// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Red Hat */ #include "index.h" #include "funnel-requestqueue.h" #include "hash-utils.h" #include "logger.h" #include "memory-alloc.h" #include "sparse-cache.h" static const u64 NO_LAST_SAVE = U64_MAX; /* * When searching for deduplication records, the index first searches the volume index, and then * searches the chapter index for the relevant chapter. If the chapter has been fully committed to * storage, the chapter pages are loaded into the page cache. If the chapter has not yet been * committed (either the open chapter or a recently closed one), the index searches the in-memory * representation of the chapter. Finally, if the volume index does not find a record and the index * is sparse, the index will search the sparse cache. * * The index send two kinds of messages to coordinate between zones: chapter close messages for the * chapter writer, and sparse cache barrier messages for the sparse cache. * * The chapter writer is responsible for committing chapters of records to storage. Since zones can * get different numbers of records, some zones may fall behind others. Each time a zone fills up * its available space in a chapter, it informs the chapter writer that the chapter is complete, * and also informs all other zones that it has closed the chapter. Each other zone will then close * the chapter immediately, regardless of how full it is, in order to minimize skew between zones. * Once every zone has closed the chapter, the chapter writer will commit that chapter to storage. * * The last zone to close the chapter also removes the oldest chapter from the volume index. * Although that chapter is invalid for zones that have moved on, the existence of the open chapter * means that those zones will never ask the volume index about it. No zone is allowed to get more * than one chapter ahead of any other. If a zone is so far ahead that it tries to close another * chapter before the previous one has been closed by all zones, it is forced to wait. * * The sparse cache relies on having the same set of chapter indexes available to all zones. When a * request wants to add a chapter to the sparse cache, it sends a barrier message to each zone * during the triage stage that acts as a rendezvous. Once every zone has reached the barrier and * paused its operations, the cache membership is changed and each zone is then informed that it * can proceed. More details can be found in the sparse cache documentation. * * If a sparse cache has only one zone, it will not create a triage queue, but it still needs the * barrier message to change the sparse cache membership, so the index simulates the message by * invoking the handler directly. */ struct chapter_writer { /* The index to which we belong */ struct uds_index *index; /* The thread to do the writing */ struct thread *thread; /* The lock protecting the following fields */ struct mutex mutex; /* The condition signalled on state changes */ struct cond_var cond; /* Set to true to stop the thread */ bool stop; /* The result from the most recent write */ int result; /* The number of bytes allocated by the chapter writer */ size_t memory_size; /* The number of zones which have submitted a chapter for writing */ unsigned int zones_to_write; /* Open chapter index used by uds_close_open_chapter() */ struct open_chapter_index *open_chapter_index; /* Collated records used by uds_close_open_chapter() */ struct uds_volume_record *collated_records; /* The chapters to write (one per zone) */ struct open_chapter_zone *chapters[]; }; static bool is_zone_chapter_sparse(const struct index_zone *zone, u64 virtual_chapter) { return uds_is_chapter_sparse(zone->index->volume->geometry, zone->oldest_virtual_chapter, zone->newest_virtual_chapter, virtual_chapter); } static int launch_zone_message(struct uds_zone_message message, unsigned int zone, struct uds_index *index) { int result; struct uds_request *request; result = uds_allocate(1, struct uds_request, __func__, &request); if (result != UDS_SUCCESS) return result; request->index = index; request->unbatched = true; request->zone_number = zone; request->zone_message = message; uds_enqueue_request(request, STAGE_MESSAGE); return UDS_SUCCESS; } static void enqueue_barrier_messages(struct uds_index *index, u64 virtual_chapter) { struct uds_zone_message message = { .type = UDS_MESSAGE_SPARSE_CACHE_BARRIER, .virtual_chapter = virtual_chapter, }; unsigned int zone; for (zone = 0; zone < index->zone_count; zone++) { int result = launch_zone_message(message, zone, index); ASSERT_LOG_ONLY((result == UDS_SUCCESS), "barrier message allocation"); } } /* * Determine whether this request should trigger a sparse cache barrier message to change the * membership of the sparse cache. If a change in membership is desired, the function returns the * chapter number to add. */ static u64 triage_index_request(struct uds_index *index, struct uds_request *request) { u64 virtual_chapter; struct