { kfree(int_desc); return; } hv_int_desc_free(hpdev, int_desc); put_pcichild(hpdev, hv_pcidev_ref_by_slot); } static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest, bool force) { struct irq_data *parent = data->parent_data; return parent->chip->irq_set_affinity(parent, dest, force); } static void hv_irq_mask(struct irq_data *data) { pci_msi_mask_irq(data); } /** * hv_irq_unmask() - "Unmask" the IRQ by setting its current * affinity. * @data: Describes the IRQ * * Build new a destination for the MSI and make a hypercall to * update the Interrupt Redirection Table. "Device Logical ID" * is built out of this PCI bus's instance GUID and the function * number of the device. */ static void hv_irq_unmask(struct irq_data *data) { struct msi_desc *msi_desc = irq_data_get_msi_desc(data); struct irq_cfg *cfg = irqd_cfg(data); struct retarget_msi_interrupt params; struct hv_pcibus_device *hbus; struct cpumask *dest; struct pci_bus *pbus; struct pci_dev *pdev; int cpu; dest = irq_data_get_affinity_mask(data); pdev = msi_desc_to_pci_dev(msi_desc); pbus = pdev->bus; hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); memset(¶ms, 0, sizeof(params)); params.partition_id = HV_PARTITION_ID_SELF; params.source = 1; /* MSI(-X) */ params.address = msi_desc->msg.address_lo; params.data = msi_desc->msg.data; params.device_id = (hbus->hdev->dev_instance.b[5] << 24) | (hbus->hdev->dev_instance.b[4] << 16) | (hbus->hdev->dev_instance.b[7] << 8) | (hbus->hdev->dev_instance.b[6] & 0xf8) | PCI_FUNC(pdev->devfn); params.vector = cfg->vector; for_each_cpu_and(cpu, dest, cpu_online_mask) params.vp_mask |= (1ULL << vmbus_cpu_number_to_vp_number(cpu)); hv_do_hypercall(HVCALL_RETARGET_INTERRUPT, ¶ms, NULL); pci_msi_unmask_irq(data); } struct compose_comp_ctxt { struct hv_pci_compl comp_pkt; struct tran_int_desc int_desc; }; static void hv_pci_compose_compl(void *context, struct pci_response *resp, int resp_packet_size) { struct compose_comp_ctxt *comp_pkt = context; struct pci_create_int_response *int_resp = (struct pci_create_int_response *)resp; comp_pkt->comp_pkt.completion_status = resp->status; comp_pkt->int_desc = int_resp->int_desc; complete(&comp_pkt->comp_pkt.host_event); } /** * hv_compose_msi_msg() - Supplies a valid MSI address/data * @data: Everything about this MSI * @msg: Buffer that is filled in by this function * * This function unpacks the IRQ looking for target CPU set, IDT * vector and mode and sends a message to the parent partition * asking for a mapping for that tuple in this partition. The * response supplies a data value and address to which that data * should be written to trigger that interrupt. */ static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) { struct irq_cfg *cfg = irqd_cfg(data); struct hv_pcibus_device *hbus; struct hv_pci_dev *hpdev; struct pci_bus *pbus; struct pci_dev *pdev; struct pci_create_interrupt *int_pkt; struct compose_comp_ctxt comp; struct tran_int_desc *int_desc; struct cpumask *affinity; struct { struct pci_packet pkt; u8 buffer[sizeof(struct pci_create_interrupt)]; } ctxt; int cpu; int ret; pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data)); pbus = pdev->bus; hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); if (!hpdev) goto return_null_message; /* Free any previous message that might have already been composed. */ if (data->chip_data) { int_desc = data->chip_data; data->chip_data = NULL; hv_int_desc_free(hpdev, int_desc); } int_desc = kzalloc(sizeof(*int_desc), GFP_KERNEL); if (!int_desc) goto drop_reference; memset(&ctxt, 0, sizeof(ctxt)); init_completion(&comp.comp_pkt.host_event); ctxt.pkt.completion_func = hv_pci_compose_compl; ctxt.pkt.compl_ctxt = ∁ int_pkt = (struct pci_create_interrupt *)&ctxt.pkt.message; int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; int_pkt->wslot.slot = hpdev->desc.win_slot.slot; int_pkt->int_desc.vector = cfg->vector; int_pkt->int_desc.vector_count = 1; int_pkt->int_desc.delivery_mode = (apic->irq_delivery_mode == dest_LowestPrio) ? 1 : 0; /* * This bit doesn't have to work on machines with more than 64 * processors because Hyper-V only supports 64 in a guest. */ affinity = irq_data_get_affinity_mask(data); for_each_cpu_and(cpu, affinity, cpu_online_mask) { int_pkt->int_desc.cpu_mask |= (1ULL << vmbus_cpu_number_to_vp_number(cpu)); } ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret) goto free_int_desc; wait_for_completion(&comp.comp_pkt.host_event); if (comp.comp_pkt.completion_status < 0) { dev_err(&hbus->hdev->device, "Request for interrupt failed: 0x%x", comp.comp_pkt.completion_status); goto free_int_desc; } /* * Record the assignment so that this can be unwound later. Using * irq_set_chip_data() here would be appropriate, but the lock it takes * is already held. */ *int_desc = comp.int_desc; data->chip_data = int_desc; /* Pass up the result. */ msg->address_hi = comp.int_desc.address >> 32; msg->address_lo = comp.int_desc.address & 0xffffffff; msg->data = comp.int_desc.data; put_pcichild(hpdev, hv_pcidev_ref_by_slot); return; free_int_desc: kfree(int_desc); drop_reference: put_pcichild(hpdev, hv_pcidev_ref_by_slot); return_null_message: msg->address_hi = 0; msg->address_lo = 0; msg->data = 0; } /* HW Interrupt Chip Descriptor */ static struct irq_chip hv_msi_irq_chip = { .name = "Hyper-V PCIe MSI", .irq_compose_msi_msg = hv_compose_msi_msg, .irq_set_affinity = hv_set_affinity, .irq_ack = irq_chip_ack_parent, .irq_mask = hv_irq_mask, .irq_unmask = hv_irq_unmask, }; static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info, msi_alloc_info_t *arg) { return arg->msi_hwirq; } static struct msi_domain_ops hv_msi_ops = { .get_hwirq = hv_msi_domain_ops_get_hwirq, .msi_prepare = pci_msi_prepare, .set_desc = pci_msi_set_desc, .msi_free = hv_msi_free, }; /** * hv_pcie_init_irq_domain() - Initialize IRQ domain * @hbus: The root PCI bus * * This function creates an IRQ domain which will be used for * interrupts from devices that have been passed through. These * devices only support MSI and MSI-X, not line-based interrupts * or simulations of line-based interrupts through PCIe's * fabric-layer messages. Because interrupts are remapped, we * can support multi-message MSI here. * * Return: '0' on success and error value on failure */ static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) { hbus->msi_info.chip = &hv_msi_irq_chip; hbus->msi_info.ops = &hv_msi_ops; hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX); hbus->msi_info.handler = handle_edge_irq; hbus->msi_info.handler_name = "edge"; hbus->msi_info.data = hbus; hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode, &hbus->msi_info, x86_vector_domain); if (!hbus->irq_domain) { dev_err(&hbus->hdev->device, "Failed to build an MSI IRQ domain\n"); return -ENODEV; } return 0; } /** * get_bar_size() - Get the address space consumed by a BAR * @bar_val: Value that a BAR returned after -1 was written * to it. * * This function returns the size of the BAR, rounded up to 1 * page. It has to be rounded up because the hypervisor's page * table entry that maps the BAR into the VM can't specify an * offset within a page. The invariant is that the hypervisor * must place any BARs of smaller than page length at the * beginning of a page. * * Return: Size in bytes of the consumed MMIO space. */ static u64 get_bar_size(u64 bar_val) { return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), PAGE_SIZE); } /** * survey_child_resources() - Total all MMIO requirements * @hbus: Root PCI bus, as understood by this driver */ static void survey_child_resources(struct hv_pcibus_device *hbus) { struct list_head *iter; struct hv_pci_dev *hpdev; resource_size_t bar_size = 0; unsigned long flags; struct completion *event; u64 bar_val; int i; /* If nobody is waiting on the answer, don't compute it. */ event = xchg(&hbus->survey_event, NULL); if (!event) return; /* If the answer has already been computed, go with it. */ if (hbus->low_mmio_space || hbus->high_mmio_space) { complete(event); return; } spin_lock_irqsave(&hbus->device_list_lock, flags); /* * Due to an interesting quirk of the PCI spec, all memory regions * for a child device are a power of 2 in size and aligned in memory, * so it's sufficient to just add them up without tracking alignment. */ list_for_each(iter, &hbus->children) { hpdev = container_of(iter, struct hv_pci_dev, list_entry); for (i = 0; i < 6; i++) { if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) dev_err(&hbus->hdev->device, "There's an I/O BAR in this list!\n"); if (hpdev->probed_bar[i] != 0) { /* * A probed BAR has all the upper bits set that * can be changed. */ bar_val = hpdev->probed_bar[i]; if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) bar_val |= ((u64)hpdev->probed_bar[++i] << 32); else bar_val |= 0xffffffff00000000ULL; bar_size = get_bar_size(bar_val); if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) hbus->high_mmio_space += bar_size; else hbus->low_mmio_space += bar_size; } } } spin_unlock_irqrestore(&hbus->device_list_lock, flags); complete(event); } /** * prepopulate_bars() - Fill in BARs with defaults * @hbus: Root PCI bus, as understood by this driver * * The core PCI driver code seems much, much happier if the BARs * for a device have values upon first scan. So fill them in. * The algorithm below works down from large sizes to small, * attempting to pack the assignments optimally. The assumption, * enforced in other parts of the code, is that the beginning of * the memory-mapped I/O space will be aligned on the largest * BAR size. */ static void prepopulate_bars(struct hv_pcibus_device *hbus) { resource_size_t high_size = 0; resource_size_t low_size = 0; resource_size_t high_base = 0; resource_size_t low_base = 0; resource_size_t bar_size; struct hv_pci_dev *hpdev; struct list_head *iter; unsigned long flags; u64 bar_val; u32 command; bool high; int i; if (hbus->low_mmio_space) { low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); low_base = hbus->low_mmio_res->start; } if (hbus->high_mmio_space) { high_size = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); high_base = hbus->high_mmio_res->start; } spin_lock_irqsave(&hbus->device_list_lock, flags); /* Pick addresses for the BARs. */ do { list_for_each(iter, &hbus->children) { hpdev = container_of(iter, struct hv_pci_dev, list_entry); for (i = 0; i < 6; i++) { bar_val = hpdev->probed_bar[i]; if (bar_val == 