// SPDX-License-Identifier: GPL-2.0 /* kernel/rwsem.c: R/W semaphores, public implementation * * Written by David Howells (dhowells@redhat.com). * Derived from asm-i386/semaphore.h * * Writer lock-stealing by Alex Shi * and Michel Lespinasse * * Optimistic spinning by Tim Chen * and Davidlohr Bueso . Based on mutexes. * * Rwsem count bit fields re-definition and rwsem rearchitecture by * Waiman Long and * Peter Zijlstra . */ #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CONFIG_PREEMPT_RT #include "lock_events.h" /* * The least significant 2 bits of the owner value has the following * meanings when set. * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock * * When the rwsem is reader-owned and a spinning writer has timed out, * the nonspinnable bit will be set to disable optimistic spinning. * When a writer acquires a rwsem, it puts its task_struct pointer * into the owner field. It is cleared after an unlock. * * When a reader acquires a rwsem, it will also puts its task_struct * pointer into the owner field with the RWSEM_READER_OWNED bit set. * On unlock, the owner field will largely be left untouched. So * for a free or reader-owned rwsem, the owner value may contain * information about the last reader that acquires the rwsem. * * That information may be helpful in debugging cases where the system * seems to hang on a reader owned rwsem especially if only one reader * is involved. Ideally we would like to track all the readers that own * a rwsem, but the overhead is simply too big. * * A fast path reader optimistic lock stealing is supported when the rwsem * is previously owned by a writer and the following conditions are met: * - OSQ is empty * - rwsem is not currently writer owned * - the handoff isn't set. */ #define RWSEM_READER_OWNED (1UL << 0) #define RWSEM_NONSPINNABLE (1UL << 1) #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) #ifdef CONFIG_DEBUG_RWSEMS # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ if (!debug_locks_silent && \ WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ #c, atomic_long_read(&(sem)->count), \ (unsigned long) sem->magic, \ atomic_long_read(&(sem)->owner), (long)current, \ list_empty(&(sem)->wait_list) ? "" : "not ")) \ debug_locks_off(); \ } while (0) #else # define DEBUG_RWSEMS_WARN_ON(c, sem) #endif /* * On 64-bit architectures, the bit definitions of the count are: * * Bit 0 - writer locked bit * Bit 1 - waiters present bit * Bit 2 - lock handoff bit * Bits 3-7 - reserved * Bits 8-62 - 55-bit reader count * Bit 63 - read fail bit * * On 32-bit architectures, the bit definitions of the count are: * * Bit 0 - writer locked bit * Bit 1 - waiters present bit * Bit 2 - lock handoff bit * Bits 3-7 - reserved * Bits 8-30 - 23-bit reader count * Bit 31 - read fail bit * * It is not likely that the most significant bit (read fail bit) will ever * be set. This guard bit is still checked anyway in the down_read() fastpath * just in case we need to use up more of the reader bits for other purpose * in the future. * * atomic_long_fetch_add() is used to obtain reader lock, whereas * atomic_long_cmpxchg() will be used to obtain writer lock. * * There are three places where the lock handoff bit may be set or cleared. * 1) rwsem_mark_wake() for readers. * 2) rwsem_try_write_lock() for writers. * 3) Error path of rwsem_down_write_slowpath(). * * For all the above cases, wait_lock will be held. A writer must also * be the first one in the wait_list to be eligible for setting the handoff * bit. So concurrent setting/clearing of handoff bit is not possible. */ #define RWSEM_WRITER_LOCKED (1UL << 0) #define RWSEM_FLAG_WAITERS (1UL << 1) #define RWSEM_FLAG_HANDOFF (1UL << 2) #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) #define RWSEM_READER_SHIFT 8 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) /* * All writes to owner are protected by WRITE_ONCE() to make sure that * store tearing can't happen as optimistic spinners may read and use * the owner value concurrently without lock. Read from owner, however, * may not need READ_ONCE() as long as the pointer value is only used * for comparison and isn't being dereferenced. */ static inline void rwsem_set_owner(struct rw_semaphore *sem) { atomic_long_set(&sem->owner, (long)current); } static inline void rwsem_clear_owner(struct rw_semaphore *sem) { atomic_long_set(&sem->owner, 0); } /* * Test the flags in the owner field. */ static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) { return atomic_long_read(&sem->owner) & flags; } /* * The task_struct pointer of the last owning reader will be left in * the owner field. * * Note that the owner value just indicates the task has owned the rwsem * previously, it may not be the real owner or one of the real owners * anymore when that field is examined, so take it with a grain of salt. * * The reader non-spinnable bit is preserved. */ static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, struct task_struct *owner) { unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); atomic_long_set(&sem->owner, val); } static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) { __rwsem_set_reader_owned(sem, current); } /* * Return