/* * Sonics Silicon Backplane * Broadcom ChipCommon core driver * * Copyright 2005, Broadcom Corporation * Copyright 2006, 2007, Michael Buesch * Copyright 2012, Hauke Mehrtens * * Licensed under the GNU/GPL. See COPYING for details. */ #include "ssb_private.h" #include #include #include #include #include /* Clock sources */ enum ssb_clksrc { /* PCI clock */ SSB_CHIPCO_CLKSRC_PCI, /* Crystal slow clock oscillator */ SSB_CHIPCO_CLKSRC_XTALOS, /* Low power oscillator */ SSB_CHIPCO_CLKSRC_LOPWROS, }; static inline u32 chipco_write32_masked(struct ssb_chipcommon *cc, u16 offset, u32 mask, u32 value) { value &= mask; value |= chipco_read32(cc, offset) & ~mask; chipco_write32(cc, offset, value); return value; } void ssb_chipco_set_clockmode(struct ssb_chipcommon *cc, enum ssb_clkmode mode) { struct ssb_device *ccdev = cc->dev; struct ssb_bus *bus; u32 tmp; if (!ccdev) return; bus = ccdev->bus; /* We support SLOW only on 6..9 */ if (ccdev->id.revision >= 10 && mode == SSB_CLKMODE_SLOW) mode = SSB_CLKMODE_DYNAMIC; if (cc->capabilities & SSB_CHIPCO_CAP_PMU) return; /* PMU controls clockmode, separated function needed */ WARN_ON(ccdev->id.revision >= 20); /* chipcommon cores prior to rev6 don't support dynamic clock control */ if (ccdev->id.revision < 6) return; /* ChipCommon cores rev10+ need testing */ if (ccdev->id.revision >= 10) return; if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL)) return; switch (mode) { case SSB_CLKMODE_SLOW: /* For revs 6..9 only */ tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL); tmp |= SSB_CHIPCO_SLOWCLKCTL_FSLOW; chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp); break; case SSB_CLKMODE_FAST: if (ccdev->id.revision < 10) { ssb_pci_xtal(bus, SSB_GPIO_XTAL, 1); /* Force crystal on */ tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL); tmp &= ~SSB_CHIPCO_SLOWCLKCTL_FSLOW; tmp |= SSB_CHIPCO_SLOWCLKCTL_IPLL; chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp); } else { chipco_write32(cc, SSB_CHIPCO_SYSCLKCTL, (chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL) | SSB_CHIPCO_SYSCLKCTL_FORCEHT)); /* udelay(150); TODO: not available in early init */ } break; case SSB_CLKMODE_DYNAMIC: if (ccdev->id.revision < 10) { tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL); tmp &= ~SSB_CHIPCO_SLOWCLKCTL_FSLOW; tmp &= ~SSB_CHIPCO_SLOWCLKCTL_IPLL; tmp &= ~SSB_CHIPCO_SLOWCLKCTL_ENXTAL; if ((tmp & SSB_CHIPCO_SLOWCLKCTL_SRC) != SSB_CHIPCO_SLOWCLKCTL_SRC_XTAL) tmp |= SSB_CHIPCO_SLOWCLKCTL_ENXTAL; chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp); /* For dynamic control, we have to release our xtal_pu * "force on" */ if (tmp & SSB_CHIPCO_SLOWCLKCTL_ENXTAL) ssb_pci_xtal(bus, SSB_GPIO_XTAL, 0); } else { chipco_write32(cc, SSB_CHIPCO_SYSCLKCTL, (chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL) & ~SSB_CHIPCO_SYSCLKCTL_FORCEHT)); } break; default: WARN_ON(1); } } /* Get