index_zone *zone; virtual_chapter = uds_lookup_volume_index_name(index->volume_index, &request->record_name); if (virtual_chapter == NO_CHAPTER) return NO_CHAPTER; zone = index->zones[request->zone_number]; if (!is_zone_chapter_sparse(zone, virtual_chapter)) return NO_CHAPTER; /* * FIXME: Optimize for a common case by remembering the chapter from the most recent * barrier message and skipping this chapter if is it the same. */ return virtual_chapter; } /* * Simulate a message to change the sparse cache membership for a single-zone sparse index. This * allows us to forgo the complicated locking required by a multi-zone sparse index. Any other kind * of index does nothing here. */ static int simulate_index_zone_barrier_message(struct index_zone *zone, struct uds_request *request) { u64 sparse_virtual_chapter; if ((zone->index->zone_count > 1) || !uds_is_sparse_geometry(zone->index->volume->geometry)) return UDS_SUCCESS; sparse_virtual_chapter = triage_index_request(zone->index, request); if (sparse_virtual_chapter == NO_CHAPTER) return UDS_SUCCESS; return uds_update_sparse_cache(zone, sparse_virtual_chapter); } /* This is the request processing function for the triage queue. */ static void triage_request(struct uds_request *request) { struct uds_index *index = request->index; u64 sparse_virtual_chapter = triage_index_request(index, request); if (sparse_virtual_chapter != NO_CHAPTER) enqueue_barrier_messages(index, sparse_virtual_chapter); uds_enqueue_request(request, STAGE_INDEX); } static int finish_previous_chapter(struct uds_index *index, u64 current_chapter_number) { int result; struct chapter_writer *writer = index->chapter_writer; uds_lock_mutex(&writer->mutex); while (index->newest_virtual_chapter < current_chapter_number) uds_wait_cond(&writer->cond, &writer->mutex); result = writer->result; uds_unlock_mutex(&writer->mutex); if (result != UDS_SUCCESS) return uds_log_error_strerror(result, "Writing of previous open chapter failed"); return UDS_SUCCESS; } static int swap_open_chapter(struct index_zone *zone) { int result; struct open_chapter_zone *temporary_chapter; result = finish_previous_chapter(zone->index, zone->newest_virtual_chapter); if (result != UDS_SUCCESS) return result; temporary_chapter = zone->open_chapter; zone->open_chapter = zone->writing_chapter; zone->writing_chapter = temporary_chapter; return UDS_SUCCESS; } /* * Inform the chapter writer that this zone is done with this chapter. The chapter won't start * writing until all zones have closed it. */ static unsigned int start_closing_chapter(struct uds_index *index, unsigned int zone_number, struct open_chapter_zone *chapter) { unsigned int finished_zones; struct chapter_writer *writer = index->chapter_writer; uds_lock_mutex(&writer->mutex); finished_zones = ++writer->zones_to_write; writer->chapters[zone_number] = chapter; uds_broadcast_cond(&writer->cond); uds_unlock_mutex(&writer->mutex); return finished_zones; } static int announce_chapter_closed(struct index_zone *zone, u64 closed_chapter) { int result; unsigned int i; struct uds_zone_message zone_message = { .type = UDS_MESSAGE_ANNOUNCE_CHAPTER_CLOSED, .virtual_chapter = closed_chapter, }; for (i = 0; i < zone->index->zone_count; i++) { if (zone->id == i) continue; result = launch_zone_message(zone_message, i, zone->index); if (result != UDS_SUCCESS) return result; } return UDS_SUCCESS; } static int open_next_chapter(struct index_zone *zone) { int result; u64 closed_chapter; u64 expiring; unsigned int finished_zones; u32 expire_chapters; uds_log_debug("closing chapter %llu of zone %u after %u entries (%u short)", (unsigned long long) zone->newest_virtual_chapter, zone->id, zone->open_chapter->size, zone->open_chapter->capacity - zone->open_chapter->size); result = swap_open_chapter(zone); if (result != UDS_SUCCESS) return result; closed_chapter = zone->newest_virtual_chapter++; uds_set_volume_index_zone_open_chapter(zone->index->volume_index, zone->id, zone->newest_virtual_chapter); uds_reset_open_chapter(zone->open_chapter); finished_zones = start_closing_chapter(zone->index, zone->id, zone->writing_chapter); if ((finished_zones == 1) && (zone->index->zone_count > 1)) { result = announce_chapter_closed(zone, closed_chapter); if (result != UDS_SUCCESS) return result; } expiring = zone->oldest_virtual_chapter; expire_chapters = uds_chapters_to_expire(zone->index->volume->geometry, zone->newest_virtual_chapter); zone->oldest_virtual_chapter += expire_chapters; if (finished_zones < zone->index->zone_count) return UDS_SUCCESS; while (expire_chapters-- > 0) uds_forget_chapter(zone->index->volume, expiring++); return UDS_SUCCESS; } static int handle_chapter_closed(struct index_zone *zone, u64 virtual_chapter) { if (zone->newest_virtual_chapter == virtual_chapter) return open_next_chapter(zone); return UDS_SUCCESS; } static int dispatch_index_zone_control_request(struct uds_request *request) { struct uds_zone_message *message = &request->zone_message; struct index_zone *zone = request->index->zones[request->zone_number]; switch (message->type) { case UDS_MESSAGE_SPARSE_CACHE_BARRIER: return uds_update_sparse_cache(zone, message->virtual_chapter); case UDS_MESSAGE_ANNOUNCE_CHAPTER_CLOSED: return handle_chapter_closed(zone, message->virtual_chapter); default: uds_log_error("invalid message type: %d", message->type); return UDS_INVALID_ARGUMENT; } } static void set_request_location(struct uds_request *request, enum uds_index_region new_location) { request->location = new_location; request->found = ((new_location == UDS_LOCATION_IN_OPEN_CHAPTER) || (new_location == UDS_LOCATION_IN_DENSE) || (new_location == UDS_LOCATION_IN_SPARSE)); } static void set_chapter_location(struct uds_request *request, const struct index_zone *zone, u64 virtual_chapter) { request->found = true; if (virtual_chapter == zone->newest_virtual_chapter) request->location = UDS_LOCATION_IN_OPEN_CHAPTER; else if (is_zone_chapter_sparse(zone, virtual_chapter)) request->location = UDS_LOCATION_IN_SPARSE; else request->location = UDS_LOCATION_IN_DENSE; } static int search_sparse_cache_in_zone(struct index_zone *zone, struct uds_request *request, u64 virtual_chapter, bool *found) { int result; struct volume *volume; u16 record_page_number; u32 chapter; result = uds_search_sparse_cache(zone, &request->record_name, &virtual_chapter, &record_page_number); if ((result != UDS_SUCCESS) || (virtual_chapter == NO_CHAPTER)) return result; request->virtual_chapter = virtual_chapter; volume = zone->index->volume; chapter = uds_map_to_physical_chapter(volume->geometry, virtual_chapter); return uds_search_cached_record_page(volume, request, chapter, record_page_number, found); } static int get_record_from_zone(struct index_zone *zone, struct uds_request *request, bool *found) { struct volume *volume; if (request->location == UDS_LOCATION_RECORD_PAGE_LOOKUP) { *found = true; return UDS_SUCCESS; } else if (request->location == UDS_LOCATION_UNAVAILABLE) { *found = false; return UDS_SUCCESS; } if (request->virtual_chapter == zone->newest_virtual_chapter) { uds_search_open_chapter(zone->open_chapter, &request->record_name, &request->old_metadata, found); return UDS_SUCCESS; } if ((zone->newest_virtual_chapter > 0) && (request->virtual_chapter == (zone->newest_virtual_chapter - 1)) && (zone->writing_chapter->size > 0)) { uds_search_open_chapter(zone->writing_chapter, &request->record_name, &request->old_metadata, found); return UDS_SUCCESS; } volume = zone->index->volume; if (is_zone_chapter_sparse(zone, request->virtual_chapter) && uds_sparse_cache_contains(volume->sparse_cache, request->virtual_chapter, request->zone_number)) return search_sparse_cache_in_zone(zone, request, request->virtual_chapter, found); return uds_search_volume_page_cache(volume, request, found); } static int put_record_in_zone(struct index_zone *zone, struct uds_request *request, const struct uds_record_data *metadata) { unsigned int remaining; remaining = uds_put_open_chapter(zone->open_chapter, &request->record_name, metadata); if (remaining == 0) return open_next_chapter(zone); return UDS_SUCCESS; } static int search_index_zone(struct index_zone *zone, struct uds_request *request) { int result; struct volume_index_record record; bool overflow_record, found = false; struct uds_record_data *metadata; u64 chapter; result = uds_get_volume_index_record(zone->index->volume_index, &request->record_name, &record); if (result != UDS_SUCCESS) return result; if (record.is_found) { if (request->requeued && request->virtual_chapter != record.virtual_chapter) set_request_location(request, UDS_LOCATION_UNKNOWN); request->virtual_chapter = record.virtual_chapter; result = get_record_from_zone(zone, request, &found); if (result != UDS_SUCCESS) return result; } if (found) set_chapter_location(request, zone, record.virtual_chapter); /* * If a record has overflowed a chapter index in more than one chapter (or overflowed in * one chapter and collided with an existing record), it will exist as a collision record * in the volume index, but we won't find it in the volume. This case needs special * handling. */ overflow_record = (record.is_found && record.is_collision && !found); chapter = zone->newest_virtual_chapter; if (found || overflow_record) { if ((request->type == UDS_QUERY_NO_UPDATE) || ((request->type == UDS_QUERY) && overflow_record)) { /* There is nothing left to do. */ return UDS_SUCCESS; } if (record.virtual_chapter != chapter) { /* * Update the volume index to reference the new chapter for the block. If * the record had been deleted or dropped from the chapter index, it will * be back. */ result = uds_set_volume_index_record_chapter(&record, chapter); } else if (request->type != UDS_UPDATE) { /* The record is already in the open chapter. */ return UDS_SUCCESS; } } else { /* * The record wasn't in the volume index, so check whether the * name is in a cached sparse chapter. If we found the name on * a previous search, use that result