true if the rwsem is owned by a reader. */ static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) { #ifdef CONFIG_DEBUG_RWSEMS /* * Check the count to see if it is write-locked. */ long count = atomic_long_read(&sem->count); if (count & RWSEM_WRITER_MASK) return false; #endif return rwsem_test_oflags(sem, RWSEM_READER_OWNED); } #ifdef CONFIG_DEBUG_RWSEMS /* * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there * is a task pointer in owner of a reader-owned rwsem, it will be the * real owner or one of the real owners. The only exception is when the * unlock is done by up_read_non_owner(). */ static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) { unsigned long val = atomic_long_read(&sem->owner); while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { if (atomic_long_try_cmpxchg(&sem->owner, &val, val & RWSEM_OWNER_FLAGS_MASK)) return; } } #else static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) { } #endif /* * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag * remains set. Otherwise, the operation will be aborted. */ static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) { unsigned long owner = atomic_long_read(&sem->owner); do { if (!(owner & RWSEM_READER_OWNED)) break; if (owner & RWSEM_NONSPINNABLE) break; } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, owner | RWSEM_NONSPINNABLE)); } static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) { *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); if (WARN_ON_ONCE(*cntp < 0)) rwsem_set_nonspinnable(sem); if (!(*cntp & RWSEM_READ_FAILED_MASK)) { rwsem_set_reader_owned(sem); return true; } return false; } static inline bool rwsem_write_trylock(struct rw_semaphore *sem) { long tmp = RWSEM_UNLOCKED_VALUE; if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { rwsem_set_owner(sem); return true; } return false; } /* * Return just the real task structure pointer of the owner */ static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) { return (struct task_struct *) (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); } /* * Return the real task structure pointer of the owner and the embedded * flags in the owner. pflags must be non-NULL. */ static inline struct task_struct * rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) { unsigned long owner = atomic_long_read(&sem->owner); *pflags = owner & RWSEM_OWNER_FLAGS_MASK; return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); } /* * Guide to the rw_semaphore's count field. * * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned * by a writer. * * The lock is owned by readers when * (1) the RWSEM_WRITER_LOCKED isn't set in count, * (2) some of the reader bits are set in count, and * (3) the owner field has RWSEM_READ_OWNED bit set. * * Having some reader bits set is not enough to guarantee a readers owned * lock as the readers may be in the process of backing out from the count * and a writer has just released the lock. So another writer may steal * the lock immediately after that. */ /* * Initialize an rwsem: */ void __init_rwsem(struct rw_semaphore *sem, const char *name, struct lock_class_key *key) { #ifdef CONFIG_DEBUG_LOCK_ALLOC /* * Make sure we are not reinitializing a held semaphore: */ debug_check_no_locks_freed((void *)sem, sizeof(*sem)); lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); #endif #ifdef CONFIG_DEBUG_RWSEMS sem->magic = sem; #endif atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); raw_spin_lock_init(&sem->wait_lock); INIT_LIST_HEAD(&sem->wait_list); atomic_long_set(&sem->owner, 0L); #ifdef CONFIG_RWSEM_SPIN_ON_OWNER osq_lock_init(&sem->osq); #endif } EXPORT_SYMBOL(__init_rwsem); enum rwsem_waiter_type { RWSEM_WAITING_FOR_WRITE, RWSEM_WAITING_FOR_READ }; struct rwsem_waiter { struct list_head list; struct task_struct *task; enum rwsem_waiter_type type; unsigned long timeout; }; #define rwsem_first_waiter(sem) \ list_first_entry(&sem->wait_list, struct rwsem_waiter, list) enum rwsem_wake_type { RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ RWSEM_WAKE_READERS, /* Wake readers only */ RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ }; enum writer_wait_state { WRITER_NOT_FIRST, /* Writer is not first in wait list */ WRITER_FIRST, /* Writer is first in wait list */ WRITER_HANDOFF /* Writer is first & handoff needed */ }; /* * The typical HZ value is either 250 or 1000. So set the minimum waiting * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait * queue before initiating the handoff protocol. */ #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) /* * Magic number to batch-wakeup waiting readers, even when writers are * also present in the queue. This both limits the amount of work the * waking thread must do and also prevents any potential counter overflow, * however unlikely. */ #define MAX_READERS_WAKEUP 0x100 /* * handle the lock release when processes blocked on it that can now run * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must * have been set. * - there must be someone on the queue * - the wait_lock must be held by the caller * - tasks are marked for wakeup, the caller must later invoke wake_up_q() * to actually wakeup the blocked task(s) and drop the reference count, * preferably when the wait_lock is released * - woken process blocks are discarded from the list after having task zeroed * - writers are only marked woken if downgrading is false */ static void rwsem_mark_wake(struct rw_semaphore *sem, enum rwsem_wake_type wake_type, struct wake_q_head *wake_q) { struct rwsem_waiter *waiter, *tmp; long oldcount, woken = 0, adjustment = 0; struct list_head wlist; lockdep_assert_held(&sem->wait_lock); /* * Take a peek at the queue head waiter such that we can determine * the wakeup(s) to perform. */ waiter = rwsem_first_waiter(sem); if (waiter->type == RWSEM_WAITING_FOR_WRITE) { if (wake_type == RWSEM_WAKE_ANY) { /* * Mark writer at the front of the queue for wakeup. * Until the task is actually later awoken later by * the caller, other writers are able to steal it. * Readers, on the other hand, will block as they * will notice the queued writer. */ wake_q_add(wake_q, waiter->task); lockevent_inc(rwsem_wake_writer); } return; } /* * No reader wakeup if there are too many of them already. */ if (unlikely(atomic_long_read(&sem->count) < 0)) return; /* * Writers might steal the lock before we grant it to the next reader. * We prefer to do the first reader grant before counting readers * so we can bail out early if a writer stole the lock. */ if (wake_type != RWSEM_WAKE_READ_OWNED) { struct task_struct *owner; adjustment = RWSEM_READER_BIAS; oldcount = atomic_long_fetch_add(adjustment, &sem->count); if (unlikely(oldcount & RWSEM_WRITER_MASK)) { /* * When we've been waiting "too" long (for writers * to give up the lock), request a HANDOFF to * force the issue. */ if (!(oldcount & RWSEM_FLAG_HANDOFF) && time_after(jiffies, waiter->timeout)) { adjustment -= RWSEM_FLAG_HANDOFF; lockevent_inc(rwsem_rlock_handoff); } atomic_long_add(-adjustment, &sem->count); return; } /* * Set it to reader-owned to give spinners an early * indication that readers now have the lock. * The reader nonspinnable bit seen at slowpath entry of * the reader is copied over. */ owner = waiter->task; __rwsem_set_reader_owned(sem, owner); } /* * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the * queue. We know that the woken will be at least 1 as we accounted * for above. Note we increment the 'active part' of the count by the * number of readers before waking any processes up. * * This is an adaptation of the phase-fair R/W locks where at the * reader phase (first waiter is a reader), all readers are eligible * to acquire the lock at the same time irrespective of their order * in the queue. The writers acquire the lock according to their * order in the queue. * * We have to do wakeup in 2 passes to prevent the possibility that * the reader count may be decremented before it is incremented. It * is because the to-be-woken waiter may not have slept yet. So it * may see waiter->task got cleared, finish its critical section and * do an unlock before the reader count increment. * * 1) Collect the read-waiters in a separate list, count them and * fully increment the reader count in rwsem. * 2) For each waiters in the new list, clear waiter->task and * put them into wake_q to be woken up later. */ INIT_LIST_HEAD(&wlist); list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { if (waiter->type == RWSEM_WAITING_FOR_WRITE) continue; woken++; list_move_tail(&waiter->list, &wlist); /* * Limit # of readers that can be woken up per wakeup call. */ if (woken >= MAX_READERS_WAKEUP) break; } adjustment = woken * RWSEM_READER_BIAS - adjustment; lockevent_cond_inc(rwsem_wake_reader, woken); if (list_empty(&sem->wait_list)) { /* hit end of list above */ adjustment -= RWSEM_FLAG_WAITERS; } /* * When we've woken a reader, we no longer need to force writers * to give up the lock and we can clear HANDOFF. */ if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF)) adjustment -= RWSEM_FLAG_HANDOFF; if (adjustment) atomic_long_add(adjustment, &sem->count); /* 2nd pass */ list_for_each_entry_safe(waiter, tmp, &wlist, list) { struct task_struct *tsk; tsk = waiter->task; get_task_struct(tsk); /* * Ensure calling get_task_struct() before setting the reader * waiter to nil such that rwsem_down_read_slowpath() cannot * race with do_exit() by always holding a reference count * to the task to wakeup. */ smp_store_release(&waiter->task, NULL); /* * Ensure issuing the wakeup (either by us or someone else) * after setting the reader waiter to nil. */ wake_q_add_safe(wake_q, tsk); } } /* * This function must be called with the sem->wait_lock held to prevent * race conditions between checking the rwsem wait list and setting the * sem->count accordingly. * * If wstate is WRITER_HANDOFF, it will make sure that either the handoff * bit is set or the lock is acquired with handoff bit cleared. */ static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, enum writer_wait_state wstate) { long count, new; lockdep_assert_held(&sem->wait_lock); count = atomic_long_read(&sem->count); do { bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); if (has_handoff && wstate == WRITER_NOT_FIRST) return false; new = count; if (count & RWSEM_LOCK_MASK) { if (has_handoff || (wstate != WRITER_HANDOFF)) return false; new |= RWSEM_FLAG_HANDOFF; } else { new |= RWSEM_WRITER_LOCKED; new &= ~RWSEM_FLAG_HANDOFF; if (list_is_singular(&sem->wait_list)) new &= ~RWSEM_FLAG_WAITERS; } } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); /* * We have either acquired the lock with handoff bit cleared or * set the handoff bit. */ if (new & RWSEM_FLAG_HANDOFF) return false; rwsem_set_owner(sem); return true; } #ifdef CONFIG_RWSEM_SPIN_ON_OWNER /* * Try to acquire write lock before the writer has been put on wait queue. */ static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) { long count = atomic_long_read(&sem->count); while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, count | RWSEM_WRITER_LOCKED)) { rwsem_set_owner(sem); lockevent_inc(rwsem_opt_lock); return true; } } return false; } static inline bool owner_on_cpu(struct task_struct *owner) { /* * As lock holder preemption issue, we both skip spinning if * task is not on cpu or its cpu is preempted */ return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); } static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) { struct task_struct *owner; unsigned long flags; bool ret = true; if (need_resched()) { lockevent_inc(rwsem_opt_fail); return false; } preempt_disable(); rcu_read_lock(); owner = rwsem_owner_flags(sem, &flags); /* * Don't check the read-owner as the entry may be stale. */ if ((flags & RWSEM_NONSPINNABLE) || (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) ret = false; rcu_read_unlock(); preempt_enable(); lockevent_cond_inc(rwsem_opt_fail, !ret); return ret; } /* * The rwsem_spin_on_owner() function returns the following 4 values * depending on the lock owner state. * OWNER_NULL : owner is currently NULL * OWNER_WRITER: when owner changes and is a writer * OWNER_READER: when owner changes and the new owner may be a reader. * OWNER_NONSPINNABLE: * when optimistic spinning has to stop because either the * owner stops running, is unknown, or its timeslice has * been used up. */ enum owner_state { OWNER_NULL = 1 << 0, OWNER_WRITER = 1 << 1, OWNER_READER = 1 << 2, OWNER_NONSPINNABLE = 1 << 3, }; #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) static inline enum owner_state rwsem_owner_state(struct task_struct *owner, unsigned long flags) { if (flags & RWSEM_NONSPINNABLE) return OWNER_NONSPINNABLE; if (flags & RWSEM_READER_OWNED) return OWNER_READER; return owner ? OWNER_WRITER : OWNER_NULL; } static noinline enum owner_state rwsem_spin_on_owner(struct rw_semaphore *sem) { struct task_struct *new, *owner; unsigned long flags, new_flags; enum owner_state state; owner = rwsem_owner_flags(sem, &flags); state = rwsem_owner_state(owner, flags); if (state != OWNER_WRITER) return state; rcu_read_lock(); for (;;) { /* * When a waiting writer set the handoff flag, it may spin * on the owner as well. Once that writer acquires the lock, * we can spin on it. So we don't need to quit even when the * handoff bit is set. */ new = rwsem_owner_flags(sem, &new_flags); if ((new != owner) || (new_flags != flags)) { state = rwsem_owner_state(new, new_flags); break; } /* * Ensure we emit the owner->on_cpu, dereference _after_ * checking sem->owner still matches owner, if that fails, * owner might point to free()d memory, if it still matches, * the rcu_read_lock() ensures the memory stays valid. */ barrier(); if (need_resched() || !owner_on_cpu(owner)) { state = OWNER_NONSPINNABLE; break; } cpu_relax(); } rcu_read_unlock(); return state; } /* * Calculate reader-owned rwsem spinning threshold for writer * * The more readers own the rwsem, the longer it will take for them to * wind down and free the rwsem. So the empirical formula used to * determine the actual spinning time limit here is: * * Spinning threshold = (10 + nr_readers/2)us * * The limit is capped to a maximum of 25us (30 readers). This is just * a heuristic and is subjected to change in the future. */ static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) { long count = atomic_long_read(&sem->count); int readers = count >> RWSEM_READER_SHIFT; u64 delta; if (readers > 30) readers = 30; delta = (20 + readers) * NSEC_PER_USEC / 2; return sched_clock() + delta; } static bool rwsem_optimistic_spin(struct rw_semaphore *sem) { bool taken = false; int prev_owner_state = OWNER_NULL; int loop = 0; u64 rspin_threshold = 0; preempt_disable(); /* sem->wait_lock should not be held when doing optimistic spinning */ if (!osq_lock(&sem->osq)) goto done; /* * Optimistically spin on the owner field and attempt to acquire the * lock whenever the owner changes. Spinning will be stopped when: * 1) the owning writer isn't running; or * 2) readers own the lock and spinning time has exceeded limit. */ for (;;) { enum owner_state owner_state; owner_state = rwsem_spin_on_owner(sem); if (!