/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2015 Broadcom */ #include #include #include #include #include #include #include #include #include #include #include "uapi/drm/vc4_drm.h" struct drm_device; struct drm_gem_object; /* Don't forget to update vc4_bo.c: bo_type_names[] when adding to * this. */ enum vc4_kernel_bo_type { /* Any kernel allocation (gem_create_object hook) before it * gets another type set. */ VC4_BO_TYPE_KERNEL, VC4_BO_TYPE_V3D, VC4_BO_TYPE_V3D_SHADER, VC4_BO_TYPE_DUMB, VC4_BO_TYPE_BIN, VC4_BO_TYPE_RCL, VC4_BO_TYPE_BCL, VC4_BO_TYPE_KERNEL_CACHE, VC4_BO_TYPE_COUNT }; /* Performance monitor object. The perform lifetime is controlled by userspace * using perfmon related ioctls. A perfmon can be attached to a submit_cl * request, and when this is the case, HW perf counters will be activated just * before the submit_cl is submitted to the GPU and disabled when the job is * done. This way, only events related to a specific job will be counted. */ struct vc4_perfmon { /* Tracks the number of users of the perfmon, when this counter reaches * zero the perfmon is destroyed. */ refcount_t refcnt; /* Number of counters activated in this perfmon instance * (should be less than DRM_VC4_MAX_PERF_COUNTERS). */ u8 ncounters; /* Events counted by the HW perf counters. */ u8 events[DRM_VC4_MAX_PERF_COUNTERS]; /* Storage for counter values. Counters are incremented by the HW * perf counter values every time the perfmon is attached to a GPU job. * This way, perfmon users don't have to retrieve the results after * each job if they want to track events covering several submissions. * Note that counter values can't be reset, but you can fake a reset by * destroying the perfmon and creating a new one. */ u64 counters[0]; }; struct vc4_dev { struct drm_device *dev; struct vc4_hdmi *hdmi; struct vc4_hvs *hvs; struct vc4_v3d *v3d; struct vc4_dpi *dpi; struct vc4_dsi *dsi1; struct vc4_vec *vec; struct vc4_txp *txp; struct vc4_hang_state *hang_state; /* The kernel-space BO cache. Tracks buffers that have been * unreferenced by all other users (refcounts of 0!) but not * yet freed, so we can do cheap allocations. */ struct vc4_bo_cache { /* Array of list heads for entries in the BO cache, * based on number of pages, so we can do O(1) lookups * in the cache when allocating. */ struct list_head *size_list; uint32_t size_list_size; /* List of all BOs in the cache, ordered by age, so we * can do O(1) lookups when trying to free old * buffers. */ struct list_head time_list; struct work_struct time_work; struct timer_list time_timer; } bo_cache; u32 num_labels; struct vc4_label { const char *name; u32 num_allocated; u32 size_allocated; } *bo_labels; /* Protects bo_cache and bo_labels. */ struct mutex bo_lock; /* Purgeable BO pool. All BOs in this pool can have their memory * reclaimed if the driver is unable to allocate new BOs. We also * keep stats related to the purge mechanism here. */ struct { struct list_head list; unsigned int num; size_t size; unsigned int purged_num; size_t purged_size; struct mutex lock; } purgeable; uint64_t dma_fence_context; /* Sequence number for the last job queued in bin_job_list. * Starts at 0 (no jobs emitted). */ uint64_t emit_seqno; /* Sequence number for the last completed job on the GPU. * Starts at 0 (no jobs completed). */ uint64_t finished_seqno; /* List of all struct vc4_exec_info for jobs to be executed in * the binner. The first job in the list is the one currently * programmed into ct0ca for execution. */ struct list_head bin_job_list; /* List of all struct vc4_exec_info for jobs that have * completed binning and are ready for rendering. The first * job in the list is the one currently programmed into ct1ca * for execution. */ struct list_head render_job_list; /* List of the finished vc4_exec_infos waiting to be freed by * job_done_work. */ struct list_head job_done_list; /* Spinlock used to synchronize the job_list and seqno * accesses