0) continue; high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; if (high) { bar_val |= ((u64)hpdev->probed_bar[i + 1] << 32); } else { bar_val |= 0xffffffffULL << 32; } bar_size = get_bar_size(bar_val); if (high) { if (high_size != bar_size) { i++; continue; } _hv_pcifront_write_config(hpdev, PCI_BASE_ADDRESS_0 + (4 * i), 4, (u32)(high_base & 0xffffff00)); i++; _hv_pcifront_write_config(hpdev, PCI_BASE_ADDRESS_0 + (4 * i), 4, (u32)(high_base >> 32)); high_base += bar_size; } else { if (low_size != bar_size) continue; _hv_pcifront_write_config(hpdev, PCI_BASE_ADDRESS_0 + (4 * i), 4, (u32)(low_base & 0xffffff00)); low_base += bar_size; } } if (high_size <= 1 && low_size <= 1) { /* Set the memory enable bit. */ _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); command |= PCI_COMMAND_MEMORY; _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); break; } } high_size >>= 1; low_size >>= 1; } while (high_size || low_size); spin_unlock_irqrestore(&hbus->device_list_lock, flags); } /** * create_root_hv_pci_bus() - Expose a new root PCI bus * @hbus: Root PCI bus, as understood by this driver * * Return: 0 on success, -errno on failure */ static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) { /* Register the device */ hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device, 0, /* bus number is always zero */ &hv_pcifront_ops, &hbus->sysdata, &hbus->resources_for_children); if (!hbus->pci_bus) return -ENODEV; hbus->pci_bus->msi = &hbus->msi_chip; hbus->pci_bus->msi->dev = &hbus->hdev->device; pci_scan_child_bus(hbus->pci_bus); pci_bus_assign_resources(hbus->pci_bus); pci_bus_add_devices(hbus->pci_bus); hbus->state = hv_pcibus_installed; return 0; } struct q_res_req_compl { struct completion host_event; struct hv_pci_dev *hpdev; }; /** * q_resource_requirements() - Query Resource Requirements * @context: The completion context. * @resp: The response that came from the host. * @resp_packet_size: The size in bytes of resp. * * This function is invoked on completion of a Query Resource * Requirements packet. */ static void q_resource_requirements(void *context, struct pci_response *resp, int resp_packet_size) { struct q_res_req_compl *completion = context; struct pci_q_res_req_response *q_res_req = (struct pci_q_res_req_response *)resp; int i; if (resp->status < 0) { dev_err(&completion->hpdev->hbus->hdev->device, "query resource requirements failed: %x\n", resp->status); } else { for (i = 0; i < 6; i++) { completion->hpdev->probed_bar[i] = q_res_req->probed_bar[i]; } } complete(&completion->host_event); } static void get_pcichild(struct hv_pci_dev *hpdev, enum hv_pcidev_ref_reason reason) { atomic_inc(&hpdev->refs); } static void put_pcichild(struct hv_pci_dev *hpdev, enum hv_pcidev_ref_reason reason) { if (atomic_dec_and_test(&hpdev->refs)) kfree(hpdev); } /** * new_pcichild_device() - Create a new child device * @hbus: The internal struct tracking this root PCI bus. * @desc: The information supplied so far from the host * about the device. * * This function creates the tracking structure for a new child * device and kicks off the process of figuring out what it is. * * Return: Pointer to the new tracking struct */ static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, struct pci_function_description *desc) { struct hv_pci_dev *hpdev; struct pci_child_message *res_req; struct q_res_req_compl comp_pkt; struct { struct pci_packet init_packet; u8 buffer[sizeof(struct pci_child_message)]; } pkt; unsigned long flags; int ret; hpdev = kzalloc(sizeof(*hpdev), GFP_ATOMIC); if (!hpdev) return NULL; hpdev->hbus = hbus; memset(&pkt, 0, sizeof(pkt)); init_completion(&comp_pkt.host_event); comp_pkt.hpdev = hpdev; pkt.init_packet.compl_ctxt = &comp_pkt; pkt.init_packet.completion_func = q_resource_requirements; res_req = (struct pci_child_message *)&pkt.init_packet.message; res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; res_req->wslot.slot = desc->win_slot.slot; ret = vmbus_sendpacket(hbus->hdev->channel, res_req, sizeof(struct pci_child_message), (unsigned long)&pkt.init_packet, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret) goto error; wait_for_completion(&comp_pkt.host_event); hpdev->desc = *desc; get_pcichild(hpdev, hv_pcidev_ref_initial); get_pcichild(hpdev, hv_pcidev_ref_childlist); spin_lock_irqsave(&hbus->device_list_lock, flags); list_add_tail(&hpdev->list_entry, &hbus->children); spin_unlock_irqrestore(&hbus->device_list_lock, flags); return hpdev; error: kfree(hpdev); return NULL; } /** * get_pcichild_wslot() - Find device from slot * @hbus: Root PCI bus, as understood by this driver * @wslot: Location on the bus * * This function looks up a PCI device and returns the internal * representation of it. It acquires a reference on it, so that * the device won't be deleted while somebody is using it. The * caller is responsible for calling put_pcichild() to release * this reference. * * Return: Internal representation of a PCI device */ static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, u32 wslot) { unsigned long flags; struct hv_pci_dev *iter, *hpdev = NULL; spin_lock_irqsave(&hbus->device_list_lock, flags); list_for_each_entry(iter, &hbus->children, list_entry) { if (iter->desc.win_slot.slot == wslot) { hpdev = iter; get_pcichild(hpdev, hv_pcidev_ref_by_slot); break; } } spin_unlock_irqrestore(&hbus->device_list_lock, flags); return hpdev; } /** * pci_devices_present_work() - Handle new list of child devices * @work: Work struct embedded in struct hv_dr_work * * "Bus Relations" is the Windows term for "children of this * bus." The terminology is preserved here for people trying to * debug the interaction between Hyper-V and Linux. This * function is called when the parent partition reports a list * of functions that should be observed under this PCI Express * port (bus). * * This function updates the list, and must tolerate being * called multiple times with the same information. The typical * number of child devices is one, with very atypical cases * involving three or four, so the algorithms used here can be * simple and inefficient. * * It must also treat the omission of a previously observed device as * notification that the device no longer exists. * * Note that this function is a work item, and it may not be * invoked in the order that it was queued. Back to back * updates of the list of present devices may involve queuing * multiple work items, and this one may run before ones that * were sent later. As such, this function only does something * if is the last one in the queue. */ static void pci_devices_present_work(struct work_struct *work) { u32 child_no; bool found; struct list_head *iter; struct pci_function_description *new_desc; struct hv_pci_dev *hpdev; struct hv_pcibus_device *hbus; struct list_head removed; struct hv_dr_work *dr_wrk; struct hv_dr_state *dr = NULL; unsigned long flags; dr_wrk = container_of(work, struct hv_dr_work, wrk); hbus = dr_wrk->bus; kfree(dr_wrk); INIT_LIST_HEAD(&removed); if (down_interruptible(&hbus->enum_sem)) { put_hvpcibus(hbus); return; } /* Pull this off the queue and process it if it was the last one. */ spin_lock_irqsave(&hbus->device_list_lock, flags); while (!list_empty(&hbus->dr_list)) { dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, list_entry); list_del(&dr->list_entry); /* Throw this away if the list still has stuff in it. */ if (!list_empty(&hbus->dr_list)) { kfree(dr); continue; } } spin_unlock_irqrestore(&hbus->device_list_lock, flags); if (!dr) { up(&hbus->enum_sem); put_hvpcibus(hbus); return; } /* First, mark all existing children as reported missing. */ spin_lock_irqsave(&hbus->device_list_lock, flags); list_for_each(iter, &hbus->children) { hpdev = container_of(iter, struct hv_pci_dev, list_entry); hpdev->reported_missing = true; } spin_unlock_irqrestore(&hbus->device_list_lock, flags); /* Next, add back any reported devices. */ for (child_no = 0; child_no < dr->device_count; child_no++) { found = false; new_desc = &dr->func[child_no]; spin_lock_irqsave(&hbus->device_list_lock, flags); list_for_each(iter, &hbus->children) { hpdev = container_of(iter, struct hv_pci_dev, list_entry); if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && (hpdev->desc.v_id == new_desc->v_id) && (hpdev->desc.d_id == new_desc->d_id) && (hpdev->desc.ser == new_desc->ser)) { hpdev->reported_missing = false; found = true; } } spin_unlock_irqrestore(&hbus->device_list_lock, flags); if (!found) { hpdev = new_pcichild_device(hbus, new_desc); if (!hpdev) dev_err(&hbus->hdev->device, "couldn't record a child device.\n"); } } /* Move missing children to a list on the stack. */ spin_lock_irqsave(&hbus->device_list_lock, flags); do { found = false; list_for_each(iter, &hbus->children) { hpdev = container_of(iter, struct hv_pci_dev, list_entry); if (hpdev->reported_missing) { found = true; put_pcichild(hpdev, hv_pcidev_ref_childlist); list_move_tail(&hpdev->list_entry, &removed); break; } } } while (found); spin_unlock_irqrestore(&hbus->device_list_lock, flags); /* Delete everything that should no longer exist. */ while (!list_empty(&removed)) { hpdev = list_first_entry(&removed, struct hv_pci_dev, list_entry); list_del(&hpdev->list_entry); put_pcichild(hpdev, hv_pcidev_ref_initial); } /* Tell the core to rescan bus because there may have been changes. */ if (hbus->state == hv_pcibus_installed) { pci_lock_rescan_remove(); pci_scan_child_bus(hbus->pci_bus); pci_unlock_rescan_remove(); } else { survey_child_resources(hbus); } up(&hbus->enum_sem); put_hvpcibus(hbus); kfree(dr); } /** * hv_pci_devices_present() - Handles list of new children * @hbus: Root PCI bus, as understood by this driver * @relations: Packet from host listing children * * This function is invoked whenever a new list of devices for * this bus appears. */ static void hv_pci_devices_present(struct hv_pcibus_device *hbus, struct pci_bus_relations *relations) { struct hv_dr_state *dr; struct hv_dr_work *dr_wrk; unsigned long flags; dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); if (!dr_wrk) return; dr = kzalloc(offsetof(struct hv_dr_state, func) + (sizeof(struct pci_function_description) * (relations->device_count)), GFP_NOWAIT); if (!dr) { kfree(dr_wrk); return; } INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); dr_wrk->bus = hbus; dr->device_count = relations->device_count; if (dr->device_count != 0) { memcpy(dr->func, relations->func, sizeof(struct