// SPDX-License-Identifier: GPL-2.0 /* * Copyright(C) 2015-2018 Linaro Limited. * * Author: Tor Jeremiassen * Author: Mathieu Poirier */ #include #include #include #include #include #include #include #include #include #include "auxtrace.h" #include "color.h" #include "cs-etm.h" #include "cs-etm-decoder/cs-etm-decoder.h" #include "debug.h" #include "dso.h" #include "evlist.h" #include "intlist.h" #include "machine.h" #include "map.h" #include "perf.h" #include "session.h" #include "map_symbol.h" #include "branch.h" #include "symbol.h" #include "tool.h" #include "thread.h" #include "thread-stack.h" #include "tsc.h" #include #include "util/synthetic-events.h" #include "util/util.h" struct cs_etm_auxtrace { struct auxtrace auxtrace; struct auxtrace_queues queues; struct auxtrace_heap heap; struct itrace_synth_opts synth_opts; struct perf_session *session; struct machine *machine; struct thread *unknown_thread; struct perf_tsc_conversion tc; u8 timeless_decoding; u8 snapshot_mode; u8 data_queued; u8 has_virtual_ts; /* Virtual/Kernel timestamps in the trace. */ int num_cpu; u64 latest_kernel_timestamp; u32 auxtrace_type; u64 branches_sample_type; u64 branches_id; u64 instructions_sample_type; u64 instructions_sample_period; u64 instructions_id; u64 **metadata; unsigned int pmu_type; }; struct cs_etm_traceid_queue { u8 trace_chan_id; pid_t pid, tid; u64 period_instructions; size_t last_branch_pos; union perf_event *event_buf; struct thread *thread; struct branch_stack *last_branch; struct branch_stack *last_branch_rb; struct cs_etm_packet *prev_packet; struct cs_etm_packet *packet; struct cs_etm_packet_queue packet_queue; }; struct cs_etm_queue { struct cs_etm_auxtrace *etm; struct cs_etm_decoder *decoder; struct auxtrace_buffer *buffer; unsigned int queue_nr; u8 pending_timestamp_chan_id; u64 offset; const unsigned char *buf; size_t buf_len, buf_used; /* Conversion between traceID and index in traceid_queues array */ struct intlist *traceid_queues_list; struct cs_etm_traceid_queue **traceid_queues; }; /* RB tree for quick conversion between traceID and metadata pointers */ static struct intlist *traceid_list; static int cs_etm__process_queues(struct cs_etm_auxtrace *etm); static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, pid_t tid); static int cs_etm__get_data_block(struct cs_etm_queue *etmq); static int cs_etm__decode_data_block(struct cs_etm_queue *etmq); /* PTMs ETMIDR [11:8] set to b0011 */ #define ETMIDR_PTM_VERSION 0x00000300 /* * A struct auxtrace_heap_item only has a queue_nr and a timestamp to * work with. One option is to modify to auxtrace_heap_XYZ() API or simply * encode the etm queue number as the upper 16 bit and the channel as * the lower 16 bit. */ #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \ (queue_nr << 16 | trace_chan_id) #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16) #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff) static u32 cs_etm__get_v7_protocol_version(u32 etmidr) { etmidr &= ETMIDR_PTM_VERSION; if (etmidr == ETMIDR_PTM_VERSION) return CS_ETM_PROTO_PTM; return CS_ETM_PROTO_ETMV3; } static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic) { struct int_node *inode; u64 *metadata; inode = intlist__find(traceid_list, trace_chan_id); if (!inode) return -EINVAL; metadata = inode->priv; *magic = metadata[CS_ETM_MAGIC]; return 0; } int cs_etm__get_cpu(u8 trace_chan_id, int *cpu) { struct int_node *inode; u64 *metadata; inode = intlist__find(traceid_list, trace_chan_id); if (!inode) return -EINVAL; metadata = inode->priv; *cpu = (int)metadata[CS_ETM_CPU]; return 0; } /* * The returned PID format is presented by two bits: * * Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced; * Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced. * * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2 * are enabled at the same time when the session runs on an EL2 kernel. * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be * recorded in the trace data, the tool will selectively use * CONTEXTIDR_EL2 as PID. */ int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt) { struct int_node *inode; u64 *metadata, val; inode = intlist__find(traceid_list, trace_chan_id); if (!inode) return -EINVAL; metadata = inode->priv; if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) { val = metadata[CS_ETM_ETMCR]; /* CONTEXTIDR is traced */ if (val & BIT(ETM_OPT_CTXTID)) *pid_fmt = BIT(ETM_OPT_CTXTID); } else { val = metadata[CS_ETMV4_TRCCONFIGR]; /* CONTEXTIDR_EL2 is traced */ if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT))) *pid_fmt = BIT(ETM_OPT_CTXTID2); /* CONTEXTIDR_EL1 is traced */ else if (val & BIT(ETM4_CFG_BIT_CTXTID)) *pid_fmt = BIT(ETM_OPT_CTXTID); } return 0; } static int cs_etm__map_trace_id(u8 trace_chan_id, u64 *cpu_metadata) { struct int_node *inode; /* Get an RB node for this CPU */ inode = intlist__findnew(traceid_list, trace_chan_id); /* Something went wrong, no need to continue */ if (!inode) return -ENOMEM; /* * The node for that CPU should not be taken. * Back out if that's the case. */ if (inode->priv) return -EINVAL; /* All good, associate the traceID with the metadata pointer */ inode->priv = cpu_metadata; return 0; } static int cs_etm__metadata_get_trace_id(u8 *trace_chan_id, u64 *cpu_metadata) { u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC]; switch (cs_etm_magic) { case __perf_cs_etmv3_magic: *trace_chan_id = (u8)(cpu_metadata[CS_ETM_ETMTRACEIDR] & CORESIGHT_TRACE_ID_VAL_MASK); break; case __perf_cs_etmv4_magic: case __perf_cs_ete_magic: *trace_chan_id = (u8)(cpu_metadata[CS_ETMV4_TRCTRACEIDR] & CORESIGHT_TRACE_ID_VAL_MASK); break; default: return -EINVAL; } return 0; } /* * update metadata trace ID from the value found in the AUX_HW_INFO packet. * This will also clear the CORESIGHT_TRACE_ID_UNUSED_FLAG flag if present. */ static int cs_etm__metadata_set_trace_id(u8 trace_chan_id, u64 *cpu_metadata) { u64 cs_etm_magic = cpu_metadata[CS_ETM_MAGIC]; switch (cs_etm_magic) { case __perf_cs_etmv3_magic: cpu_metadata[CS_ETM_ETMTRACEIDR] = trace_chan_id; break; case __perf_cs_etmv4_magic: case __perf_cs_ete_magic: cpu_metadata[CS_ETMV4_TRCTRACEIDR] = trace_chan_id; break; default: return -EINVAL; } return 0; } /* * FIELD_GET (linux/bitfield.h) not available outside kernel code, * and the header contains too many dependencies to just copy over, * so roll our own based on the original */ #define __bf_shf(x) (__builtin_ffsll(x) - 1) #define FIELD_GET(_mask, _reg) \ ({ \ (typeof(_mask))(((_reg) & (_mask)) >> __bf_shf(_mask)); \ }) /* * Handle the PERF_RECORD_AUX_OUTPUT_HW_ID event. * * The payload associates the Trace ID and the CPU. * The routine is tolerant of seeing multiple packets with the same association, * but a CPU / Trace ID association changing during a session is an error. */ static int cs_etm__process_aux_output_hw_id(struct perf_session *session, union perf_event *event) { struct cs_etm_auxtrace *etm; struct perf_sample sample; struct int_node *inode; struct evsel *evsel; u64 *cpu_data; u64 hw_id; int cpu, version, err; u8 trace_chan_id, curr_chan_id; /* extract and parse the HW ID */ hw_id = event->aux_output_hw_id.hw_id; version = FIELD_GET(CS_AUX_HW_ID_VERSION_MASK, hw_id); trace_chan_id = FIELD_GET(CS_AUX_HW_ID_TRACE_ID_MASK, hw_id); /* check that we can handle this version */ if (version > CS_AUX_HW_ID_CURR_VERSION) return -EINVAL; /* get access to the etm metadata */ etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); if (!etm || !etm->metadata) return -EINVAL; /* parse the sample to get the CPU */ evsel = evlist__event2evsel(session->evlist, event); if (!evsel) return -EINVAL; err = evsel__parse_sample(evsel, event, &sample); if (err) return err; cpu = sample.cpu; if (cpu == -1) { /* no CPU in the sample - possibly recorded with an old version of perf */ pr_err("CS_ETM: no CPU AUX_OUTPUT_HW_ID sample. Use compatible perf to record."); return -EINVAL; } /* See if the ID is mapped to a CPU, and it matches the current CPU */ inode = intlist__find(traceid_list, trace_chan_id); if (inode) { cpu_data = inode->priv; if ((int)cpu_data[CS_ETM_CPU] != cpu) { pr_err("CS_ETM: map mismatch between HW_ID packet CPU and Trace ID\n"); return -EINVAL; } /* check that the mapped ID matches */ err = cs_etm__metadata_get_trace_id(&curr_chan_id, cpu_data); if (err) return err; if (curr_chan_id != trace_chan_id) { pr_err("CS_ETM: mismatch between CPU trace ID and HW_ID packet ID\n"); return -EINVAL; } /* mapped and matched - return OK */ return 0; } /* not one we've seen before - lets map it */ cpu_data = etm->metadata[cpu]; err = cs_etm__map_trace_id(trace_chan_id, cpu_data); if (err) return err; /* * if we are picking up the association from the packet, need to plug * the correct trace ID into the metadata for setting up decoders later. */ err = cs_etm__metadata_set_trace_id(trace_chan_id, cpu_data); return err; } void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq, u8 trace_chan_id) { /* * When a timestamp packet is encountered the backend code * is stopped so that the front end has time to process packets * that were accumulated in the traceID queue. Since there can * be more than one channel per cs_etm_queue, we need to specify * what traceID queue needs servicing. */ etmq->pending_timestamp_chan_id = trace_chan_id; } static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq, u8 *trace_chan_id) { struct cs_etm_packet_queue *packet_queue; if (!etmq->pending_timestamp_chan_id) return 0; if (trace_chan_id) *trace_chan_id = etmq->pending_timestamp_chan_id; packet_queue = cs_etm__etmq_get_packet_queue(etmq, etmq->pending_timestamp_chan_id); if (!packet_queue) return 0; /* Acknowledge pending status */ etmq->pending_timestamp_chan_id = 0; /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */ return packet_queue->cs_timestamp; } static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue) { int i; queue->head = 0; queue->tail = 0; queue->packet_count = 0; for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) { queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN; queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR; queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR; queue->packet_buffer[i].instr_count = 0; queue->packet_buffer[i].last_instr_taken_branch = false; queue->packet_buffer[i].last_instr_size = 0; queue->packet_buffer[i].last_instr_type = 0; queue->packet_buffer[i].last_instr_subtype = 0; queue->packet_buffer[i].last_instr_cond = 0; queue->packet_buffer[i].flags = 0; queue->packet_buffer[i].exception_number = UINT32_MAX; queue->packet_buffer[i].trace_chan_id = UINT8_MAX; queue->packet_buffer[i].cpu = INT_MIN; } } static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq) { int idx; struct int_node *inode; struct cs_etm_traceid_queue *tidq; struct intlist *traceid_queues_list = etmq->traceid_queues_list; intlist__for_each_entry(inode, traceid_queues_list) { idx = (int)(intptr_t)inode->priv; tidq = etmq->traceid_queues[idx]; cs_etm__clear_packet_queue(&tidq->packet_queue); } } static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq, u8 trace_chan_id) { int rc = -ENOMEM; struct auxtrace_queue *queue; struct cs_etm_auxtrace *etm = etmq->etm; cs_etm__clear_packet_queue(&tidq->packet_queue); queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; tidq->tid = queue->tid; tidq->pid = -1; tidq->trace_chan_id = trace_chan_id; tidq->packet = zalloc(sizeof(struct cs_etm_packet)); if (!tidq->packet) goto out; tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet)); if (!tidq->prev_packet) goto out_free; if (etm->synth_opts.last_branch) { size_t sz = sizeof(struct branch_stack); sz += etm->synth_opts.last_branch_sz * sizeof(struct branch_entry); tidq->last_branch = zalloc(sz); if (!tidq->last_branch) goto out_free; tidq->last_branch_rb = zalloc(sz); if (!tidq->last_branch_rb) goto out_free; } tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); if (!tidq->event_buf) goto out_free; return 0; out_free: zfree(&tidq->last_branch_rb); zfree(&tidq->last_branch); zfree(&tidq->prev_packet); zfree(&tidq->packet); out: return rc; } static struct cs_etm_traceid_queue *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) { int idx; struct int_node *inode; struct intlist *traceid_queues_list; struct cs_etm_traceid_queue *tidq, **traceid_queues; struct cs_etm_auxtrace *etm = etmq->etm; if (etm->timeless_decoding) trace_chan_id = CS_ETM_PER_THREAD_TRACEID; traceid_queues_list = etmq->traceid_queues_list; /* * Check if the traceid_queue exist for this traceID by looking * in the queue list. */ inode = intlist__find(traceid_queues_list, trace_chan_id); if (inode) { idx = (int)(intptr_t)inode->priv; return etmq->traceid_queues[idx]; } /* We couldn't find a traceid_queue for this traceID, allocate one */ tidq = malloc(sizeof(*tidq)); if (!tidq) return NULL; memset(tidq, 0, sizeof(*tidq)); /* Get a valid index for the new traceid_queue */ idx = intlist__nr_entries(traceid_queues_list); /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */ inode = intlist__findnew(traceid_queues_list, trace_chan_id); if (!inode) goto out_free; /* Associate this traceID with this index */ inode->priv = (void *)(intptr_t)idx; if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id)) goto out_free; /* Grow the traceid_queues array by one unit */ traceid_queues = etmq->traceid_queues; traceid_queues = reallocarray(traceid_queues, idx + 1, sizeof(*traceid_queues)); /* * On failure reallocarray() returns NULL and the original block of * memory is left untouched. */ if (!traceid_queues) goto out_free; traceid_queues[idx] = tidq; etmq->traceid_queues = traceid_queues; return etmq->traceid_queues[idx]; out_free: /* * Function intlist__remove() removes the inode from the list * and delete the memory associated to it. */ intlist__remove(traceid_queues_list, inode); free(tidq); return NULL; } struct cs_etm_packet_queue *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id) { struct cs_etm_traceid_queue *tidq; tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); if (tidq) return &tidq->packet_queue; return NULL; } static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm, struct cs_etm_traceid_queue *tidq) { struct cs_etm_packet *tmp; if (etm->synth_opts.branches || etm->synth_opts.last_branch || etm->synth_opts.instructions) { /* * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for * the next incoming packet. */ tmp = tidq->packet; tidq->packet = tidq->prev_packet; tidq->prev_packet = tmp; } } static void cs_etm__packet_dump(const char *pkt_string) { const char *color = PERF_COLOR_BLUE; int len = strlen(pkt_string); if (len && (pkt_string[len-1] == '\n')) color_fprintf(stdout, color, " %s", pkt_string); else color_fprintf(stdout, color, " %s\n", pkt_string); fflush(stdout); } static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params, struct cs_etm_auxtrace *etm, int idx, u32 etmidr) { u64 **metadata = etm->metadata; t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr); t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR]; t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR]; } static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params, struct cs_etm_auxtrace *etm, int idx) { u64 **metadata = etm->metadata; t_params[idx].protocol = CS_ETM_PROTO_ETMV4i; t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0]; t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1]; t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2]; t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8]; t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR]; t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR]; } static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params, struct cs_etm_auxtrace *etm, int idx) { u64 **metadata = etm->metadata; t_params[idx].protocol = CS_ETM_PROTO_ETE; t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETE_TRCIDR0]; t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETE_TRCIDR1]; t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETE_TRCIDR2]; t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETE_TRCIDR8]; t_params[idx].ete.reg_configr = metadata[idx][CS_ETE_TRCCONFIGR]; t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETE_TRCTRACEIDR]; t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH]; } static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params, struct cs_etm_auxtrace *etm, int decoders) { int i; u32 etmidr; u64 architecture; for (i = 0; i < decoders; i++) { architecture = etm->metadata[i][CS_ETM_MAGIC]; switch (architecture) { case __perf_cs_etmv3_magic: etmidr = etm->metadata[i][CS_ETM_ETMIDR]; cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr); break; case __perf_cs_etmv4_magic: cs_etm__set_trace_param_etmv4(t_params, etm, i); break; case __perf_cs_ete_magic: cs_etm__set_trace_param_ete(t_params, etm, i); break; default: return -EINVAL; } } return 0; } static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params, struct cs_etm_queue *etmq, enum cs_etm_decoder_operation mode, bool formatted) { int ret = -EINVAL; if (!