between the IRQ handler and GEM ioctls. */ spinlock_t job_lock; wait_queue_head_t job_wait_queue; struct work_struct job_done_work; /* Used to track the active perfmon if any. Access to this field is * protected by job_lock. */ struct vc4_perfmon *active_perfmon; /* List of struct vc4_seqno_cb for callbacks to be made from a * workqueue when the given seqno is passed. */ struct list_head seqno_cb_list; /* The memory used for storing binner tile alloc, tile state, * and overflow memory allocations. This is freed when V3D * powers down. */ struct vc4_bo *bin_bo; /* Size of blocks allocated within bin_bo. */ uint32_t bin_alloc_size; /* Bitmask of the bin_alloc_size chunks in bin_bo that are * used. */ uint32_t bin_alloc_used; /* Bitmask of the current bin_alloc used for overflow memory. */ uint32_t bin_alloc_overflow; /* Incremented when an underrun error happened after an atomic commit. * This is particularly useful to detect when a specific modeset is too * demanding in term of memory or HVS bandwidth which is hard to guess * at atomic check time. */ atomic_t underrun; struct work_struct overflow_mem_work; int power_refcount; /* Set to true when the load tracker is active. */ bool load_tracker_enabled; /* Mutex controlling the power refcount. */ struct mutex power_lock; struct { struct timer_list timer; struct work_struct reset_work; } hangcheck; struct semaphore async_modeset; struct drm_modeset_lock ctm_state_lock; struct drm_private_obj ctm_manager; struct drm_private_obj load_tracker; /* List of vc4_debugfs_info_entry for adding to debugfs once * the minor is available (after drm_dev_register()). */ struct list_head debugfs_list; /* Mutex for binner bo allocation. */ struct mutex bin_bo_lock; /* Reference count for our binner bo. */ struct kref bin_bo_kref; }; static inline struct vc4_dev * to_vc4_dev(struct drm_device *dev) { return (struct vc4_dev *)dev->dev_private; } struct vc4_bo { struct drm_gem_cma_object base; /* seqno of the last job to render using this BO. */ uint64_t seqno; /* seqno of the last job to use the RCL to write to this BO. * * Note that this doesn't include binner overflow memory * writes. */ uint64_t write_seqno; bool t_format; /* List entry for the BO's position in either * vc4_exec_info->unref_list or vc4_dev->bo_cache.time_list */ struct list_head unref_head; /* Time in jiffies when the BO was put in vc4->bo_cache. */ unsigned long free_time; /* List entry for the BO's position in vc4_dev->bo_cache.size_list */ struct list_head size_head; /* Struct for shader validation state, if created by * DRM_IOCTL_VC4_CREATE_SHADER_BO. */ struct vc4_validated_shader_info *validated_shader; /* One of enum vc4_kernel_bo_type, or VC4_BO_TYPE_COUNT + i * for user-allocated labels. */ int label; /* Count the number of active users. This is needed to determine * whether we can move the BO to the purgeable list or not (when the BO * is used by the GPU or the display engine we can't purge it). */ refcount_t usecnt; /* Store purgeable/purged state here */ u32 madv; struct mutex madv_lock; }; static inline struct vc4_bo * to_vc4_bo(struct drm_gem_object *bo) { return (struct vc4_bo *)bo; } struct vc4_fence { struct dma_fence base; struct drm_device *dev; /* vc4 seqno for signaled() test */ uint64_t seqno; }; static inline struct vc4_fence * to_vc4_fence(struct dma_fence *fence) { return (struct vc4_fence *)fence; } struct vc4_seqno_cb { struct work_struct work; uint64_t seqno; void (*func)(struct vc4_seqno_cb *cb); }; struct vc4_v3d { struct vc4_dev *vc4; struct platform_device *pdev; void __iomem *regs; struct clk *clk; struct debugfs_regset32 regset; }; struct vc4_hvs { struct platform_device *pdev; void __iomem *regs; u32 __iomem *dlist; /* Memory manager for CRTCs to allocate space in the display * list. Units are dwords. */ struct drm_mm dlist_mm; /* Memory manager for the LBM memory used by HVS scaling. */ struct drm_mm lbm_mm; spinlock_t mm_lock; struct