instead. */ if (request->location == UDS_LOCATION_RECORD_PAGE_LOOKUP) { found = true; } else if (request->location == UDS_LOCATION_UNAVAILABLE) { found = false; } else if (uds_is_sparse_geometry(zone->index->volume->geometry) && !uds_is_volume_index_sample(zone->index->volume_index, &request->record_name)) { result = search_sparse_cache_in_zone(zone, request, NO_CHAPTER, &found); if (result != UDS_SUCCESS) return result; } if (found) set_request_location(request, UDS_LOCATION_IN_SPARSE); if ((request->type == UDS_QUERY_NO_UPDATE) || ((request->type == UDS_QUERY) && !found)) { /* There is nothing left to do. */ return UDS_SUCCESS; } /* * Add a new entry to the volume index referencing the open chapter. This needs to * be done both for new records, and for records from cached sparse chapters. */ result = uds_put_volume_index_record(&record, chapter); } if (result == UDS_OVERFLOW) { /* * The volume index encountered a delta list overflow. The condition was already * logged. We will go on without adding the record to the open chapter. */ return UDS_SUCCESS; } if (result != UDS_SUCCESS) return result; if (!found || (request->type == UDS_UPDATE)) { /* This is a new record or we're updating an existing record. */ metadata = &request->new_metadata; } else { /* Move the existing record to the open chapter. */ metadata = &request->old_metadata; } return put_record_in_zone(zone, request, metadata); } static int remove_from_index_zone(struct index_zone *zone, struct uds_request *request) { int result; struct volume_index_record record; result = uds_get_volume_index_record(zone->index->volume_index, &request->record_name, &record); if (result != UDS_SUCCESS) return result; if (!record.is_found) return UDS_SUCCESS; /* If the request was requeued, check whether the saved state is still valid. */ if (record.is_collision) { set_chapter_location(request, zone, record.virtual_chapter); } else { /* Non-collision records are hints, so resolve the name in the chapter. */ bool found; if (request->requeued && request->virtual_chapter != record.virtual_chapter) set_request_location(request, UDS_LOCATION_UNKNOWN); request->virtual_chapter = record.virtual_chapter; result = get_record_from_zone(zone, request, &found); if (result != UDS_SUCCESS) return result; if (!found) { /* There is no record to remove. */ return UDS_SUCCESS; } } set_chapter_location(request, zone, record.virtual_chapter); /* * Delete the volume index entry for the named record only. Note that a later search might * later return stale advice if there is a colliding name in the same chapter, but it's a * very rare case (1 in 2^21). */ result = uds_remove_volume_index_record(&record); if (result != UDS_SUCCESS) return result; /* * If the record is in the open chapter, we must remove it or mark it deleted to avoid * trouble if the record is added again later. */ if (request->location == UDS_LOCATION_IN_OPEN_CHAPTER) uds_remove_from_open_chapter(zone->open_chapter, &request->record_name); return UDS_SUCCESS; } static int dispatch_index_request(struct uds_index *index, struct uds_request *request) { int result; struct index_zone *zone = index->zones[request->zone_number]; if (!request->requeued) { result = simulate_index_zone_barrier_message(zone, request); if (result != UDS_SUCCESS) return result; } switch (request->type) { case UDS_POST: case UDS_UPDATE: case UDS_QUERY: case UDS_QUERY_NO_UPDATE: result = search_index_zone(zone, request); break; case UDS_DELETE: result = remove_from_index_zone(zone, request); break; default: result = uds_log_warning_strerror(UDS_INVALID_ARGUMENT, "invalid request type: %d", request->type); break; } return result; } /* This is the request processing function invoked by each zone's thread. */ static void execute_zone_request(struct uds_request *request) { int result; struct uds_index *index = request->index; if (request->zone_message.type != UDS_MESSAGE_NONE) { result = dispatch_index_zone_control_request(request); if (result != UDS_SUCCESS) { uds_log_error_strerror(result, "error executing message: %d", request->zone_message.type); } /* Once the message is processed it can be freed. */ uds_free(uds_forget(request)); return; } index->need_to_save = true; if (request->requeued && (request->status != UDS_SUCCESS)) { set_request_location(request, UDS_LOCATION_UNAVAILABLE); index->callback(request); return; } result = dispatch_index_request(index, request); if (result == UDS_QUEUED) { /* The request has been requeued so don't let it complete. */ return; } if (!request->found) set_request_location(request, UDS_LOCATION_UNAVAILABLE); request->status = result; index->callback(request); } static int initialize_index_queues(struct uds_index *index, const struct geometry *geometry) { int result; unsigned int i; for (i = 0; i < index->zone_count; i++) { result = uds_make_request_queue("indexW", &execute_zone_request, &index->zone_queues[i]); if (result != UDS_SUCCESS) return result; } /* The triage queue is only needed for sparse