(owner_state & OWNER_SPINNABLE)) break; /* * Try to acquire the lock */ taken = rwsem_try_write_lock_unqueued(sem); if (taken) break; /* * Time-based reader-owned rwsem optimistic spinning */ if (owner_state == OWNER_READER) { /* * Re-initialize rspin_threshold every time when * the owner state changes from non-reader to reader. * This allows a writer to steal the lock in between * 2 reader phases and have the threshold reset at * the beginning of the 2nd reader phase. */ if (prev_owner_state != OWNER_READER) { if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) break; rspin_threshold = rwsem_rspin_threshold(sem); loop = 0; } /* * Check time threshold once every 16 iterations to * avoid calling sched_clock() too frequently so * as to reduce the average latency between the times * when the lock becomes free and when the spinner * is ready to do a trylock. */ else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { rwsem_set_nonspinnable(sem); lockevent_inc(rwsem_opt_nospin); break; } } /* * An RT task cannot do optimistic spinning if it cannot * be sure the lock holder is running or live-lock may * happen if the current task and the lock holder happen * to run in the same CPU. However, aborting optimistic * spinning while a NULL owner is detected may miss some * opportunity where spinning can continue without causing * problem. * * There are 2 possible cases where an RT task may be able * to continue spinning. * * 1) The lock owner is in the process of releasing the * lock, sem->owner is cleared but the lock has not * been released yet. * 2) The lock was free and owner cleared, but another * task just comes in and acquire the lock before * we try to get it. The new owner may be a spinnable * writer. * * To take advantage of two scenarios listed above, the RT * task is made to retry one more time to see if it can * acquire the lock or continue spinning on the new owning * writer. Of course, if the time lag is long enough or the * new owner is not a writer or spinnable, the RT task will * quit spinning. * * If the owner is a writer, the need_resched() check is * done inside rwsem_spin_on_owner(). If the owner is not * a writer, need_resched() check needs to be done here. */ if (owner_state != OWNER_WRITER) { if (need_resched()) break; if (rt_task(current) && (prev_owner_state != OWNER_WRITER)) break; } prev_owner_state = owner_state; /* * The cpu_relax() call is a compiler barrier which forces * everything in this loop to be re-loaded. We don't need * memory barriers as we'll eventually observe the right * values at the cost of a few extra spins. */ cpu_relax(); } osq_unlock(&sem->osq); done: preempt_enable(); lockevent_cond_inc(rwsem_opt_fail, !taken); return taken; } /* * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should * only be called when the reader count reaches 0. */ static inline void clear_nonspinnable(struct rw_semaphore *sem) { if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); } #else static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) { return false; } static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) { return false; } static inline void clear_nonspinnable(struct rw_semaphore *sem) { } static inline int rwsem_spin_on_owner(struct rw_semaphore *sem) { return 0; } #define OWNER_NULL 1 #endif /* * Wait for the read lock to be granted */ static struct rw_semaphore __sched * rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) { long adjustment = -RWSEM_READER_BIAS; long rcnt = (count >> RWSEM_READER_SHIFT); struct rwsem_waiter waiter; DEFINE_WAKE_Q(wake_q); bool wake = false; /* * To prevent a constant stream of readers from starving a sleeping * waiter, don't attempt optimistic lock stealing if the lock is * currently owned by readers. */ if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) goto queue; /* * Reader optimistic lock stealing. */ if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { rwsem_set_reader_owned(sem); lockevent_inc(rwsem_rlock_steal); /* * Wake up other readers in the wait queue if it is * the first reader. */ if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { raw_spin_lock_irq(&sem->wait_lock); if (!list_empty(&sem->wait_list)) rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); raw_spin_unlock_irq(&sem->wait_lock); wake_up_q(&wake_q); } return sem; } queue: waiter.task = current; waiter.type = RWSEM_WAITING_FOR_READ; waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; raw_spin_lock_irq(&sem->wait_lock); if (list_empty(&sem->wait_list)) { /* * In case the wait queue is empty and the lock isn't owned * by a writer or has the handoff bit set, this reader can * exit the slowpath and return immediately as its * RWSEM_READER_BIAS has already been set in the count. */ if (!(atomic_long_read(&sem->count) & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) { /* Provide lock ACQUIRE */ smp_acquire__after_ctrl_dep(); raw_spin_unlock_irq(&sem->wait_lock); rwsem_set_reader_owned(sem); lockevent_inc(rwsem_rlock_fast); return sem; } adjustment += RWSEM_FLAG_WAITERS; } list_add_tail(&waiter.list, &sem->wait_list); /* we're now waiting on the lock, but no longer actively locking */ count = atomic_long_add_return(adjustment, &sem->count); /* * If there are no active locks, wake the front queued process(es). * * If there are no writers and we are first in the queue, * wake our own waiter to join the existing active readers ! */ if (!