pci_function_description) * dr->device_count); } spin_lock_irqsave(&hbus->device_list_lock, flags); list_add_tail(&dr->list_entry, &hbus->dr_list); spin_unlock_irqrestore(&hbus->device_list_lock, flags); get_hvpcibus(hbus); schedule_work(&dr_wrk->wrk); } /** * hv_eject_device_work() - Asynchronously handles ejection * @work: Work struct embedded in internal device struct * * This function handles ejecting a device. Windows will * attempt to gracefully eject a device, waiting 60 seconds to * hear back from the guest OS that this completed successfully. * If this timer expires, the device will be forcibly removed. */ static void hv_eject_device_work(struct work_struct *work) { struct pci_eject_response *ejct_pkt; struct hv_pci_dev *hpdev; struct pci_dev *pdev; unsigned long flags; int wslot; struct { struct pci_packet pkt; u8 buffer[sizeof(struct pci_eject_response)]; } ctxt; hpdev = container_of(work, struct hv_pci_dev, wrk); if (hpdev->state != hv_pcichild_ejecting) { put_pcichild(hpdev, hv_pcidev_ref_pnp); return; } /* * Ejection can come before or after the PCI bus has been set up, so * attempt to find it and tear down the bus state, if it exists. This * must be done without constructs like pci_domain_nr(hbus->pci_bus) * because hbus->pci_bus may not exist yet. */ wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0, wslot); if (pdev) { pci_stop_and_remove_bus_device(pdev); pci_dev_put(pdev); } memset(&ctxt, 0, sizeof(ctxt)); ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt, sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags); list_del(&hpdev->list_entry); spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags); put_pcichild(hpdev, hv_pcidev_ref_childlist); put_pcichild(hpdev, hv_pcidev_ref_pnp); put_hvpcibus(hpdev->hbus); } /** * hv_pci_eject_device() - Handles device ejection * @hpdev: Internal device tracking struct * * This function is invoked when an ejection packet arrives. It * just schedules work so that we don't re-enter the packet * delivery code handling the ejection. */ static void hv_pci_eject_device(struct hv_pci_dev *hpdev) { hpdev->state = hv_pcichild_ejecting; get_pcichild(hpdev, hv_pcidev_ref_pnp); INIT_WORK(&hpdev->wrk, hv_eject_device_work); get_hvpcibus(hpdev->hbus); schedule_work(&hpdev->wrk); } /** * hv_pci_onchannelcallback() - Handles incoming packets * @context: Internal bus tracking struct * * This function is invoked whenever the host sends a packet to * this channel (which is private to this root PCI bus). */ static void hv_pci_onchannelcallback(void *context) { const int packet_size = 0x100; int ret; struct hv_pcibus_device *hbus = context; u32 bytes_recvd; u64 req_id; struct vmpacket_descriptor *desc; unsigned char *buffer; int bufferlen = packet_size; struct pci_packet *comp_packet; struct pci_response *response; struct pci_incoming_message *new_message; struct pci_bus_relations *bus_rel; struct pci_dev_incoming *dev_message; struct hv_pci_dev *hpdev; buffer = kmalloc(bufferlen, GFP_ATOMIC); if (!buffer) return; while (1) { ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer, bufferlen, &bytes_recvd, &req_id); if (ret == -ENOBUFS) { kfree(buffer); /* Handle large packet */ bufferlen = bytes_recvd; buffer = kmalloc(bytes_recvd, GFP_ATOMIC); if (!buffer) return; continue; } /* Zero length indicates there are no more packets. */ if (ret || !bytes_recvd) break; /* * All incoming packets must be at least as large as a * response. */ if (bytes_recvd <= sizeof(struct pci_response)) continue; desc = (struct vmpacket_descriptor *)buffer; switch (desc->type) { case VM_PKT_COMP: /* * The host is trusted, and thus it's safe to interpret * this transaction ID as a pointer. */ comp_packet = (struct pci_packet *)req_id; response = (struct pci_response *)buffer; comp_packet->completion_func(comp_packet->compl_ctxt, response, bytes_recvd); break; case VM_PKT_DATA_INBAND: new_message = (struct pci_incoming_message *)buffer; switch (new_message->message_type.type) { case PCI_BUS_RELATIONS: bus_rel = (struct pci_bus_relations *)buffer; if (bytes_recvd < offsetof(struct pci_bus_relations, func) + (sizeof(struct pci_function_description) * (bus_rel->device_count))) { dev_err(&hbus->hdev->device, "bus relations too small\n"); break; } hv_pci_devices_present(hbus, bus_rel); break; case PCI_EJECT: dev_message = (struct pci_dev_incoming *)buffer; hpdev = get_pcichild_wslot(hbus, dev_message->wslot.slot); if (hpdev) { hv_pci_eject_device(hpdev); put_pcichild(hpdev, hv_pcidev_ref_by_slot); } break; default: dev_warn(&hbus->hdev->device, "Unimplemented protocol message %x\n", new_message->message_type.type); break; } break; default: dev_err(&hbus->hdev->device, "unhandled packet type %d, tid %llx len %d\n", desc->type, req_id, bytes_recvd); break; } } kfree(buffer); } /** * hv_pci_protocol_negotiation() - Set up protocol * @hdev: VMBus's tracking struct for this root PCI bus * * This driver is intended to support running on Windows 10 * (server) and later versions. It will not run on earlier * versions, as they assume that many of the operations which * Linux needs accomplished with a spinlock held were done via * asynchronous messaging via