drm_mm_node mitchell_netravali_filter; struct debugfs_regset32 regset; }; struct vc4_plane { struct drm_plane base; }; static inline struct vc4_plane * to_vc4_plane(struct drm_plane *plane) { return (struct vc4_plane *)plane; } enum vc4_scaling_mode { VC4_SCALING_NONE, VC4_SCALING_TPZ, VC4_SCALING_PPF, }; struct vc4_plane_state { struct drm_plane_state base; /* System memory copy of the display list for this element, computed * at atomic_check time. */ u32 *dlist; u32 dlist_size; /* Number of dwords allocated for the display list */ u32 dlist_count; /* Number of used dwords in the display list. */ /* Offset in the dlist to various words, for pageflip or * cursor updates. */ u32 pos0_offset; u32 pos2_offset; u32 ptr0_offset; u32 lbm_offset; /* Offset where the plane's dlist was last stored in the * hardware at vc4_crtc_atomic_flush() time. */ u32 __iomem *hw_dlist; /* Clipped coordinates of the plane on the display. */ int crtc_x, crtc_y, crtc_w, crtc_h; /* Clipped area being scanned from in the FB. */ u32 src_x, src_y; u32 src_w[2], src_h[2]; /* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */ enum vc4_scaling_mode x_scaling[2], y_scaling[2]; bool is_unity; bool is_yuv; /* Offset to start scanning out from the start of the plane's * BO. */ u32 offsets[3]; /* Our allocation in LBM for temporary storage during scaling. */ struct drm_mm_node lbm; /* Set when the plane has per-pixel alpha content or does not cover * the entire screen. This is a hint to the CRTC that it might need * to enable background color fill. */ bool needs_bg_fill; /* Mark the dlist as initialized. Useful to avoid initializing it twice * when async update is not possible. */ bool dlist_initialized; /* Load of this plane on the HVS block. The load is expressed in HVS * cycles/sec. */ u64 hvs_load; /* Memory bandwidth needed for this plane. This is expressed in * bytes/sec. */ u64 membus_load; }; static inline struct vc4_plane_state * to_vc4_plane_state(struct drm_plane_state *state) { return (struct vc4_plane_state *)state; } enum vc4_encoder_type { VC4_ENCODER_TYPE_NONE, VC4_ENCODER_TYPE_HDMI, VC4_ENCODER_TYPE_VEC, VC4_ENCODER_TYPE_DSI0, VC4_ENCODER_TYPE_DSI1, VC4_ENCODER_TYPE_SMI, VC4_ENCODER_TYPE_DPI, }; struct vc4_encoder { struct drm_encoder base; enum vc4_encoder_type type; u32 clock_select; }; static inline struct vc4_encoder * to_vc4_encoder(struct drm_encoder *encoder) { return container_of(encoder, struct vc4_encoder, base); } struct vc4_crtc_data { /* Which channel of the HVS this pixelvalve sources from. */ int hvs_channel; enum vc4_encoder_type encoder_types[4]; const char *debugfs_name; }; struct vc4_crtc { struct drm_crtc base; struct platform_device *pdev; const struct vc4_crtc_data *data; void __iomem *regs; /* Timestamp at start of vblank irq - unaffected by lock delays. */ ktime_t t_vblank; /* Which HVS channel we're using for our CRTC. */ int channel; u8 lut_r[256]; u8 lut_g[256]; u8 lut_b[256]; /* Size in pixels of the COB memory allocated to this CRTC. */ u32 cob_size; struct drm_pending_vblank_event *event; struct debugfs_regset32 regset; }; static inline struct vc4_crtc * to_vc4_crtc(struct drm_crtc *crtc) { return (struct vc4_crtc *)crtc; } #define V3D_READ(offset) readl(vc4->v3d->regs + offset) #define V3D_WRITE(offset, val) writel(val, vc4->v3d->regs + offset) #define HVS_READ(offset) readl(vc4->hvs->regs + offset) #define HVS_WRITE(offset, val) writel(val, vc4->hvs->regs + offset) #define VC4_REG32(reg) { .name = #reg, .offset = reg } struct vc4_exec_info { /* Sequence number for this bin/render job. */ uint64_t seqno; /* Latest write_seqno of any BO that binning depends on. */ uint64_t bin_dep_seqno; struct dma_fence *fence; /* Last current addresses the hardware was processing when the * hangcheck timer checked on us. */ uint32_t last_ct0ca, last_ct1ca; /* Kernel-space copy of the ioctl arguments */ struct drm_vc4_submit_cl *args; /* This is the array of BOs that were looked