(count & RWSEM_LOCK_MASK)) { clear_nonspinnable(sem); wake = true; } if (wake || (!(count & RWSEM_WRITER_MASK) && (adjustment & RWSEM_FLAG_WAITERS))) rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); raw_spin_unlock_irq(&sem->wait_lock); wake_up_q(&wake_q); /* wait to be given the lock */ for (;;) { set_current_state(state); if (!smp_load_acquire(&waiter.task)) { /* Matches rwsem_mark_wake()'s smp_store_release(). */ break; } if (signal_pending_state(state, current)) { raw_spin_lock_irq(&sem->wait_lock); if (waiter.task) goto out_nolock; raw_spin_unlock_irq(&sem->wait_lock); /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ break; } schedule(); lockevent_inc(rwsem_sleep_reader); } __set_current_state(TASK_RUNNING); lockevent_inc(rwsem_rlock); return sem; out_nolock: list_del(&waiter.list); if (list_empty(&sem->wait_list)) { atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF, &sem->count); } raw_spin_unlock_irq(&sem->wait_lock); __set_current_state(TASK_RUNNING); lockevent_inc(rwsem_rlock_fail); return ERR_PTR(-EINTR); } /* * Wait until we successfully acquire the write lock */ static struct rw_semaphore * rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) { long count; enum writer_wait_state wstate; struct rwsem_waiter waiter; struct rw_semaphore *ret = sem; DEFINE_WAKE_Q(wake_q); /* do optimistic spinning and steal lock if possible */ if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { /* rwsem_optimistic_spin() implies ACQUIRE on success */ return sem; } /* * Optimistic spinning failed, proceed to the slowpath * and block until we can acquire the sem. */ waiter.task = current; waiter.type = RWSEM_WAITING_FOR_WRITE; waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; raw_spin_lock_irq(&sem->wait_lock); /* account for this before adding a new element to the list */ wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST; list_add_tail(&waiter.list, &sem->wait_list); /* we're now waiting on the lock */ if (wstate == WRITER_NOT_FIRST) { count = atomic_long_read(&sem->count); /* * If there were already threads queued before us and: * 1) there are no active locks, wake the front * queued process(es) as the handoff bit might be set. * 2) there are no active writers and some readers, the lock * must be read owned; so we try to wake any read lock * waiters that were queued ahead of us. */ if (count & RWSEM_WRITER_MASK) goto wait; rwsem_mark_wake(sem, (count & RWSEM_READER_MASK) ? RWSEM_WAKE_READERS : RWSEM_WAKE_ANY, &wake_q); if (!wake_q_empty(&wake_q)) { /* * We want to minimize wait_lock hold time especially * when a large number of readers are to be woken up. */ raw_spin_unlock_irq(&sem->wait_lock); wake_up_q(&wake_q); wake_q_init(&wake_q); /* Used again, reinit */ raw_spin_lock_irq(&sem->wait_lock); } } else { atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); } wait: /* wait until we successfully acquire the lock */ set_current_state(state); for (;;) { if (rwsem_try_write_lock(sem, wstate)) { /* rwsem_try_write_lock() implies ACQUIRE on success */ break; } raw_spin_unlock_irq(&sem->wait_lock); /* * After setting the handoff bit and failing to acquire * the lock, attempt to spin on owner to accelerate lock * transfer. If the previous owner is a on-cpu writer and it * has just released the lock, OWNER_NULL will be returned. * In this case, we attempt to acquire the lock again * without sleeping. */ if (wstate == WRITER_HANDOFF && rwsem_spin_on_owner(sem) == OWNER_NULL) goto trylock_again; /* Block until there are no active lockers. */ for (;;) { if (signal_pending_state(state, current)) goto out_nolock; schedule(); lockevent_inc(rwsem_sleep_writer); set_current_state(state); /* * If HANDOFF bit is set, unconditionally do * a trylock. */ if (wstate == WRITER_HANDOFF) break; if ((wstate == WRITER_NOT_FIRST) && (rwsem_first_waiter(sem) == &waiter)) wstate = WRITER_FIRST; count = atomic_long_read(&sem->count); if (!(count & RWSEM_LOCK_MASK)) break; /* * The setting of the handoff bit is deferred * until rwsem_try_write_lock() is called. */ if ((wstate == WRITER_FIRST) && (rt_task(current) || time_after(jiffies, waiter.timeout))) { wstate = WRITER_HANDOFF; lockevent_inc(rwsem_wlock_handoff); break; } } trylock_again: raw_spin_lock_irq(&sem->wait_lock); } __set_current_state(TASK_RUNNING); list_del(&waiter.list); raw_spin_unlock_irq(&sem->wait_lock); lockevent_inc(rwsem_wlock); return ret; out_nolock: __set_current_state(TASK_RUNNING); raw_spin_lock_irq(&sem->wait_lock); list_del(&waiter.list); if (unlikely(wstate == WRITER_HANDOFF)) atomic_long_add(-RWSEM_FLAG_HANDOFF, &sem->count); if (list_empty(&sem->wait_list)) atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count); else rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); raw_spin_unlock_irq(&sem->wait_lock); wake_up_q(&wake_q); lockevent_inc(rwsem_wlock_fail); return ERR_PTR(-EINTR); } /* * handle waking up a waiter on the semaphore * - up_read/up_write has decremented the active part of count if we come here */ static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) { unsigned long flags; DEFINE_WAKE_Q(wake_q); raw_spin_lock_irqsave(&sem->wait_lock, flags); if (!list_empty(&sem->wait_list)) rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); raw_spin_unlock_irqrestore(&sem->wait_lock, flags); wake_up_q(&wake_q); return sem; } /* * downgrade a write lock into a read lock * - caller incremented waiting part of count and discovered it still negative * - just wake up any readers at the front of the queue */ static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) { unsigned long flags; DEFINE_WAKE_Q(wake_q); raw_spin_lock_irqsave(&sem->wait_lock, flags); if (!list_empty(&sem->wait_list)) rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); raw_spin_unlock_irqrestore(&sem->wait_lock, flags); wake_up_q(&wake_q); return sem; } /* * lock for reading */ static inline int __down_read_common(struct rw_semaphore *sem, int state) { long count; if (!rwsem_read_trylock(sem, &count)) { if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) return -EINTR; DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); } return 0; } static inline void __down_read(struct rw_semaphore *sem) { __down_read_common(sem, TASK_UNINTERRUPTIBLE); } static inline int __down_read_interruptible(struct rw_semaphore *sem) { return __down_read_common(sem, TASK_INTERRUPTIBLE); } static inline int __down_read_killable(struct rw_semaphore *sem) { return __down_read_common(sem, TASK_KILLABLE); } static inline int __down_read_trylock(struct rw_semaphore *sem) { long tmp; DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); /* * Optimize for the case when the rwsem is not locked at all. */ tmp = RWSEM_UNLOCKED_VALUE; do { if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, tmp + RWSEM_READER_BIAS)) { rwsem_set_reader_owned(sem); return 1; } } while (!(tmp & RWSEM_READ_FAILED_MASK)); return 0; } /* * lock for writing */ static inline int __down_write_common(struct rw_semaphore *sem, int state) { if (unlikely(!rwsem_write_trylock(sem))) { if (IS_ERR(rwsem_down_write_slowpath(sem, state))) return -EINTR; } return 0; } static inline void __down_write(struct rw_semaphore *sem) { __down_write_common(sem, TASK_UNINTERRUPTIBLE); } static inline int __down_write_killable(struct rw_semaphore *sem) { return __down_write_common(sem, TASK_KILLABLE); } static inline int __down_write_trylock(struct rw_semaphore *sem) { DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); return rwsem_write_trylock(sem); } /* * unlock after reading */ static inline void __up_read(struct rw_semaphore *sem) { long tmp; DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); rwsem_clear_reader_owned(sem); tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == RWSEM_FLAG_WAITERS)) { clear_nonspinnable(sem); rwsem_wake(sem); } } /* * unlock after writing */ static inline void __up_write(struct rw_semaphore *sem) { long tmp; DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); /* * sem->owner may differ from current if the ownership is transferred * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. */ DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); rwsem_clear_owner(sem); tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); if (unlikely(tmp & RWSEM_FLAG_WAITERS)) rwsem_wake(sem); } /* * downgrade write lock to read lock */ static inline void __downgrade_write(struct rw_semaphore *sem) { long tmp; /* * When downgrading from exclusive to shared ownership, * anything inside the write-locked region cannot leak * into the read side. In contrast, anything in the * read-locked region is ok to be re-ordered into the * write side. As such, rely on RELEASE semantics. */ DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); tmp = atomic_long_fetch_add_release( -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); rwsem_set_reader_owned(sem); if (tmp & RWSEM_FLAG_WAITERS) rwsem_downgrade_wake(sem); } #else /* !CONFIG_PREEMPT_RT */ #define RT_MUTEX_BUILD_MUTEX #include "rtmutex.c" #define rwbase_set_and_save_current_state(state) \ set_current_state(state) #define rwbase_restore_current_state() \ __set_current_state(TASK_RUNNING) #define rwbase_rtmutex_lock_state(rtm, state) \ __rt_mutex_lock(rtm, state) #define rwbase_rtmutex_slowlock_locked(rtm, state) \ __rt_mutex_slowlock_locked(rtm, state) #define rwbase_rtmutex_unlock(rtm) \ __rt_mutex_unlock(rtm) #define rwbase_rtmutex_trylock(rtm) \ __rt_mutex_trylock(rtm) #define rwbase_signal_pending_state(state, current) \ signal_pending_state(state, current) #define rwbase_schedule() \ schedule() #include "rwbase_rt.c" #ifdef CONFIG_DEBUG_LOCK_ALLOC void __rwsem_init(struct rw_semaphore *sem, const char *name, struct lock_class_key *key) { debug_check_no_locks_freed((void *)sem, sizeof(*sem)); lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); } EXPORT_SYMBOL(__rwsem_init); #endif static inline void __down_read(struct rw_semaphore *sem) { rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); } static inline int __down_read_interruptible(struct rw_semaphore *sem) { return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE); } static