(mode < CS_ETM_OPERATION_MAX)) goto out; d_params->packet_printer = cs_etm__packet_dump; d_params->operation = mode; d_params->data = etmq; d_params->formatted = formatted; d_params->fsyncs = false; d_params->hsyncs = false; d_params->frame_aligned = true; ret = 0; out: return ret; } static void cs_etm__dump_event(struct cs_etm_queue *etmq, struct auxtrace_buffer *buffer) { int ret; const char *color = PERF_COLOR_BLUE; size_t buffer_used = 0; fprintf(stdout, "\n"); color_fprintf(stdout, color, ". ... CoreSight %s Trace data: size %#zx bytes\n", cs_etm_decoder__get_name(etmq->decoder), buffer->size); do { size_t consumed; ret = cs_etm_decoder__process_data_block( etmq->decoder, buffer->offset, &((u8 *)buffer->data)[buffer_used], buffer->size - buffer_used, &consumed); if (ret) break; buffer_used += consumed; } while (buffer_used < buffer->size); cs_etm_decoder__reset(etmq->decoder); } static int cs_etm__flush_events(struct perf_session *session, struct perf_tool *tool) { struct cs_etm_auxtrace *etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); if (dump_trace) return 0; if (!tool->ordered_events) return -EINVAL; if (etm->timeless_decoding) return cs_etm__process_timeless_queues(etm, -1); return cs_etm__process_queues(etm); } static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq) { int idx; uintptr_t priv; struct int_node *inode, *tmp; struct cs_etm_traceid_queue *tidq; struct intlist *traceid_queues_list = etmq->traceid_queues_list; intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) { priv = (uintptr_t)inode->priv; idx = priv; /* Free this traceid_queue from the array */ tidq = etmq->traceid_queues[idx]; thread__zput(tidq->thread); zfree(&tidq->event_buf); zfree(&tidq->last_branch); zfree(&tidq->last_branch_rb); zfree(&tidq->prev_packet); zfree(&tidq->packet); zfree(&tidq); /* * Function intlist__remove() removes the inode from the list * and delete the memory associated to it. */ intlist__remove(traceid_queues_list, inode); } /* Then the RB tree itself */ intlist__delete(traceid_queues_list); etmq->traceid_queues_list = NULL; /* finally free the traceid_queues array */ zfree(&etmq->traceid_queues); } static void cs_etm__free_queue(void *priv) { struct cs_etm_queue *etmq = priv; if (!etmq) return; cs_etm_decoder__free(etmq->decoder); cs_etm__free_traceid_queues(etmq); free(etmq); } static void cs_etm__free_events(struct perf_session *session) { unsigned int i; struct cs_etm_auxtrace *aux = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); struct auxtrace_queues *queues = &aux->queues; for (i = 0; i < queues->nr_queues; i++) { cs_etm__free_queue(queues->queue_array[i].priv); queues->queue_array[i].priv = NULL; } auxtrace_queues__free(queues); } static void cs_etm__free(struct perf_session *session) { int i; struct int_node *inode, *tmp; struct cs_etm_auxtrace *aux = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); cs_etm__free_events(session); session->auxtrace = NULL; /* First remove all traceID/metadata nodes for the RB tree */ intlist__for_each_entry_safe(inode, tmp, traceid_list) intlist__remove(traceid_list, inode); /* Then the RB tree itself */ intlist__delete(traceid_list); for (i = 0; i < aux->num_cpu; i++) zfree(&aux->metadata[i]); thread__zput(aux->unknown_thread); zfree(&aux->metadata); zfree(&aux); } static bool cs_etm__evsel_is_auxtrace(struct perf_session *session, struct evsel *evsel) { struct cs_etm_auxtrace *aux = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); return evsel->core.attr.type == aux->pmu_type; } static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address) { struct machine *machine; machine = etmq->etm->machine; if (address >= machine__kernel_start(machine)) { if (machine__is_host(machine)) return PERF_RECORD_MISC_KERNEL; else return PERF_RECORD_MISC_GUEST_KERNEL; } else { if (machine__is_host(machine)) return PERF_RECORD_MISC_USER; else if (perf_guest) return PERF_RECORD_MISC_GUEST_USER; else return PERF_RECORD_MISC_HYPERVISOR; } } static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id, u64 address, size_t size, u8 *buffer) { u8 cpumode; u64 offset; int len; struct thread *thread; struct machine *machine; struct addr_location al; struct dso *dso; struct cs_etm_traceid_queue *tidq; if (!etmq) return 0; machine = etmq->etm->machine; cpumode = cs_etm__cpu_mode(etmq, address); tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); if (!tidq) return 0; thread = tidq->thread; if (!thread) { if (cpumode != PERF_RECORD_MISC_KERNEL) return 0; thread = etmq->etm->unknown_thread; } if (!thread__find_map(thread, cpumode, address, &al)) return 0; dso = map__dso(al.map); if (!dso) return 0; if (dso->data.status == DSO_DATA_STATUS_ERROR && dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) return 0; offset = map__map_ip(al.map, address); map__load(al.map); len = dso__data_read_offset(dso, machine, offset, buffer, size); if (len <= 0) { ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n" " Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n"); if (!dso->auxtrace_warned) { pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n", address, dso->long_name ? dso->long_name : "Unknown"); dso->auxtrace_warned = true; } return 0; } return len; } static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm, bool formatted) { struct cs_etm_decoder_params d_params; struct cs_etm_trace_params *t_params = NULL; struct cs_etm_queue *etmq; /* * Each queue can only contain data from one CPU when unformatted, so only one decoder is * needed. */ int decoders = formatted ? etm->num_cpu : 1; etmq = zalloc(sizeof(*etmq)); if (!etmq) return NULL; etmq->traceid_queues_list = intlist__new(NULL); if (!etmq->traceid_queues_list) goto out_free; /* Use metadata to fill in trace parameters for trace decoder */ t_params = zalloc(sizeof(*t_params) * decoders); if (!t_params) goto out_free; if (cs_etm__init_trace_params(t_params, etm, decoders)) goto out_free; /* Set decoder parameters to decode trace packets */ if (cs_etm__init_decoder_params(&d_params, etmq, dump_trace ? CS_ETM_OPERATION_PRINT : CS_ETM_OPERATION_DECODE, formatted)) goto out_free; etmq->decoder = cs_etm_decoder__new(decoders, &d_params, t_params); if (!etmq->decoder) goto out_free; /* * Register a function to handle all memory accesses required by * the trace decoder library. */ if (cs_etm_decoder__add_mem_access_cb(etmq->decoder, 0x0L, ((u64) -1L), cs_etm__mem_access)) goto out_free_decoder; zfree(&t_params); return etmq; out_free_decoder: cs_etm_decoder__free(etmq->decoder); out_free: intlist__delete(etmq->traceid_queues_list); free(etmq); return NULL; } static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm, struct auxtrace_queue *queue, unsigned int queue_nr, bool formatted) { struct cs_etm_queue *etmq = queue->priv; if (list_empty(&queue->head) || etmq) return 0; etmq = cs_etm__alloc_queue(etm, formatted); if (!etmq) return -ENOMEM; queue->priv = etmq; etmq->etm = etm; etmq->queue_nr = queue_nr; etmq->offset = 0; return 0; } static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm, struct cs_etm_queue *etmq, unsigned int queue_nr) { int ret = 0; unsigned int cs_queue_nr; u8 trace_chan_id; u64 cs_timestamp; /* * We are under a CPU-wide trace scenario. As such we need to know * when the code that generated the traces started to execute so that * it can be correlated with execution on other CPUs. So we get a * handle on the beginning of traces and decode until we find a * timestamp. The timestamp is then added to the auxtrace min heap * in order to know what nibble (of all the etmqs) to decode first. */ while (1) { /* * Fetch an aux_buffer from this etmq. Bail if no more * blocks or an error has been encountered. */ ret = cs_etm__get_data_block(etmq); if (ret <= 0) goto out; /* * Run decoder on the trace block. The decoder will stop when * encountering a CS timestamp, a full packet queue or the end of * trace for that block. */ ret = cs_etm__decode_data_block(etmq); if (ret) goto out; /* * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all * the timestamp calculation for us. */ cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); /* We found a timestamp, no need to continue. */ if (cs_timestamp) break; /* * We didn't find a timestamp so empty all the traceid packet * queues before looking for another timestamp packet, either * in the current data block or a new one. Packets that were * just decoded are useless since no timestamp has been * associated with them. As such simply discard them. */ cs_etm__clear_all_packet_queues(etmq); } /* * We have a timestamp. Add it to the min heap to reflect when * instructions conveyed by the range packets of this traceID queue * started to execute. Once the same has been done for all the traceID * queues of each etmq, redenring and decoding can start in * chronological order. * * Note that packets decoded above are still in the traceID's packet * queue and will be processed in cs_etm__process_queues(). */ cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); out: return ret; } static inline void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq) { struct branch_stack *bs_src = tidq->last_branch_rb; struct branch_stack *bs_dst = tidq->last_branch; size_t nr = 0; /* * Set the number of records before early exit: ->nr is used to * determine how many branches to copy from ->entries. */ bs_dst->nr = bs_src->nr; /* * Early exit when there is nothing to copy. */ if (!bs_src->nr) return; /* * As bs_src->entries is a circular buffer, we need to copy from it in * two steps. First, copy the branches from the most recently inserted * branch ->last_branch_pos until the end of bs_src->entries buffer. */ nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos; memcpy(&bs_dst->entries[0], &bs_src->entries[tidq->last_branch_pos], sizeof(struct branch_entry) * nr); /* * If we wrapped around at least once, the branches from the beginning * of the bs_src->entries buffer and until the ->last_branch_pos element * are older valid branches: copy them over. The total number of * branches copied over will be equal to the number of branches asked by * the user in last_branch_sz. */ if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) { memcpy(&bs_dst->entries[nr], &bs_src->entries[0], sizeof(struct branch_entry) * tidq->last_branch_pos); } } static inline void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq) { tidq->last_branch_pos = 0; tidq->last_branch_rb->nr = 0; } static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq, u8 trace_chan_id, u64 addr) { u8 instrBytes[2]; cs_etm__mem_access(etmq, trace_chan_id, addr, ARRAY_SIZE(instrBytes), instrBytes); /* * T32 instruction size is indicated by bits[15:11] of the first * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111 * denote a 32-bit instruction. */ return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2; } static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet) { /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ if (packet->sample_type == CS_ETM_DISCONTINUITY) return 0; return packet->start_addr; } static inline u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet) { /* Returns 0 for the CS_ETM_DISCONTINUITY packet */ if (packet->sample_type == CS_ETM_DISCONTINUITY) return 0; return packet->end_addr - packet->last_instr_size; } static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq, u64 trace_chan_id, const struct cs_etm_packet *packet, u64 offset) { if (packet->isa == CS_ETM_ISA_T32) { u64 addr = packet->start_addr; while (offset) { addr += cs_etm__t32_instr_size(etmq, trace_chan_id, addr); offset--; } return addr; } /* Assume a 4 byte instruction size (A32/A64) */ return packet->start_addr + offset * 4; } static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq) { struct branch_stack *bs = tidq->last_branch_rb; struct branch_entry *be; /* * The branches are recorded in a circular buffer in reverse * chronological order: we start recording from the last element of the * buffer down. After writing the first element of the stack, move the * insert position back to the end of the buffer. */ if (!tidq->last_branch_pos) tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz; tidq->last_branch_pos -= 1; be = &bs->entries[tidq->last_branch_pos]; be->from = cs_etm__last_executed_instr(tidq->prev_packet); be->to = cs_etm__first_executed_instr(tidq->packet); /* No support for mispredict */ be->flags.mispred = 