the Slow Clock Source */ static enum ssb_clksrc chipco_pctl_get_slowclksrc(struct ssb_chipcommon *cc) { struct ssb_bus *bus = cc->dev->bus; u32 uninitialized_var(tmp); if (cc->dev->id.revision < 6) { if (bus->bustype == SSB_BUSTYPE_SSB || bus->bustype == SSB_BUSTYPE_PCMCIA) return SSB_CHIPCO_CLKSRC_XTALOS; if (bus->bustype == SSB_BUSTYPE_PCI) { pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &tmp); if (tmp & 0x10) return SSB_CHIPCO_CLKSRC_PCI; return SSB_CHIPCO_CLKSRC_XTALOS; } } if (cc->dev->id.revision < 10) { tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL); tmp &= 0x7; if (tmp == 0) return SSB_CHIPCO_CLKSRC_LOPWROS; if (tmp == 1) return SSB_CHIPCO_CLKSRC_XTALOS; if (tmp == 2) return SSB_CHIPCO_CLKSRC_PCI; } return SSB_CHIPCO_CLKSRC_XTALOS; } /* Get maximum or minimum (depending on get_max flag) slowclock frequency. */ static int chipco_pctl_clockfreqlimit(struct ssb_chipcommon *cc, int get_max) { int uninitialized_var(limit); enum ssb_clksrc clocksrc; int divisor = 1; u32 tmp; clocksrc = chipco_pctl_get_slowclksrc(cc); if (cc->dev->id.revision < 6) { switch (clocksrc) { case SSB_CHIPCO_CLKSRC_PCI: divisor = 64; break; case SSB_CHIPCO_CLKSRC_XTALOS: divisor = 32; break; default: WARN_ON(1); } } else if (cc->dev->id.revision < 10) { switch (clocksrc) { case SSB_CHIPCO_CLKSRC_LOPWROS: break; case SSB_CHIPCO_CLKSRC_XTALOS: case SSB_CHIPCO_CLKSRC_PCI: tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL); divisor = (tmp >> 16) + 1; divisor *= 4; break; } } else { tmp = chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL); divisor = (tmp >> 16) + 1; divisor *= 4; } switch (clocksrc) { case SSB_CHIPCO_CLKSRC_LOPWROS: if (get_max) limit = 43000; else limit = 25000; break; case SSB_CHIPCO_CLKSRC_XTALOS: if (get_max) limit = 20200000; else limit = 19800000; break; case SSB_CHIPCO_CLKSRC_PCI: if (get_max) limit = 34000000; else limit = 25000000; break; } limit /= divisor; return limit; } static void chipco_powercontrol_init(struct ssb_chipcommon *cc) { struct ssb_bus *bus = cc->dev->bus; if (bus->chip_id == 0x4321) { if (bus->chip_rev == 0) chipco_write32(cc, SSB_CHIPCO_CHIPCTL, 0x3A4); else if (bus->chip_rev == 1) chipco_write32(cc, SSB_CHIPCO_CHIPCTL, 0xA4); } if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL)) return; if (cc->dev->id.revision >= 10) { /* Set Idle Power clock rate to 1Mhz */ chipco_write32(cc, SSB_CHIPCO_SYSCLKCTL, (chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL) & 0x0000FFFF) | 0x00040000); } else { int maxfreq; maxfreq = chipco_pctl_clockfreqlimit(cc, 1); chipco_write32(cc, SSB_CHIPCO_PLLONDELAY, (maxfreq * 150 + 999999) / 1000000); chipco_write32(cc, SSB_CHIPCO_FREFSELDELAY, (maxfreq * 15 + 999999) / 1000000); } } /* https://bcm-v4.sipsolutions.net/802.11/PmuFastPwrupDelay */ static u16 pmu_fast_powerup_delay(struct ssb_chipcommon *cc) { struct ssb_bus *bus = cc->dev->bus; switch (bus->chip_id) { case 0x4312: case 0x4322: case 0x4328: return 7000; case 0x4325: /* TODO: */ default: return 15000; } } /* https://bcm-v4.sipsolutions.net/802.11/ClkctlFastPwrupDelay */ static void calc_fast_powerup_delay(struct ssb_chipcommon *cc) { struct ssb_bus *bus = cc->dev->bus; int minfreq; unsigned int tmp; u32 pll_on_delay; if (bus->bustype != SSB_BUSTYPE_PCI) return; if (cc->capabilities & SSB_CHIPCO_CAP_PMU) { cc->fast_pwrup_delay = pmu_fast_powerup_delay(cc); return; } if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL)) return; minfreq = chipco_pctl_clockfreqlimit(cc, 0); pll_on_delay = chipco_read32(cc, SSB_CHIPCO_PLLONDELAY); tmp = (((pll_on_delay + 2) * 1000000) + (minfreq - 1)) / minfreq; WARN_ON(tmp & ~0xFFFF); cc->fast_pwrup_delay = tmp; } static u32 ssb_chipco_alp_clock(struct ssb_chipcommon *cc) { if (cc->capabilities & SSB_CHIPCO_CAP_PMU) return ssb_pmu_get_alp_clock(cc); return 20000000; } static u32 ssb_chipco_watchdog_get_max_timer(struct ssb_chipcommon *cc) { u32 nb; if (cc->capabilities & SSB_CHIPCO_CAP_PMU) { if (cc->dev->id.revision < 26) nb = 16; else nb = (cc->dev->id.revision >= 37) ? 32 : 24; } else { nb = 28; } if (nb == 32) return 0xffffffff; else return (1 << nb) - 1; } u32 ssb_chipco_watchdog_timer_set_wdt(struct bcm47xx_wdt *wdt, u32 ticks) { struct ssb_chipcommon *cc = bcm47xx_wdt_get_drvdata(wdt); if (cc->dev->bus->bustype != SSB_BUSTYPE_SSB) return 0; return ssb_chipco_watchdog_timer_set(cc, ticks); } u32 ssb_chipco_watchdog_timer_set_ms(struct bcm47xx_wdt *wdt, u32 ms) { struct ssb_chipcommon *cc = bcm47xx_wdt_get_drvdata(wdt); u32 ticks; if (cc->dev->bus->bustype != SSB_BUSTYPE_SSB) return 0; ticks = ssb_chipco_watchdog_timer_set(cc, cc->ticks_per_ms * ms); return ticks / cc->ticks_per_ms; } static int ssb_chipco_watchdog_ticks_per_ms(struct ssb_chipcommon *cc) { struct ssb_bus *bus = cc->dev->bus; if (cc->capabilities & SSB_CHIPCO_CAP_PMU) { /* based on 32KHz ILP clock */ return 32; } else { if (cc->dev->id.revision < 18) return ssb_clockspeed(bus) / 1000; else return ssb_chipco_alp_clock(cc) / 1000; } } void ssb_chipcommon_init(struct ssb_chipcommon *cc) { if (!cc->dev) return; /* We don't have a ChipCommon */ spin_lock_init(&cc->gpio_lock); if (cc->dev->id.revision >= 11) cc->status = chipco_read32(cc, SSB_CHIPCO_CHIPSTAT); dev_dbg(cc->dev->dev, "chipcommon status is 0x%x\n", cc->status); if (cc->dev->id.revision >= 20) { chipco_write32(cc, SSB_CHIPCO_GPIOPULLUP, 0); chipco_write32(cc, SSB_CHIPCO_GPIOPULLDOWN, 0); } ssb_pmu_init(cc); chipco_powercontrol_init(cc); ssb_chipco_set_clockmode(cc, SSB_CLKMODE_FAST); calc_fast_powerup_delay(cc); if (cc->dev->bus->bustype == SSB_BUSTYPE_SSB) { cc->ticks_per_ms = ssb_chipco_watchdog_ticks_per_ms(cc); cc->max_timer_ms = ssb_chipco_watchdog_get_max_timer(cc) / cc->ticks_per_ms; } } void ssb_chipco_suspend(struct