inline int __down_read_killable(struct rw_semaphore *sem) { return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE); } static inline int __down_read_trylock(struct rw_semaphore *sem) { return rwbase_read_trylock(&sem->rwbase); } static inline void __up_read(struct rw_semaphore *sem) { rwbase_read_unlock(&sem->rwbase, TASK_NORMAL); } static inline void __sched __down_write(struct rw_semaphore *sem) { rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); } static inline int __sched __down_write_killable(struct rw_semaphore *sem) { return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE); } static inline int __down_write_trylock(struct rw_semaphore *sem) { return rwbase_write_trylock(&sem->rwbase); } static inline void __up_write(struct rw_semaphore *sem) { rwbase_write_unlock(&sem->rwbase); } static inline void __downgrade_write(struct rw_semaphore *sem) { rwbase_write_downgrade(&sem->rwbase); } /* Debug stubs for the common API */ #define DEBUG_RWSEMS_WARN_ON(c, sem) static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, struct task_struct *owner) { } static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) { int count = atomic_read(&sem->rwbase.readers); return count < 0 && count != READER_BIAS; } #endif /* CONFIG_PREEMPT_RT */ /* * lock for reading */ void __sched down_read(struct rw_semaphore *sem) { might_sleep(); rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); LOCK_CONTENDED(sem, __down_read_trylock, __down_read); } EXPORT_SYMBOL(down_read); int __sched down_read_interruptible(struct rw_semaphore *sem) { might_sleep(); rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { rwsem_release(&sem->dep_map, _RET_IP_); return -EINTR; } return 0; } EXPORT_SYMBOL(down_read_interruptible); int __sched down_read_killable(struct rw_semaphore *sem) { might_sleep(); rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { rwsem_release(&sem->dep_map, _RET_IP_); return -EINTR; } return 0; } EXPORT_SYMBOL(down_read_killable); /* * trylock for reading -- returns 1 if successful, 0 if contention */ int down_read_trylock(struct rw_semaphore *sem) { int ret = __down_read_trylock(sem); if (ret == 1) rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); return ret; } EXPORT_SYMBOL(down_read_trylock); /* * lock for writing */ void __sched down_write(struct rw_semaphore *sem) { might_sleep(); rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); LOCK_CONTENDED(sem, __down_write_trylock, __down_write); } EXPORT_SYMBOL(down_write); /* * lock for writing */ int __sched down_write_killable(struct rw_semaphore *sem) { might_sleep(); rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, __down_write_killable)) { rwsem_release(&sem->dep_map, _RET_IP_); return -EINTR; } return 0; } EXPORT_SYMBOL(down_write_killable); /* * trylock for writing -- returns 1 if successful, 0 if contention */ int down_write_trylock(struct rw_semaphore *sem) { int ret = __down_write_trylock(sem); if (ret == 1) rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); return ret; } EXPORT_SYMBOL(down_write_trylock); /* * release a read lock */ void up_read(struct rw_semaphore *sem) { rwsem_release(&sem->dep_map, _RET_IP_); __up_read(sem); } EXPORT_SYMBOL(up_read); /* * release a write lock */ void up_write(struct rw_semaphore *sem) { rwsem_release(&sem->dep_map, _RET_IP_); __up_write(sem); } EXPORT_SYMBOL(up_write); /* * downgrade write lock to read lock */ void downgrade_write(struct rw_semaphore *sem) { lock_downgrade(&sem->dep_map, _RET_IP_); __downgrade_write(sem); } EXPORT_SYMBOL(downgrade_write); #ifdef CONFIG_DEBUG_LOCK_ALLOC void down_read_nested(struct rw_semaphore *sem, int subclass) { might_sleep(); rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); LOCK_CONTENDED(sem, __down_read_trylock, __down_read); } EXPORT_SYMBOL(down_read_nested); int down_read_killable_nested(struct rw_semaphore *sem, int subclass) { might_sleep(); rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { rwsem_release(&sem->dep_map, _RET_IP_); return -EINTR; } return 0; } EXPORT_SYMBOL(down_read_killable_nested); void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) { might_sleep(); rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); LOCK_CONTENDED(sem, __down_write_trylock, __down_write); } EXPORT_SYMBOL(_down_write_nest_lock); void down_read_non_owner(struct rw_semaphore *sem) { might_sleep(); __down_read(sem); __rwsem_set_reader_owned(sem, NULL); } EXPORT_SYMBOL(down_read_non_owner); void down_write_nested(struct rw_semaphore *sem, int subclass) { might_sleep(); rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); LOCK_CONTENDED(sem, __down_write_trylock, __down_write); } EXPORT_SYMBOL(down_write_nested); int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) { might_sleep(); rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, __down_write_killable)) { rwsem_release(&sem->dep_map, _RET_IP_); return -EINTR; } return 0; } EXPORT_SYMBOL(down_write_killable_nested); void up_read_non_owner(struct rw_semaphore *sem) { DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); __up_read(sem); } EXPORT_SYMBOL(up_read_non_owner); #endif