0; be->flags.predicted = 1; /* * Increment bs->nr until reaching the number of last branches asked by * the user on the command line. */ if (bs->nr < etmq->etm->synth_opts.last_branch_sz) bs->nr += 1; } static int cs_etm__inject_event(union perf_event *event, struct perf_sample *sample, u64 type) { event->header.size = perf_event__sample_event_size(sample, type, 0); return perf_event__synthesize_sample(event, type, 0, sample); } static int cs_etm__get_trace(struct cs_etm_queue *etmq) { struct auxtrace_buffer *aux_buffer = etmq->buffer; struct auxtrace_buffer *old_buffer = aux_buffer; struct auxtrace_queue *queue; queue = &etmq->etm->queues.queue_array[etmq->queue_nr]; aux_buffer = auxtrace_buffer__next(queue, aux_buffer); /* If no more data, drop the previous auxtrace_buffer and return */ if (!aux_buffer) { if (old_buffer) auxtrace_buffer__drop_data(old_buffer); etmq->buf_len = 0; return 0; } etmq->buffer = aux_buffer; /* If the aux_buffer doesn't have data associated, try to load it */ if (!aux_buffer->data) { /* get the file desc associated with the perf data file */ int fd = perf_data__fd(etmq->etm->session->data); aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd); if (!aux_buffer->data) return -ENOMEM; } /* If valid, drop the previous buffer */ if (old_buffer) auxtrace_buffer__drop_data(old_buffer); etmq->buf_used = 0; etmq->buf_len = aux_buffer->size; etmq->buf = aux_buffer->data; return etmq->buf_len; } static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm, struct cs_etm_traceid_queue *tidq) { if ((!tidq->thread) && (tidq->tid != -1)) tidq->thread = machine__find_thread(etm->machine, -1, tidq->tid); if (tidq->thread) tidq->pid = tidq->thread->pid_; } int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq, pid_t tid, u8 trace_chan_id) { int cpu, err = -EINVAL; struct cs_etm_auxtrace *etm = etmq->etm; struct cs_etm_traceid_queue *tidq; tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); if (!tidq) return err; if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0) return err; err = machine__set_current_tid(etm->machine, cpu, tid, tid); if (err) return err; tidq->tid = tid; thread__zput(tidq->thread); cs_etm__set_pid_tid_cpu(etm, tidq); return 0; } bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq) { return !!etmq->etm->timeless_decoding; } static void cs_etm__copy_insn(struct cs_etm_queue *etmq, u64 trace_chan_id, const struct cs_etm_packet *packet, struct perf_sample *sample) { /* * It's pointless to read instructions for the CS_ETM_DISCONTINUITY * packet, so directly bail out with 'insn_len' = 0. */ if (packet->sample_type == CS_ETM_DISCONTINUITY) { sample->insn_len = 0; return; } /* * T32 instruction size might be 32-bit or 16-bit, decide by calling * cs_etm__t32_instr_size(). */ if (packet->isa == CS_ETM_ISA_T32) sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id, sample->ip); /* Otherwise, A64 and A32 instruction size are always 32-bit. */ else sample->insn_len = 4; cs_etm__mem_access(etmq, trace_chan_id, sample->ip, sample->insn_len, (void *)sample->insn); } u64 cs_etm__convert_sample_time(struct cs_etm_queue *etmq, u64 cs_timestamp) { struct cs_etm_auxtrace *etm = etmq->etm; if (etm->has_virtual_ts) return tsc_to_perf_time(cs_timestamp, &etm->tc); else return cs_timestamp; } static inline u64 cs_etm__resolve_sample_time(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq) { struct cs_etm_auxtrace *etm = etmq->etm; struct cs_etm_packet_queue *packet_queue = &tidq->packet_queue; if (etm->timeless_decoding) return 0; else if (etm->has_virtual_ts) return packet_queue->cs_timestamp; else return etm->latest_kernel_timestamp; } static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq, u64 addr, u64 period) { int ret = 0; struct cs_etm_auxtrace *etm = etmq->etm; union perf_event *event = tidq->event_buf; struct perf_sample sample = {.ip = 0,}; event->sample.header.type = PERF_RECORD_SAMPLE; event->sample.header.misc = cs_etm__cpu_mode(etmq, addr); event->sample.header.size = sizeof(struct perf_event_header); /* Set time field based on etm auxtrace config. */ sample.time = cs_etm__resolve_sample_time(etmq, tidq); sample.ip = addr; sample.pid = tidq->pid; sample.tid = tidq->tid; sample.id = etmq->etm->instructions_id; sample.stream_id = etmq->etm->instructions_id; sample.period = period; sample.cpu = tidq->packet->cpu; sample.flags = tidq->prev_packet->flags; sample.cpumode = event->sample.header.misc; cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample); if (etm->synth_opts.last_branch) sample.branch_stack = tidq->last_branch; if (etm->synth_opts.inject) { ret = cs_etm__inject_event(event, &sample, etm->instructions_sample_type); if (ret) return ret; } ret = perf_session__deliver_synth_event(etm->session, event, &sample); if (ret) pr_err( "CS ETM Trace: failed to deliver instruction event, error %d\n", ret); return ret; } /* * The cs etm packet encodes an instruction range between a branch target * and the next taken branch. Generate sample accordingly. */ static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq) { int ret = 0; struct cs_etm_auxtrace *etm = etmq->etm; struct perf_sample sample = {.ip = 0,}; union perf_event *event = tidq->event_buf; struct dummy_branch_stack { u64 nr; u64 hw_idx; struct branch_entry entries; } dummy_bs; u64 ip; ip = cs_etm__last_executed_instr(tidq->prev_packet); event->sample.header.type = PERF_RECORD_SAMPLE; event->sample.header.misc = cs_etm__cpu_mode(etmq, ip); event->sample.header.size = sizeof(struct perf_event_header); /* Set time field based on etm auxtrace config. */ sample.time = cs_etm__resolve_sample_time(etmq, tidq); sample.ip = ip; sample.pid = tidq->pid; sample.tid = tidq->tid; sample.addr = cs_etm__first_executed_instr(tidq->packet); sample.id = etmq->etm->branches_id; sample.stream_id = etmq->etm->branches_id; sample.period = 1; sample.cpu = tidq->packet->cpu; sample.flags = tidq->prev_packet->flags; sample.cpumode = event->sample.header.misc; cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet, &sample); /* * perf report cannot handle events without a branch stack */ if (etm->synth_opts.last_branch) { dummy_bs = (struct dummy_branch_stack){ .nr = 1, .hw_idx = -1ULL, .entries = { .from = sample.ip, .to = sample.addr, }, }; sample.branch_stack = (struct branch_stack *)&dummy_bs; } if (etm->synth_opts.inject) { ret = cs_etm__inject_event(event, &sample, etm->branches_sample_type); if (ret) return ret; } ret = perf_session__deliver_synth_event(etm->session, event, &sample); if (ret) pr_err( "CS ETM Trace: failed to deliver instruction event, error %d\n", ret); return ret; } struct cs_etm_synth { struct perf_tool dummy_tool; struct perf_session *session; }; static int cs_etm__event_synth(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { struct cs_etm_synth *cs_etm_synth = container_of(tool, struct cs_etm_synth, dummy_tool); return perf_session__deliver_synth_event(cs_etm_synth->session, event, NULL); } static int cs_etm__synth_event(struct perf_session *session, struct perf_event_attr *attr, u64 id) { struct cs_etm_synth cs_etm_synth; memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth)); cs_etm_synth.session = session; return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1, &id, cs_etm__event_synth); } static int cs_etm__synth_events(struct cs_etm_auxtrace *etm, struct perf_session *session) { struct evlist *evlist = session->evlist; struct evsel *evsel; struct perf_event_attr attr; bool found = false; u64 id; int err; evlist__for_each_entry(evlist, evsel) { if (evsel->core.attr.type == etm->pmu_type) { found = true; break; } } if (!found) { pr_debug("No selected events with CoreSight Trace data\n"); return 0; } memset(&attr, 0, sizeof(struct perf_event_attr)); attr.size = sizeof(struct perf_event_attr); attr.type = PERF_TYPE_HARDWARE; attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_PERIOD; if (etm->timeless_decoding) attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; else attr.sample_type |= PERF_SAMPLE_TIME; attr.exclude_user = evsel->core.attr.exclude_user; attr.exclude_kernel = evsel->core.attr.exclude_kernel; attr.exclude_hv = evsel->core.attr.exclude_hv; attr.exclude_host = evsel->core.attr.exclude_host; attr.exclude_guest = evsel->core.attr.exclude_guest; attr.sample_id_all = evsel->core.attr.sample_id_all; attr.read_format = evsel->core.attr.read_format; /* create new id val to be a fixed offset from evsel id */ id = evsel->core.id[0] + 1000000000; if (!id) id = 1; if (etm->synth_opts.branches) { attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; attr.sample_period = 1; attr.sample_type |= PERF_SAMPLE_ADDR; err = cs_etm__synth_event(session, &attr, id); if (err) return err; etm->branches_sample_type = attr.sample_type; etm->branches_id = id; id += 1; attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; } if (etm->synth_opts.last_branch) { attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; /* * We don't use the hardware index, but the sample generation * code uses the new format branch_stack with this field, * so the event attributes must indicate that it's present. */ attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; } if (etm->synth_opts.instructions) { attr.config = PERF_COUNT_HW_INSTRUCTIONS; attr.sample_period = etm->synth_opts.period; etm->instructions_sample_period = attr.sample_period; err = cs_etm__synth_event(session, &attr, id); if (err) return err; etm->instructions_sample_type = attr.sample_type; etm->instructions_id = id; id += 1; } return 0; } static int cs_etm__sample(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq) { struct cs_etm_auxtrace *etm = etmq->etm; int ret; u8 trace_chan_id = tidq->trace_chan_id; u64 instrs_prev; /* Get instructions remainder from previous packet */ instrs_prev = tidq->period_instructions; tidq->period_instructions += tidq->packet->instr_count; /* * Record a branch when the last instruction in * PREV_PACKET is a branch. */ if (etm->synth_opts.last_branch && tidq->prev_packet->sample_type == CS_ETM_RANGE && tidq->prev_packet->last_instr_taken_branch) cs_etm__update_last_branch_rb(etmq, tidq); if (etm->synth_opts.instructions && tidq->period_instructions >= etm->instructions_sample_period) { /* * Emit instruction sample periodically * TODO: allow period to be defined in cycles and clock time */ /* * Below diagram demonstrates the instruction samples * generation flows: * * Instrs Instrs Instrs Instrs * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3) * | | | | * V V V V * -------------------------------------------------- * ^ ^ * | | * Period Period * instructions(Pi) instructions(Pi') * * | | * \---------------- -----------------/ * V * tidq->packet->instr_count * * Instrs Sample(n...) are the synthesised samples occurring * every etm->instructions_sample_period instructions - as * defined on the perf command line. Sample(n) is being the * last sample before the current etm packet, n+1 to n+3 * samples are generated from the current etm packet. * * tidq->packet->instr_count represents the number of * instructions in the current etm packet. * * Period instructions (Pi) contains the number of * instructions executed after the sample point(n) from the * previous etm packet. This will always be less than * etm->instructions_sample_period. * * When generate new samples, it combines with two parts * instructions, one is the tail of the old packet and another * is the head of the new coming packet, to generate * sample(n+1); sample(n+2) and sample(n+3) consume the * instructions with sample period. After sample(n+3), the rest * instructions will be used by later packet and it is assigned * to tidq->period_instructions for next round calculation. */ /* * Get the initial offset into the current packet instructions; * entry conditions