ssb_chipcommon *cc) { if (!cc->dev) return; ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW); } void ssb_chipco_resume(struct ssb_chipcommon *cc) { if (!cc->dev) return; chipco_powercontrol_init(cc); ssb_chipco_set_clockmode(cc, SSB_CLKMODE_FAST); } /* Get the processor clock */ void ssb_chipco_get_clockcpu(struct ssb_chipcommon *cc, u32 *plltype, u32 *n, u32 *m) { *n = chipco_read32(cc, SSB_CHIPCO_CLOCK_N); *plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT); switch (*plltype) { case SSB_PLLTYPE_2: case SSB_PLLTYPE_4: case SSB_PLLTYPE_6: case SSB_PLLTYPE_7: *m = chipco_read32(cc, SSB_CHIPCO_CLOCK_MIPS); break; case SSB_PLLTYPE_3: /* 5350 uses m2 to control mips */ *m = chipco_read32(cc, SSB_CHIPCO_CLOCK_M2); break; default: *m = chipco_read32(cc, SSB_CHIPCO_CLOCK_SB); break; } } /* Get the bus clock */ void ssb_chipco_get_clockcontrol(struct ssb_chipcommon *cc, u32 *plltype, u32 *n, u32 *m) { *n = chipco_read32(cc, SSB_CHIPCO_CLOCK_N); *plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT); switch (*plltype) { case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */ *m = chipco_read32(cc, SSB_CHIPCO_CLOCK_MIPS); break; case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */ if (cc->dev->bus->chip_id != 0x5365) { *m = chipco_read32(cc, SSB_CHIPCO_CLOCK_M2); break; } /* Fall through */ default: *m = chipco_read32(cc, SSB_CHIPCO_CLOCK_SB); } } void ssb_chipco_timing_init(struct ssb_chipcommon *cc, unsigned long ns) { struct ssb_device *dev = cc->dev; struct ssb_bus *bus = dev->bus; u32 tmp; /* set register for external IO to control LED. */ chipco_write32(cc, SSB_CHIPCO_PROG_CFG, 0x11); tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT; /* Waitcount-3 = 10ns */ tmp |= DIV_ROUND_UP(40, ns) << SSB_PROG_WCNT_1_SHIFT; /* Waitcount-1 = 40ns */ tmp |= DIV_ROUND_UP(240, ns); /* Waitcount-0 = 240ns */ chipco_write32(cc, SSB_CHIPCO_PROG_WAITCNT, tmp); /* 0x01020a0c for a 100Mhz clock */ /* Set timing for the flash */ tmp = DIV_ROUND_UP(10, ns) << SSB_FLASH_WCNT_3_SHIFT; /* Waitcount-3 = 10nS */ tmp |= DIV_ROUND_UP(10, ns) << SSB_FLASH_WCNT_1_SHIFT; /* Waitcount-1 = 10nS */ tmp |= DIV_ROUND_UP(120, ns); /* Waitcount-0 = 120nS */ if ((bus->chip_id == 0x5365) || (dev->id.revision < 9)) chipco_write32(cc, SSB_CHIPCO_FLASH_WAITCNT, tmp); if ((bus->chip_id == 0x5365) || (dev->id.revision < 9) || ((bus->chip_id == 0x5350) && (bus->chip_rev == 0))) chipco_write32(cc, SSB_CHIPCO_PCMCIA_MEMWAIT, tmp); if (bus->chip_id == 0x5350) { /* Enable EXTIF */ tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT; /* Waitcount-3 = 10ns */ tmp |= DIV_ROUND_UP(20, ns) << SSB_PROG_WCNT_2_SHIFT; /* Waitcount-2 = 20ns */ tmp |= DIV_ROUND_UP(100, ns) << SSB_PROG_WCNT_1_SHIFT; /* Waitcount-1 = 100ns */ tmp |= DIV_ROUND_UP(120, ns); /* Waitcount-0 = 120ns */ chipco_write32(cc, SSB_CHIPCO_PROG_WAITCNT, tmp); /* 0x01020a0c for