multi-zone indexes. */ if ((index->zone_count > 1) && uds_is_sparse_geometry(geometry)) { result = uds_make_request_queue("triageW", &triage_request, &index->triage_queue); if (result != UDS_SUCCESS) return result; } return UDS_SUCCESS; } /* This is the driver function for the chapter writer thread. */ static void close_chapters(void *arg) { int result; struct chapter_writer *writer = arg; struct uds_index *index = writer->index; uds_log_debug("chapter writer starting"); uds_lock_mutex(&writer->mutex); for (;;) { while (writer->zones_to_write < index->zone_count) { if (writer->stop && (writer->zones_to_write == 0)) { /* * We've been told to stop, and all of the zones are in the same * open chapter, so we can exit now. */ uds_unlock_mutex(&writer->mutex); uds_log_debug("chapter writer stopping"); return; } uds_wait_cond(&writer->cond, &writer->mutex); } /* * Release the lock while closing a chapter. We probably don't need to do this, but * it seems safer in principle. It's OK to access the chapter and chapter_number * fields without the lock since those aren't allowed to change until we're done. */ uds_unlock_mutex(&writer->mutex); if (index->has_saved_open_chapter) { /* * Remove the saved open chapter the first time we close an open chapter * after loading from a clean shutdown, or after doing a clean save. The * lack of the saved open chapter will indicate that a recovery is * necessary. */ index->has_saved_open_chapter = false; result = uds_discard_open_chapter(index->layout); if (result == UDS_SUCCESS) uds_log_debug("Discarding saved open chapter"); } result = uds_close_open_chapter(writer->chapters, index->zone_count, index->volume, writer->open_chapter_index, writer->collated_records, index->newest_virtual_chapter); uds_lock_mutex(&writer->mutex); index->newest_virtual_chapter++; index->oldest_virtual_chapter += uds_chapters_to_expire(index->volume->geometry, index->newest_virtual_chapter); writer->result = result; writer->zones_to_write = 0; uds_broadcast_cond(&writer->cond); } } static void stop_chapter_writer(struct chapter_writer *writer) { struct thread *writer_thread = 0; uds_lock_mutex(&writer->mutex); if (writer->thread != 0) { writer_thread = writer->thread; writer->thread = 0; writer->stop = true; uds_broadcast_cond(&writer->cond); } uds_unlock_mutex(&writer->mutex); if (writer_thread != 0) uds_join_threads(writer_thread); } static void free_chapter_writer(struct chapter_writer *writer) { if (writer == NULL) return; stop_chapter_writer(writer); uds_destroy_mutex(&writer->mutex); uds_destroy_cond(&writer->cond); uds_free_open_chapter_index(writer->open_chapter_index); uds_free(writer->collated_records); uds_free(writer); } static int make_chapter_writer(struct uds_index *index, struct chapter_writer **writer_ptr) { int result; struct chapter_writer *writer; size_t collated_records_size = (sizeof(struct uds_volume_record) * index->volume->geometry->records_per_chapter); result = uds_allocate_extended(struct chapter_writer, index->zone_count, struct open_chapter_zone *, "Chapter Writer", &writer); if (result != UDS_SUCCESS) return result; writer->index = index; result = uds_init_mutex(&writer->mutex); if (result != UDS_SUCCESS) { uds_free(writer); return result; } result = uds_init_cond(&writer->cond); if (result != UDS_SUCCESS) { uds_destroy_mutex(&writer->mutex); uds_free(writer); return result; } result = uds_allocate_cache_aligned(collated_records_size, "collated records", &writer->collated_records); if (result != UDS_SUCCESS) { free_chapter_writer(writer); return result; } result = uds_make_open_chapter_index(&writer->open_chapter_index, index->volume->geometry, index->volume->nonce); if (result != UDS_SUCCESS) { free_chapter_writer(writer); return result; } writer->memory_size = (sizeof(struct chapter_writer) + index->zone_count * sizeof(struct open_chapter_zone *) + collated_records_size + writer->open_chapter_index->memory_size); result = uds_create_thread(close_chapters, writer, "writer", &writer->thread); if (result != UDS_SUCCESS) { free_chapter_writer(writer); return result; } *writer_ptr = writer; return UDS_SUCCESS; } static int load_index(struct uds_index *index) { int result; u64 last_save_chapter; result = uds_load_index_state(index->layout, index); if (result != UDS_SUCCESS) return UDS_INDEX_NOT_SAVED_CLEANLY; last_save_chapter = ((index->last_save != NO_LAST_SAVE) ? index->last_save : 0); uds_log_info("loaded index from chapter %llu through chapter %llu", (unsigned long long) index->oldest_virtual_chapter, (unsigned long long) last_save_chapter); return UDS_SUCCESS; } static int rebuild_index_page_map(struct uds_index *index, u64 vcn) { int result; struct delta_index_page *chapter_index_page; struct geometry *geometry = index->volume->geometry; u32 chapter = uds_map_to_physical_chapter(geometry, vcn); u32 expected_list_number = 0; u32 index_page_number; u32 lowest_delta_list; u32 highest_delta_list; for (index_page_number = 0; index_page_number < geometry->index_pages_per_chapter; index_page_number++) { result = uds_get_volume_index_page(index->volume, chapter, index_page_number, &chapter_index_page); if (result != UDS_SUCCESS) { return uds_log_error_strerror(result, "failed to read index page %u in chapter %u", index_page_number, chapter); } lowest_delta_list = chapter_index_page->lowest_list_number; highest_delta_list = chapter_index_page->highest_list_number; if (lowest_delta_list != expected_list_number) { return uds_log_error_strerror(UDS_CORRUPT_DATA, "chapter %u index page %u is corrupt", chapter, index_page_number); } uds_update_index_page_map(index->volume->index_page_map, vcn, chapter, index_page_number, highest_delta_list); expected_list_number = highest_delta_list + 1; } return UDS_SUCCESS; } static int replay_record(struct uds_index *index, const struct uds_record_name *name, u64 virtual_chapter, bool will_be_sparse_chapter) { int result; struct volume_index_record record; bool update_record; if (will_be_sparse_chapter && !uds_is_volume_index_sample(index->volume_index, name)) { /* * This entry will be in a sparse chapter after the rebuild completes, and it is * not a sample, so just skip over it. */ return UDS_SUCCESS; } result = uds_get_volume_index_record(index->volume_index, name, &record); if (result != UDS_SUCCESS) return result; if (record.is_found) { if (record.is_collision) { if (record.virtual_chapter == virtual_chapter) { /* The record is already correct. */ return UDS_SUCCESS; } update_record = true; } else if (record.virtual_chapter == virtual_chapter) { /* * There is a volume index entry pointing to the current chapter, but we * don't know if it is for the same name as the one we are currently * working on or not. For now, we're just going to assume that it isn't. * This will create one extra collision record if there was a deleted * record in the current chapter. */ update_record = false; } else { /* * If we're rebuilding, we don't normally want to go to disk to see if the * record exists, since we will likely have just read the record from disk * (i.e. we know it's there). The exception to this is when we find an * entry in the volume index that has a different chapter. In this case, we * need to search that chapter to determine if the volume index entry was * for the same record or a different one. */ result = uds_search_volume_page_cache_for_rebuild(index->volume, name, record.virtual_chapter, &update_record); if (result != UDS_SUCCESS) return result; } } else { update_record = false; } if (update_record) { /* * Update the volume index to reference the new chapter for the block. If the * record had been deleted or dropped from the chapter index, it will be back. */ result = uds_set_volume_index_record_chapter(&record, virtual_chapter); } else { /* * Add a new entry to the volume index referencing the open chapter. This should be * done regardless of whether we are a brand new record or a sparse record, i.e. * one that doesn't exist in the index but does on disk, since for a sparse record, * we would want to un-sparsify if it did exist. */ result = uds_put_volume_index_record(&record, virtual_chapter); } if ((result == UDS_DUPLICATE_NAME) || (result == UDS_OVERFLOW)) { /* The rebuilt index will lose these records. */ return UDS_SUCCESS; } return result; } static bool check_for_suspend(struct uds_index *index) { bool closing; if (index->load_context == NULL) return false; uds_lock_mutex(&index->load_context->mutex); if (index->load_context->status != INDEX_SUSPENDING) { uds_unlock_mutex(&index->load_context->mutex); return false; } /* Notify that we are suspended and wait for the resume. */ index->load_context->status = INDEX_SUSPENDED; uds_broadcast_cond(&index->load_context->cond); while ((index->load_context->status != INDEX_OPENING) && (index->load_context->status != INDEX_FREEING)) uds_wait_cond(&index->load_context->cond, &index->load_context->mutex); closing = (index->load_context->status == INDEX_FREEING); uds_unlock_mutex(&index->load_context->mutex); return closing; } static int replay_chapter(struct uds_index *index, u64 virtual, bool sparse) { int result; u32 i; u32 j; const struct geometry *geometry; u32 physical_chapter; if (check_for_suspend(index)) { uds_log_info("Replay interrupted by index shutdown at chapter %llu", (unsigned long long) virtual); return -EBUSY; } geometry = index->volume->geometry; physical_chapter = uds_map_to_physical_chapter(geometry, virtual); uds_prefetch_volume_chapter(index->volume, physical_chapter); uds_set_volume_index_open_chapter(index->volume_index, virtual); result = rebuild_index_page_map(index, virtual); if (result != UDS_SUCCESS) { return uds_log_error_strerror(result, "could not rebuild index page map for chapter %u", physical_chapter); } for (i = 0; i < geometry->record_pages_per_chapter; i++) { u8 *record_page; u32 record_page_number; record_page_number = geometry->index_pages_per_chapter + i; result = uds_get_volume_record_page(index->volume, physical_chapter, record_page_number, &record_page); if (result != UDS_SUCCESS) { return uds_log_error_strerror(result, "could not get page %d", record_page_number); } for (j = 0; j < geometry->records_per_page; j++) { const u8 *name_bytes; struct uds_record_name name; name_bytes = record_page + (j * BYTES_PER_RECORD); memcpy(&name.name, name_bytes, UDS_RECORD_NAME_SIZE); result = replay_record(index, &name, virtual, sparse); if (result != UDS_SUCCESS) return result; } } return UDS_SUCCESS; } static int replay_volume(struct uds_index *index) { int result; u64 old_map_update; u64 new_map_update; u64 virtual; u64 from_virtual = index->oldest_virtual_chapter; u64 upto_virtual = index->newest_virtual_chapter; bool will_be_sparse; uds_log_info("Replaying volume from chapter %llu through chapter %llu", (unsigned long long) from_virtual, (unsigned long long) upto_virtual); /* * The index failed to load, so the volume index is empty. Add records to the volume index * in order, skipping non-hooks in chapters which will be sparse to save time. * * Go through each record page of each chapter and add the records back to the volume * index. This should not cause anything to be written to either the open chapter or the * on-disk volume. Also skip the on-disk chapter corresponding to upto_virtual, as this * would have already been purged from the volume index when the chapter was opened. * * Also, go through each index page for each chapter and rebuild the index page map. */ old_map_update = index->volume->index_page_map->last_update; for (virtual = from_virtual; virtual < upto_virtual; virtual++) { will_be_sparse = uds_is_chapter_sparse(index->volume->geometry, from_virtual, upto_virtual, virtual); result = replay_chapter(index, virtual, will_be_sparse); if (result != UDS_SUCCESS) return result; } /* Also reap the chapter being replaced by the open chapter. */ uds_set_volume_index_open_chapter(index->volume_index, upto_virtual); new_map_update = index->volume->index_page_map->last_update; if (new_map_update != old_map_update) { uds_log_info("replay changed index page map update from %llu to %llu", (unsigned long long) old_map_update, (unsigned long long) new_map_update); } return UDS_SUCCESS; } static int rebuild_index(struct uds_index *index) { int result; u64 lowest; u64 highest; bool is_empty = false; u32 chapters_per_volume = index->volume->geometry->chapters_per_volume; index->volume->lookup_mode = LOOKUP_FOR_REBUILD; result = uds_find_volume_chapter_boundaries(index->volume, &lowest, &highest, &is_empty); if (result != UDS_SUCCESS) { return uds_log_fatal_strerror(result, "cannot rebuild index: unknown volume chapter boundaries"); } if (is_empty) { index->newest_virtual_chapter = 0; index->oldest_virtual_chapter = 0; index->volume->lookup_mode = LOOKUP_NORMAL; return UDS_SUCCESS; } index->newest_virtual_chapter = highest + 1; index->oldest_virtual_chapter = lowest; if (index->newest_virtual_chapter == (index->oldest_virtual_chapter + chapters_per_volume)) { /* Skip the chapter shadowed by the open chapter. */ index->oldest_virtual_chapter++; } result = replay_volume(index); if (result != UDS_SUCCESS) return result; index->volume->lookup_mode = LOOKUP_NORMAL; return UDS_SUCCESS; } static void free_index_zone(struct index_zone *zone) { if (zone == NULL) return; uds_free_open_chapter(zone->open_chapter); uds_free_open_chapter(zone->writing_chapter); uds_free(zone); } static int make_index_zone(struct uds_index *index, unsigned int zone_number) { int result; struct index_zone *zone; result = uds_allocate(1, struct index_zone, "index zone", &zone); if (result != UDS_SUCCESS) return result; result = uds_make_open_chapter(index->volume->geometry, index->zone_count, &zone->open_chapter); if (result != UDS_SUCCESS) { free_index_zone(zone); return result; } result = uds_make_open_chapter(index->volume->geometry, index->zone_count, &zone->writing_chapter); if (result != UDS_SUCCESS) { free_index_zone(zone); return result; } zone->index = index; zone->id = zone_number; index->zones[zone_number] = zone; return UDS_SUCCESS; } int uds_make_index(struct configuration *config, enum uds_open_index_type open_type, struct index_load_context *load_context, index_callback_fn callback, struct uds_index **new_index) { int result; bool loaded = false; bool new = (open_type == UDS_CREATE); struct uds_index *index = NULL; struct index_zone *zone; u64 nonce; unsigned int z; result = uds_allocate_extended(struct uds_index, config->zone_count, struct uds_request_queue *, "index", &index); if (result != UDS_SUCCESS) return result; index->zone_count = config->zone_count; result = uds_make_index_layout(config, new, &index->layout); if (result != UDS_SUCCESS) { uds_free_index(index); return result; } result = uds_allocate(index->zone_count, struct index_zone *, "zones", &index->zones); if (result != UDS_SUCCESS) { uds_free_index(index); return result; } result = uds_make_volume(config, index->layout, &index->volume); if (result != UDS_SUCCESS) { uds_free_index(index); return result; } index->volume->lookup_mode = LOOKUP_NORMAL; for (z = 0; z < index->zone_count; z++) { result = make_index_zone(index, z); if (result != UDS_SUCCESS) { uds_free_index(index); return uds_log_error_strerror(result, "Could not create index zone"); } } nonce = uds_get_volume_nonce(index->layout); result = uds_make_volume_index(config, nonce, &index->volume_index); if (result != UDS_SUCCESS) { uds_free_index(index); return uds_log_error_strerror(result, "could not make volume index"); } index->load_context = load_context; index->callback = callback; result = initialize_index_queues(index, config->geometry); if (result != UDS_SUCCESS) { uds_free_index(index); return result; } result = make_chapter_writer(index, &index->chapter_writer); if (result != UDS_SUCCESS) { uds_free_index(index); return result; } if (!new) { result = load_index(index); switch (result) { case UDS_SUCCESS: loaded = true; break; case -ENOMEM: /* We should not try a rebuild for this error. */ uds_log_error_strerror(result, "index could not be loaded"); break; default: uds_log_error_strerror(result, "index could not be loaded"); if (open_type == UDS_LOAD) { result = rebuild_index(index); if (result != UDS_SUCCESS) { uds_log_error_strerror(result, "index could not be rebuilt"); } } break; } } if (result != UDS_SUCCESS) { uds_free_index(index); return uds_log_error_strerror(result, "fatal error in %s()", __func__); } for (z = 0; z < index->zone_count; z++) { zone = index->zones[z]; zone->oldest_virtual_chapter = index->oldest_virtual_chapter; zone->newest_virtual_chapter = index->newest_virtual_chapter; } if (index->load_context != NULL) { uds_lock_mutex(&index->load_context->mutex); index->load_context->status = INDEX_READY; /* * If we get here, suspend is meaningless, but notify any thread trying to suspend * us so it doesn't hang. */ uds_broadcast_cond(&index->load_context->cond); uds_unlock_mutex(&index->load_context->mutex); } index->has_saved_open_chapter = loaded; index->need_to_save = !loaded; *new_index = index; return UDS_SUCCESS; } void uds_free_index(struct uds_index *index) { unsigned int i; if (index == NULL) return; uds_request_queue_finish(index->triage_queue); for (i = 0; i < index->zone_count; i++) uds_request_queue_finish(index->zone_queues[i]); free_chapter_writer(index->chapter_writer); uds_free_volume_index(index->volume_index); if (index->zones != NULL) { for (i = 0; i < index->zone_count; i++) free_index_zone(index->zones[i]); uds_free(index->zones); } uds_free_volume(index->volume); uds_free_index_layout(uds_forget(index->layout)); uds_free(index); } /* Wait for the chapter writer to complete any outstanding writes. */ void uds_wait_for_idle_index(struct uds_index *index) { struct chapter_writer *writer = index->chapter_writer; uds_lock_mutex(&writer->mutex); while (writer->zones_to_write > 0) uds_wait_cond(&writer->cond, &writer->mutex); uds_unlock_mutex(&writer->mutex); } /* This function assumes that all requests have been drained. */ int uds_save_index(struct uds_index *index) { int result; if (!index->need_to_save) return UDS_SUCCESS; uds_wait_for_idle_index(index); index->prev_save = index->last_save; index->last_save = ((index->newest_virtual_chapter == 0) ? NO_LAST_SAVE : index->newest_virtual_chapter - 1); uds_log_info("beginning save (vcn %llu)", (unsigned long long) index->last_save); result = uds_save_index_state(index->layout, index); if (result != UDS_SUCCESS) { uds_log_info("save index failed"); index->last_save = index->prev_save; } else { index->has_saved_open_chapter = true; index->need_to_save = false; uds_log_info("finished save (vcn %llu)", (unsigned long long) index->last_save); } return result; } int uds_replace_index_storage(struct uds_index *index, struct block_device *bdev) { return uds_replace_volume_storage(index->volume, index->layout, bdev); } /* Accessing statistics should be safe from any thread. */ void uds_get_index_stats(struct uds_index *index, struct uds_index_stats *counters) { struct volume_index_stats stats; uds_get_volume_index_stats(index->volume_index, &stats); counters->entries_indexed = stats.record_count; counters->collisions = stats.collision_count; counters->entries_discarded = stats.discard_count; counters->memory_used = (index->volume_index->memory_size + index->volume->cache_size + index->chapter_writer->memory_size); } void uds_enqueue_request(struct uds_request *request, enum request_stage stage) { struct uds_index *index = request->index; struct uds_request_queue *queue; switch (stage) { case STAGE_TRIAGE: if (index->triage_queue != NULL) { queue = index->triage_queue; break; } fallthrough; case STAGE_INDEX: request->zone_number = uds_get_volume_index_zone(index->volume_index, &request->record_name); fallthrough; case STAGE_MESSAGE: queue = index->zone_queues[request->zone_number]; break; default: ASSERT_LOG_ONLY(false, "invalid index stage: %d", stage); return; } uds_request_queue_enqueue(queue, request); }