up at the start of exec. * Command validation will use indices into this array. */ struct drm_gem_cma_object **bo; uint32_t bo_count; /* List of BOs that are being written by the RCL. Other than * the binner temporary storage, this is all the BOs written * by the job. */ struct drm_gem_cma_object *rcl_write_bo[4]; uint32_t rcl_write_bo_count; /* Pointers for our position in vc4->job_list */ struct list_head head; /* List of other BOs used in the job that need to be released * once the job is complete. */ struct list_head unref_list; /* Current unvalidated indices into @bo loaded by the non-hardware * VC4_PACKET_GEM_HANDLES. */ uint32_t bo_index[2]; /* This is the BO where we store the validated command lists, shader * records, and uniforms. */ struct drm_gem_cma_object *exec_bo; /** * This tracks the per-shader-record state (packet 64) that * determines the length of the shader record and the offset * it's expected to be found at. It gets read in from the * command lists. */ struct vc4_shader_state { uint32_t addr; /* Maximum vertex index referenced by any primitive using this * shader state. */ uint32_t max_index; } *shader_state; /** How many shader states the user declared they were using. */ uint32_t shader_state_size; /** How many shader state records the validator has seen. */ uint32_t shader_state_count; bool found_tile_binning_mode_config_packet; bool found_start_tile_binning_packet; bool found_increment_semaphore_packet; bool found_flush; uint8_t bin_tiles_x, bin_tiles_y; /* Physical address of the start of the tile alloc array * (where each tile's binned CL will start) */ uint32_t tile_alloc_offset; /* Bitmask of which binner slots are freed when this job completes. */ uint32_t bin_slots; /** * Computed addresses pointing into exec_bo where we start the * bin thread (ct0) and render thread (ct1). */ uint32_t ct0ca, ct0ea; uint32_t ct1ca, ct1ea; /* Pointer to the unvalidated bin CL (if present). */ void *bin_u; /* Pointers to the shader recs. These paddr gets incremented as CL * packets are relocated in validate_gl_shader_state, and the vaddrs * (u and v) get incremented and size decremented as the shader recs * themselves are validated. */ void *shader_rec_u; void *shader_rec_v; uint32_t shader_rec_p; uint32_t shader_rec_size; /* Pointers to the uniform data. These pointers are incremented, and * size decremented, as each batch of uniforms is uploaded. */ void *uniforms_u; void *uniforms_v; uint32_t uniforms_p; uint32_t uniforms_size; /* Pointer to a performance monitor object if the user requested it, * NULL otherwise. */ struct vc4_perfmon *perfmon; /* Whether the exec has taken a reference to the binner BO, which should * happen with a VC4_PACKET_TILE_BINNING_MODE_CONFIG packet. */ bool bin_bo_used; }; /* Per-open file private data. Any driver-specific resource that has to be * released when the DRM file is closed should be placed here. */ struct vc4_file { struct { struct idr idr; struct mutex lock; } perfmon; bool bin_bo_used; }; static inline struct vc4_exec_info * vc4_first_bin_job(struct vc4_dev *vc4) { return list_first_entry_or_null(&vc4->bin_job_list, struct vc4_exec_info, head); } static inline struct vc4_exec_info * vc4_first_render_job(struct vc4_dev *vc4) { return list_first_entry_or_null(&vc4->render_job_list, struct vc4_exec_info, head); } static inline struct vc4_exec_info * vc4_last_render_job(struct vc4_dev *vc4) { if (list_empty(&vc4->render_job_list)) return NULL; return list_last_entry(&vc4->render_job_list, struct vc4_exec_info, head); } /** * struct vc4_texture_sample_info - saves the offsets into the UBO for texture * setup parameters. * * This will be used at draw time to relocate the reference to the texture * contents in p0, and validate that the offset combined with * width/height/stride/etc. from p1 and p2/p3 doesn't sample outside the BO. * Note that the hardware treats unprovided config parameters as 0, so not all * of them need