a 100Mhz clock */ } } /* Set chip watchdog reset timer to fire in 'ticks' backplane cycles */ u32 ssb_chipco_watchdog_timer_set(struct ssb_chipcommon *cc, u32 ticks) { u32 maxt; enum ssb_clkmode clkmode; maxt = ssb_chipco_watchdog_get_max_timer(cc); if (cc->capabilities & SSB_CHIPCO_CAP_PMU) { if (ticks == 1) ticks = 2; else if (ticks > maxt) ticks = maxt; chipco_write32(cc, SSB_CHIPCO_PMU_WATCHDOG, ticks); } else { clkmode = ticks ? SSB_CLKMODE_FAST : SSB_CLKMODE_DYNAMIC; ssb_chipco_set_clockmode(cc, clkmode); if (ticks > maxt) ticks = maxt; /* instant NMI */ chipco_write32(cc, SSB_CHIPCO_WATCHDOG, ticks); } return ticks; } void ssb_chipco_irq_mask(struct ssb_chipcommon *cc, u32 mask, u32 value) { chipco_write32_masked(cc, SSB_CHIPCO_IRQMASK, mask, value); } u32 ssb_chipco_irq_status(struct ssb_chipcommon *cc, u32 mask) { return chipco_read32(cc, SSB_CHIPCO_IRQSTAT) & mask; } u32 ssb_chipco_gpio_in(struct ssb_chipcommon *cc, u32 mask) { return chipco_read32(cc, SSB_CHIPCO_GPIOIN) & mask; } u32 ssb_chipco_gpio_out(struct ssb_chipcommon *cc, u32 mask, u32 value) { unsigned long flags; u32 res = 0; spin_lock_irqsave(&cc->gpio_lock, flags); res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOOUT, mask, value); spin_unlock_irqrestore(&cc->gpio_lock, flags); return res; } u32 ssb_chipco_gpio_outen(struct ssb_chipcommon *cc, u32 mask, u32 value) { unsigned long flags; u32 res = 0; spin_lock_irqsave(&cc->gpio_lock, flags); res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOOUTEN, mask, value); spin_unlock_irqrestore(&cc->gpio_lock, flags); return res; } u32 ssb_chipco_gpio_control(struct ssb_chipcommon *cc, u32 mask, u32 value) { unsigned long flags; u32 res = 0; spin_lock_irqsave(&cc->gpio_lock, flags); res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOCTL, mask, value); spin_unlock_irqrestore(&cc->gpio_lock, flags); return res; } EXPORT_SYMBOL(ssb_chipco_gpio_control); u32 ssb_chipco_gpio_intmask(struct ssb_chipcommon *cc, u32 mask, u32 value) { unsigned long flags; u32 res = 0; spin_lock_irqsave(&cc->gpio_lock, flags); res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOIRQ, mask, value); spin_unlock_irqrestore(&cc->gpio_lock, flags); return res; } u32 ssb_chipco_gpio_polarity(struct ssb_chipcommon *cc, u32 mask, u32 value) { unsigned long flags; u32 res = 0; spin_lock_irqsave(&cc->gpio_lock, flags); res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOPOL, mask, value); spin_unlock_irqrestore(&cc->gpio_lock, flags); return res; } u32 ssb_chipco_gpio_pullup(struct ssb_chipcommon *cc, u32 mask, u32 value) { unsigned long flags; u32 res = 0; if (cc->dev->id.revision < 20) return 0xffffffff; spin_lock_irqsave(&cc->gpio_lock, flags); res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOPULLUP, mask, value); spin_unlock_irqrestore(&cc->gpio_lock, flags); return res; } u32 ssb_chipco_gpio_pulldown(struct