VMBus. Windows 10 increases the * surface area of PCI emulation so that these actions can take * place by suspending a virtual processor for their duration. * * This function negotiates the channel protocol version, * failing if the host doesn't support the necessary protocol * level. */ static int hv_pci_protocol_negotiation(struct hv_device *hdev) { struct pci_version_request *version_req; struct hv_pci_compl comp_pkt; struct pci_packet *pkt; int ret; /* * Initiate the handshake with the host and negotiate * a version that the host can support. We start with the * highest version number and go down if the host cannot * support it. */ pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); if (!pkt) return -ENOMEM; init_completion(&comp_pkt.host_event); pkt->completion_func = hv_pci_generic_compl; pkt->compl_ctxt = &comp_pkt; version_req = (struct pci_version_request *)&pkt->message; version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; version_req->protocol_version = PCI_PROTOCOL_VERSION_CURRENT; ret = vmbus_sendpacket(hdev->channel, version_req, sizeof(struct pci_version_request), (unsigned long)pkt, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret) goto exit; wait_for_completion(&comp_pkt.host_event); if (comp_pkt.completion_status < 0) { dev_err(&hdev->device, "PCI Pass-through VSP failed version request %x\n", comp_pkt.completion_status); ret = -EPROTO; goto exit; } ret = 0; exit: kfree(pkt); return ret; } /** * hv_pci_free_bridge_windows() - Release memory regions for the * bus * @hbus: Root PCI bus, as understood by this driver */ static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) { /* * Set the resources back to the way they looked when they * were allocated by setting IORESOURCE_BUSY again. */ if (hbus->low_mmio_space && hbus->low_mmio_res) { hbus->low_mmio_res->flags |= IORESOURCE_BUSY; vmbus_free_mmio(hbus->low_mmio_res->start, resource_size(hbus->low_mmio_res)); } if (hbus->high_mmio_space && hbus->high_mmio_res) { hbus->high_mmio_res->flags |= IORESOURCE_BUSY; vmbus_free_mmio(hbus->high_mmio_res->start, resource_size(hbus->high_mmio_res)); } } /** * hv_pci_allocate_bridge_windows() - Allocate memory regions * for the bus * @hbus: Root PCI bus, as understood by this driver * * This function calls vmbus_allocate_mmio(), which is itself a * bit of a compromise. Ideally, we might change the pnp layer * in the kernel such that it comprehends either PCI devices * which are "grandchildren of ACPI," with some intermediate bus * node (in this case, VMBus) or change it such that it * understands VMBus. The pnp layer, however, has been declared * deprecated, and not subject to change. * * The workaround, implemented here, is to ask VMBus to allocate * MMIO space for this bus. VMBus itself knows which ranges are * appropriate by looking at its own ACPI objects. Then, after * these ranges are claimed, they're modified to look like they * would have looked if the ACPI and pnp code had allocated * bridge windows. These descriptors have to exist in this form * in order to satisfy the code which will get invoked when the * endpoint PCI function driver calls request_mem_region() or * request_mem_region_exclusive(). * * Return: 0 on success, -errno on failure */ static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) { resource_size_t align; int ret; if (hbus->low_mmio_space) { align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, (u64)(u32)0xffffffff, hbus->low_mmio_space, align, false); if (ret) { dev_err(&hbus->hdev->device, "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", hbus->low_mmio_space); return ret; } /* Modify this resource to become a bridge window. */ hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; pci_add_resource(&hbus->resources_for_children, hbus->low_mmio_res); } if (hbus->high_mmio_space) { align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 0x100000000, -1, hbus->high_mmio_space, align, false); if (ret) { dev_err(&hbus->hdev->device, "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", hbus->high_mmio_space); goto release_low_mmio; } /* Modify this resource to become a bridge window. */ hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; pci_add_resource(&hbus->resources_for_children, hbus->high_mmio_res); } return 0; release_low_mmio: if (hbus->low_mmio_res) { vmbus_free_mmio(hbus->low_mmio_res->start, resource_size(hbus->low_mmio_res)); } return ret; } /** * hv_allocate_config_window() - Find MMIO space for PCI Config * @hbus: Root PCI bus, as understood by this driver * * This function claims memory-mapped I/O space for accessing * configuration space for the functions on this bus. * * Return: 0 on success, -errno on failure */ static int hv_allocate_config_window(struct hv_pcibus_device *hbus) { int ret; /* * Set up a region of MMIO space to use for accessing configuration * space. */ ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, PCI_CONFIG_MMIO_LENGTH, 0x1000, false); if (ret) return ret; /* * vmbus_allocate_mmio() gets used for allocating both device endpoint * resource claims (those which cannot be overlapped) and the ranges * which are valid for the children of this bus, which are intended * to be overlapped