to be set up for every texure sample, and we'll store ~0 as * the offset to mark the unused ones. * * See the VC4 3D architecture guide page 41 ("Texture and Memory Lookup Unit * Setup") for definitions of the texture parameters. */ struct vc4_texture_sample_info { bool is_direct; uint32_t p_offset[4]; }; /** * struct vc4_validated_shader_info - information about validated shaders that * needs to be used from command list validation. * * For a given shader, each time a shader state record references it, we need * to verify that the shader doesn't read more uniforms than the shader state * record's uniform BO pointer can provide, and we need to apply relocations * and validate the shader state record's uniforms that define the texture * samples. */ struct vc4_validated_shader_info { uint32_t uniforms_size; uint32_t uniforms_src_size; uint32_t num_texture_samples; struct vc4_texture_sample_info *texture_samples; uint32_t num_uniform_addr_offsets; uint32_t *uniform_addr_offsets; bool is_threaded; }; /** * _wait_for - magic (register) wait macro * * Does the right thing for modeset paths when run under kdgb or similar atomic * contexts. Note that it's important that we check the condition again after * having timed out, since the timeout could be due to preemption or similar and * we've never had a chance to check the condition before the timeout. */ #define _wait_for(COND, MS, W) ({ \ unsigned long timeout__ = jiffies + msecs_to_jiffies(MS) + 1; \ int ret__ = 0; \ while (!(COND)) { \ if (time_after(jiffies, timeout__)) { \ if (!(COND)) \ ret__ = -ETIMEDOUT; \ break; \ } \ if (W && drm_can_sleep()) { \ msleep(W); \ } else { \ cpu_relax(); \ } \ } \ ret__; \ }) #define wait_for(COND, MS) _wait_for(COND, MS, 1) /* vc4_bo.c */ struct drm_gem_object *vc4_create_object(struct drm_device *dev, size_t size); void vc4_free_object(struct drm_gem_object *gem_obj); struct vc4_bo *vc4_bo_create(struct drm_device *dev, size_t size, bool from_cache, enum vc4_kernel_bo_type type); int vc4_dumb_create(struct drm_file *file_priv, struct drm_device *dev, struct drm_mode_create_dumb *args); struct dma_buf *vc4_prime_export(struct drm_gem_object *obj, int flags); int vc4_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int vc4_create_shader_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int vc4_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int vc4_set_tiling_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int vc4_get_tiling_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int vc4_label_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); vm_fault_t vc4_fault(struct vm_fault *vmf); int vc4_mmap(struct file *filp, struct vm_area_struct *vma); int vc4_prime_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma); struct drm_gem_object *vc4_prime_import_sg_table(struct drm_device *dev, struct dma_buf_attachment *attach, struct sg_table *sgt); void *vc4_prime_vmap(struct drm_gem_object *obj); int vc4_bo_cache_init(struct drm_device *dev); void vc4_bo_cache_destroy(struct drm_device *dev); int vc4_bo_inc_usecnt(struct vc4_bo *bo); void vc4_bo_dec_usecnt(struct vc4_bo *bo); void vc4_bo_add_to_purgeable_pool(struct vc4_bo *bo); void vc4_bo_remove_from_purgeable_pool(struct vc4_bo *bo); /* vc4_crtc.c */ extern struct platform_driver vc4_crtc_driver; void vc4_crtc_handle_vblank(struct vc4_crtc *crtc); void vc4_crtc_txp_armed(struct drm_crtc_state *state); void vc4_crtc_get_margins(struct drm_crtc_state *state, unsigned int *right, unsigned int *left, unsigned int *top, unsigned int *bottom); /* vc4_debugfs.c */ int vc4_debugfs_init(struct drm_minor *minor); #ifdef CONFIG_DEBUG_FS void vc4_debugfs_add_file(struct drm_device *drm, const char *filename, int (*show)(struct seq_file*, void*), void *data); void vc4_debugfs_add_regset32(struct drm_device *drm, const char *filename, struct debugfs_regset32 *regset); #else static inline void vc4_debugfs_add_file(struct drm_device *drm, const char *filename, int (*show)(struct seq_file*, void*), void *data) { } static inline void vc4_debugfs_add_regset32(struct drm_device *drm, const char *filename, struct debugfs_regset32 *regset) { } #endif /* vc4_drv.c */ void __iomem *vc4_ioremap_regs(struct platform_device *dev, int index); /* vc4_dpi.c */ extern struct platform_driver vc4_dpi_driver; /* vc4_dsi.c */ extern struct platform_driver vc4_dsi_driver; /* vc4_fence.c */ extern const struct dma_fence_ops vc4_fence_ops; /* vc4_gem.c */ void vc4_gem_init(struct drm_device *dev); void vc4_gem_destroy(struct drm_device *dev); int vc4_submit_cl_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int vc4_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); void vc4_submit_next_bin_job(struct drm_device *dev); void vc4_submit_next_render_job(struct drm_device *dev); void vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec); int vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, bool interruptible); void vc4_job_handle_completed(struct vc4_dev *vc4); int vc4_queue_seqno_cb(struct drm_device *dev, struct vc4_seqno_cb *cb, uint64_t seqno, void (*func)(struct vc4_seqno_cb *cb)); int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); /* vc4_hdmi.c */ extern struct platform_driver vc4_hdmi_driver; /* vc4_vec.c */ extern struct platform_driver vc4_vec_driver; /* vc4_txp.c */ extern struct platform_driver vc4_txp_driver; /* vc4_irq.c */ irqreturn_t vc4_irq(int irq, void *arg); void vc4_irq_preinstall(struct drm_device *dev); int vc4_irq_postinstall(struct drm_device *dev); void vc4_irq_uninstall(struct drm_device *dev); void vc4_irq_reset(struct drm_device *dev); /* vc4_hvs.c */ extern struct platform_driver vc4_hvs_driver; void vc4_hvs_dump_state(struct drm_device *dev); void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel); void vc4_hvs_mask_underrun(struct drm_device *dev, int channel); /* vc4_kms.c */ int vc4_kms_load(struct drm_device *dev); /* vc4_plane.c */ struct drm_plane *vc4_plane_init(struct drm_device *dev, enum drm_plane_type type); u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist); u32 vc4_plane_dlist_size(const struct drm_plane_state *state); void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb); /* vc4_v3d.c */ extern struct platform_driver vc4_v3d_driver; extern const struct of_device_id vc4_v3d_dt_match[]; int vc4_v3d_get_bin_slot(struct vc4_dev *vc4); int vc4_v3d_bin_bo_get(struct vc4_dev *vc4, bool *used); void vc4_v3d_bin_bo_put(struct vc4_dev *vc4); int vc4_v3d_pm_get(struct vc4_dev *vc4); void vc4_v3d_pm_put(struct vc4_dev *vc4); /* vc4_validate.c */ int vc4_validate_bin_cl(struct drm_device *dev, void *validated, void *unvalidated, struct vc4_exec_info *exec); int vc4_validate_shader_recs(struct drm_device *dev, struct vc4_exec_info *exec); struct drm_gem_cma_object *vc4_use_bo(struct vc4_exec_info *exec, uint32_t hindex); int vc4_get_rcl(struct drm_device *dev, struct vc4_exec_info *exec); bool vc4_check_tex_size(struct vc4_exec_info *exec, struct drm_gem_cma_object *fbo, uint32_t offset, uint8_t tiling_format, uint32_t width, uint32_t height, uint8_t cpp); /* vc4_validate_shader.c */ struct vc4_validated_shader_info * vc4_validate_shader(struct drm_gem_cma_object *shader_obj); /* vc4_perfmon.c */ void vc4_perfmon_get(struct vc4_perfmon *perfmon); void vc4_perfmon_put(struct vc4_perfmon *perfmon); void vc4_perfmon_start(struct vc4_dev *vc4, struct vc4_perfmon *perfmon); void vc4_perfmon_stop(struct vc4_dev *vc4, struct vc4_perfmon *perfmon, bool capture); struct vc4_perfmon *vc4_perfmon_find(struct vc4_file *vc4file, int id); void vc4_perfmon_open_file(struct vc4_file *vc4file); void vc4_perfmon_close_file(struct vc4_file *vc4file); int vc4_perfmon_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int vc4_perfmon_destroy_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int vc4_perfmon_get_values_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);