ssb_chipcommon *cc, u32 mask, u32 value) { unsigned long flags; u32 res = 0; if (cc->dev->id.revision < 20) return 0xffffffff; spin_lock_irqsave(&cc->gpio_lock, flags); res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOPULLDOWN, mask, value); spin_unlock_irqrestore(&cc->gpio_lock, flags); return res; } #ifdef CONFIG_SSB_SERIAL int ssb_chipco_serial_init(struct ssb_chipcommon *cc, struct ssb_serial_port *ports) { struct ssb_bus *bus = cc->dev->bus; int nr_ports = 0; u32 plltype; unsigned int irq; u32 baud_base, div; u32 i, n; unsigned int ccrev = cc->dev->id.revision; plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT); irq = ssb_mips_irq(cc->dev); if (plltype == SSB_PLLTYPE_1) { /* PLL clock */ baud_base = ssb_calc_clock_rate(plltype, chipco_read32(cc, SSB_CHIPCO_CLOCK_N), chipco_read32(cc, SSB_CHIPCO_CLOCK_M2)); div = 1; } else { if (ccrev == 20) { /* BCM5354 uses constant 25MHz clock */ baud_base = 25000000; div = 48; /* Set the override bit so we don't divide it */ chipco_write32(cc, SSB_CHIPCO_CORECTL, chipco_read32(cc, SSB_CHIPCO_CORECTL) | SSB_CHIPCO_CORECTL_UARTCLK0); } else if ((ccrev >= 11) && (ccrev != 15)) { baud_base = ssb_chipco_alp_clock(cc); div = 1; if (ccrev >= 21) { /* Turn off UART clock before switching clocksource. */ chipco_write32(cc, SSB_CHIPCO_CORECTL, chipco_read32(cc, SSB_CHIPCO_CORECTL) & ~SSB_CHIPCO_CORECTL_UARTCLKEN); } /* Set the override bit so we don't divide it */ chipco_write32(cc, SSB_CHIPCO_CORECTL, chipco_read32(cc, SSB_CHIPCO_CORECTL) | SSB_CHIPCO_CORECTL_UARTCLK0); if (ccrev >= 21) { /* Re-enable the UART clock. */ chipco_write32(cc, SSB_CHIPCO_CORECTL, chipco_read32(cc, SSB_CHIPCO_CORECTL) | SSB_CHIPCO_CORECTL_UARTCLKEN); } } else if (ccrev >= 3) { /* Internal backplane clock */ baud_base = ssb_clockspeed(bus); div = chipco_read32(cc, SSB_CHIPCO_CLKDIV) & SSB_CHIPCO_CLKDIV_UART; } else { /* Fixed internal backplane clock */ baud_base = 88000000; div = 48; } /* Clock source depends on strapping if UartClkOverride is unset */ if ((ccrev > 0) && !(chipco_read32(cc, SSB_CHIPCO_CORECTL) & SSB_CHIPCO_CORECTL_UARTCLK0)) { if ((cc->capabilities & SSB_CHIPCO_CAP_UARTCLK) == SSB_CHIPCO_CAP_UARTCLK_INT) { /* Internal divided backplane clock */ baud_base /= div; } else { /* Assume external clock of 1.8432 MHz */ baud_base = 1843200; } } } /* Determine the registers of the UARTs */ n = (cc->capabilities & SSB_CHIPCO_CAP_NRUART); for (i = 0; i < n; i++) { void __iomem *cc_mmio; void __iomem *uart_regs; cc_mmio = cc->dev->bus->mmio + (cc->dev->core_index * SSB_CORE_SIZE); uart_regs = cc_mmio + SSB_CHIPCO_UART0_DATA; /* Offset changed at after rev 0 */ if (ccrev == 0) uart_regs += (i * 8); else uart_regs += (i * 256); nr_ports++; ports[i].regs = uart_regs; ports[i].irq = irq; ports[i].baud_base = baud_base; ports[i].reg_shift = 0; } return nr_ports; } #endif /* CONFIG_SSB_SERIAL */