by those children. Set the flag on this claim * meaning that this region can't be overlapped. */ hbus->mem_config->flags |= IORESOURCE_BUSY; return 0; } static void hv_free_config_window(struct hv_pcibus_device *hbus) { vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); } /** * hv_pci_enter_d0() - Bring the "bus" into the D0 power state * @hdev: VMBus's tracking struct for this root PCI bus * * Return: 0 on success, -errno on failure */ static int hv_pci_enter_d0(struct hv_device *hdev) { struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); struct pci_bus_d0_entry *d0_entry; struct hv_pci_compl comp_pkt; struct pci_packet *pkt; int ret; /* * Tell the host that the bus is ready to use, and moved into the * powered-on state. This includes telling the host which region * of memory-mapped I/O space has been chosen for configuration space * access. */ pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); if (!pkt) return -ENOMEM; init_completion(&comp_pkt.host_event); pkt->completion_func = hv_pci_generic_compl; pkt->compl_ctxt = &comp_pkt; d0_entry = (struct pci_bus_d0_entry *)&pkt->message; d0_entry->message_type.type = PCI_BUS_D0ENTRY; d0_entry->mmio_base = hbus->mem_config->start; ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), (unsigned long)pkt, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret) goto exit; wait_for_completion(&comp_pkt.host_event); if (comp_pkt.completion_status < 0) { dev_err(&hdev->device, "PCI Pass-through VSP failed D0 Entry with status %x\n", comp_pkt.completion_status); ret = -EPROTO; goto exit; } ret = 0; exit: kfree(pkt); return ret; } /** * hv_pci_query_relations() - Ask host to send list of child * devices * @hdev: VMBus's tracking struct for this root PCI bus * * Return: 0 on success, -errno on failure */ static int hv_pci_query_relations(struct hv_device *hdev) { struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); struct pci_message message; struct completion comp; int ret; /* Ask the host to send along the list of child devices */ init_completion(&comp); if (cmpxchg(&hbus->survey_event, NULL, &comp)) return -ENOTEMPTY; memset(&message, 0, sizeof(message)); message.type = PCI_QUERY_BUS_RELATIONS; ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 0, VM_PKT_DATA_INBAND, 0); if (ret) return ret; wait_for_completion(&comp); return 0; } /** * hv_send_resources_allocated() - Report local resource choices * @hdev: VMBus's tracking struct for this root PCI bus * * The host OS is expecting to be sent a request as a message * which contains all the resources that the device will use. * The response contains those same resources, "translated" * which is to say, the values which should be used by the * hardware, when it delivers an interrupt. (MMIO resources are * used in local terms.) This is nice for Windows, and lines up * with the FDO/PDO split, which doesn't exist in Linux. Linux * is deeply expecting to scan an emulated PCI configuration * space. So this message is sent here only to drive the state * machine on the host forward. * * Return: 0 on success, -errno on failure */ static int hv_send_resources_allocated(struct hv_device *hdev) { struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); struct pci_resources_assigned *res_assigned; struct hv_pci_compl comp_pkt; struct hv_pci_dev *hpdev; struct pci_packet *pkt; u32 wslot; int ret; pkt = kmalloc(sizeof(*pkt) + sizeof(*res_assigned), GFP_KERNEL); if (!pkt) return -ENOMEM; ret = 0; for (wslot = 0; wslot < 256; wslot++) { hpdev = get_pcichild_wslot(hbus, wslot); if (!hpdev) continue; memset(pkt, 0, sizeof(*pkt) + sizeof(*res_assigned)); init_completion(&comp_pkt.host_event); pkt->completion_func = hv_pci_generic_compl; pkt->compl_ctxt = &comp_pkt; res_assigned = (struct pci_resources_assigned *)&pkt->message; res_assigned->message_type.type = PCI_RESOURCES_ASSIGNED; res_assigned->wslot.slot = hpdev->desc.win_slot.slot; put_pcichild(hpdev, hv_pcidev_ref_by_slot); ret = vmbus_sendpacket( hdev->channel, &pkt->message, sizeof(*res_assigned), (unsigned long)pkt, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret) break; wait_for_completion(&comp_pkt.host_event); if (comp_pkt.completion_status < 0) { ret = -EPROTO; dev_err(&hdev->device, "resource allocated returned 0x%x", comp_pkt.completion_status); break; } } kfree(pkt); return ret; } /** * hv_send_resources_released() - Report local resources * released * @hdev: VMBus's tracking struct for this root PCI bus * * Return: 0 on success, -errno on failure */ static int hv_send_resources_released(struct hv_device *hdev) { struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); struct pci_child_message pkt; struct hv_pci_dev *hpdev; u32 wslot; int ret; for (wslot = 0; wslot < 256; wslot++) { hpdev = get_pcichild_wslot(hbus, wslot); if (!hpdev) continue; memset(&pkt, 0, sizeof(pkt)); pkt.message_type.type = PCI_RESOURCES_RELEASED; pkt.wslot.slot = hpdev->desc.win_slot.slot; put_pcichild(hpdev, hv_pcidev_ref_by_slot); ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, VM_PKT_DATA_INBAND, 0); if (ret) return ret; } return 0; } static void get_hvpcibus(struct hv_pcibus_device *hbus) { atomic_inc(&hbus->remove_lock); } static void put_hvpcibus(struct hv_pcibus_device *hbus) { if (atomic_dec_and_test(&hbus->remove_lock)) complete(&hbus->remove_event); } /** * hv_pci_probe() - New VMBus channel probe, for a root PCI bus * @hdev: VMBus's tracking struct for this root PCI bus * @dev_id: Identifies the device itself * * Return: 0 on success, -errno on failure */ static int hv_pci_probe(struct hv_device *hdev, const struct hv_vmbus_device_id *dev_id) { struct hv_pcibus_device *hbus; int ret; hbus = kzalloc(sizeof(*hbus), GFP_KERNEL); if (!hbus) return -ENOMEM; /* * The PCI bus "domain" is what is called "segment" in ACPI and * other specs. Pull it from the instance ID, to get something * unique. Bytes 8 and 9 are what is used in Windows guests, so * do the same thing for consistency. Note that, since this code * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee * that (1) the only domain in use for something that looks like * a physical PCI bus (which is actually emulated by the * hypervisor) is domain 0 and (2) there will be no overlap * between domains derived from these instance IDs in the same * VM. */ hbus->sysdata.domain = hdev->dev_instance.b[9] | hdev->dev_instance.b[8] << 8; hbus->hdev = hdev; atomic_inc(&hbus->remove_lock); INIT_LIST_HEAD(&hbus->children); INIT_LIST_HEAD(&hbus->dr_list); INIT_LIST_HEAD(&hbus->resources_for_children); spin_lock_init(&hbus->config_lock); spin_lock_init(&hbus->device_list_lock); sema_init(&hbus->enum_sem, 1); init_completion(&hbus->remove_event); ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, hv_pci_onchannelcallback, hbus); if (ret) goto free_bus; hv_set_drvdata(hdev, hbus); ret = hv_pci_protocol_negotiation(hdev); if (ret) goto close; ret = hv_allocate_config_window(hbus); if (ret) goto close; hbus->cfg_addr = ioremap(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); if (!hbus->cfg_addr) { dev_err(&hdev->device, "Unable to map a virtual address for config space\n"); ret = -ENOMEM; goto free_config; } hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus); if (!hbus->sysdata.fwnode) { ret = -ENOMEM; goto unmap; } ret = hv_pcie_init_irq_domain(hbus); if (ret) goto free_fwnode; ret = hv_pci_query_relations(hdev); if (ret) goto free_irq_domain; ret = hv_pci_enter_d0(hdev); if (ret) goto free_irq_domain; ret = hv_pci_allocate_bridge_windows(hbus); if (ret) goto free_irq_domain; ret = hv_send_resources_allocated(hdev); if (ret) goto free_windows; prepopulate_bars(hbus); hbus->state = hv_pcibus_probed; ret = create_root_hv_pci_bus(hbus); if (ret) goto free_windows; return 0; free_windows: hv_pci_free_bridge_windows(hbus); free_irq_domain: irq_domain_remove(hbus->irq_domain); free_fwnode: irq_domain_free_fwnode(hbus->sysdata.fwnode); unmap: iounmap(hbus->cfg_addr); free_config: hv_free_config_window(hbus); close: vmbus_close(hdev->channel); free_bus: kfree(hbus); return ret; } /** * hv_pci_remove() - Remove routine for this VMBus channel * @hdev: VMBus's tracking struct for this root PCI bus * * Return: 0 on success, -errno on failure */ static int hv_pci_remove(struct hv_device *hdev) { int ret; struct hv_pcibus_device *hbus; union { struct pci_packet teardown_packet; u8 buffer[0x100]; } pkt; struct pci_bus_relations relations; struct hv_pci_compl comp_pkt; hbus = hv_get_drvdata(hdev); memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); init_completion(&comp_pkt.host_event); pkt.teardown_packet.completion_func = hv_pci_generic_compl; pkt.teardown_packet.compl_ctxt = &comp_pkt; pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message, sizeof(struct pci_message), (unsigned long)&pkt.teardown_packet, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (!ret) wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ); if (hbus->state == hv_pcibus_installed) { /* Remove the bus from PCI's point of view. */ pci_lock_rescan_remove(); pci_stop_root_bus(hbus->pci_bus); pci_remove_root_bus(hbus->pci_bus); pci_unlock_rescan_remove(); } ret = hv_send_resources_released(hdev); if (ret) dev_err(&hdev->device, "Couldn't send resources released packet(s)\n"); vmbus_close(hdev->channel); /* Delete any children which might still exist. */ memset(&relations, 0, sizeof(relations)); hv_pci_devices_present(hbus, &relations); iounmap(hbus->cfg_addr); hv_free_config_window(hbus); pci_free_resource_list(&hbus->resources_for_children); hv_pci_free_bridge_windows(hbus); irq_domain_remove(hbus->irq_domain); irq_domain_free_fwnode(hbus->sysdata.fwnode); put_hvpcibus(hbus); wait_for_completion(&hbus->remove_event); kfree(hbus); return 0; } static const struct hv_vmbus_device_id hv_pci_id_table[] = { /* PCI Pass-through Class ID */ /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ { HV_PCIE_GUID, }, { }, }; MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); static struct hv_driver hv_pci_drv = { .name = "hv_pci", .id_table = hv_pci_id_table, .probe = hv_pci_probe, .remove = hv_pci_remove, }; static void __exit exit_hv_pci_drv(void) { vmbus_driver_unregister(&hv_pci_drv); } static int __init init_hv_pci_drv(void) { return vmbus_driver_register(&hv_pci_drv); } module_init(init_hv_pci_drv); module_exit(exit_hv_pci_drv); MODULE_DESCRIPTION("Hyper-V PCI"); MODULE_LICENSE("GPL v2");