ensure that instrs_prev is less than * etm->instructions_sample_period. */ u64 offset = etm->instructions_sample_period - instrs_prev; u64 addr; /* Prepare last branches for instruction sample */ if (etm->synth_opts.last_branch) cs_etm__copy_last_branch_rb(etmq, tidq); while (tidq->period_instructions >= etm->instructions_sample_period) { /* * Calculate the address of the sampled instruction (-1 * as sample is reported as though instruction has just * been executed, but PC has not advanced to next * instruction) */ addr = cs_etm__instr_addr(etmq, trace_chan_id, tidq->packet, offset - 1); ret = cs_etm__synth_instruction_sample( etmq, tidq, addr, etm->instructions_sample_period); if (ret) return ret; offset += etm->instructions_sample_period; tidq->period_instructions -= etm->instructions_sample_period; } } if (etm->synth_opts.branches) { bool generate_sample = false; /* Generate sample for tracing on packet */ if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY) generate_sample = true; /* Generate sample for branch taken packet */ if (tidq->prev_packet->sample_type == CS_ETM_RANGE && tidq->prev_packet->last_instr_taken_branch) generate_sample = true; if (generate_sample) { ret = cs_etm__synth_branch_sample(etmq, tidq); if (ret) return ret; } } cs_etm__packet_swap(etm, tidq); return 0; } static int cs_etm__exception(struct cs_etm_traceid_queue *tidq) { /* * When the exception packet is inserted, whether the last instruction * in previous range packet is taken branch or not, we need to force * to set 'prev_packet->last_instr_taken_branch' to true. This ensures * to generate branch sample for the instruction range before the * exception is trapped to kernel or before the exception returning. * * The exception packet includes the dummy address values, so don't * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful * for generating instruction and branch samples. */ if (tidq->prev_packet->sample_type == CS_ETM_RANGE) tidq->prev_packet->last_instr_taken_branch = true; return 0; } static int cs_etm__flush(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq) { int err = 0; struct cs_etm_auxtrace *etm = etmq->etm; /* Handle start tracing packet */ if (tidq->prev_packet->sample_type == CS_ETM_EMPTY) goto swap_packet; if (etmq->etm->synth_opts.last_branch && etmq->etm->synth_opts.instructions && tidq->prev_packet->sample_type == CS_ETM_RANGE) { u64 addr; /* Prepare last branches for instruction sample */ cs_etm__copy_last_branch_rb(etmq, tidq); /* * Generate a last branch event for the branches left in the * circular buffer at the end of the trace. * * Use the address of the end of the last reported execution * range */ addr = cs_etm__last_executed_instr(tidq->prev_packet); err = cs_etm__synth_instruction_sample( etmq, tidq, addr, tidq->period_instructions); if (err) return err; tidq->period_instructions = 0; } if (etm->synth_opts.branches && tidq->prev_packet->sample_type == CS_ETM_RANGE) { err = cs_etm__synth_branch_sample(etmq, tidq); if (err) return err; } swap_packet: cs_etm__packet_swap(etm, tidq); /* Reset last branches after flush the trace */ if (etm->synth_opts.last_branch) cs_etm__reset_last_branch_rb(tidq); return err; } static int cs_etm__end_block(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq) { int err; /* * It has no new packet coming and 'etmq->packet' contains the stale * packet which was set at the previous time with packets swapping; * so skip to generate branch sample to avoid stale packet. * * For this case only flush branch stack and generate a last branch * event for the branches left in the circular buffer at the end of * the trace. */ if (etmq->etm->synth_opts.last_branch && etmq->etm->synth_opts.instructions && tidq->prev_packet->sample_type == CS_ETM_RANGE) { u64 addr; /* Prepare last branches for instruction sample */ cs_etm__copy_last_branch_rb(etmq, tidq); /* * Use the address of the end of the last reported execution * range. */ addr = cs_etm__last_executed_instr(tidq->prev_packet); err = cs_etm__synth_instruction_sample( etmq, tidq, addr, tidq->period_instructions); if (err) return err; tidq->period_instructions = 0; } return 0; } /* * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue * if need be. * Returns: < 0 if error * = 0 if no more auxtrace_buffer to read * > 0 if the current buffer isn't empty yet */ static int cs_etm__get_data_block(struct cs_etm_queue *etmq) { int ret; if (!etmq->buf_len) { ret = cs_etm__get_trace(etmq); if (ret <= 0) return ret; /* * We cannot assume consecutive blocks in the data file * are contiguous, reset the decoder to force re-sync. */ ret = cs_etm_decoder__reset(etmq->decoder); if (ret) return ret; } return etmq->buf_len; } static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id, struct cs_etm_packet *packet, u64 end_addr) { /* Initialise to keep compiler happy */ u16 instr16 = 0; u32 instr32 = 0; u64 addr; switch (packet->isa) { case CS_ETM_ISA_T32: /* * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247: * * b'15 b'8 * +-----------------+--------+ * | 1 1 0 1 1 1 1 1 | imm8 | * +-----------------+--------+ * * According to the specification, it only defines SVC for T32 * with 16 bits instruction and has no definition for 32bits; * so below only read 2 bytes as instruction size for T32. */ addr = end_addr - 2; cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr16), (u8 *)&instr16); if ((instr16 & 0xFF00) == 0xDF00) return true; break; case CS_ETM_ISA_A32: /* * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247: * * b'31 b'28 b'27 b'24 * +---------+---------+-------------------------+ * | !1111 | 1 1 1 1 | imm24 | * +---------+---------+-------------------------+ */ addr = end_addr - 4; cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32), (u8 *)&instr32); if ((instr32 & 0x0F000000) == 0x0F000000 && (instr32 & 0xF0000000) != 0xF0000000) return true; break; case CS_ETM_ISA_A64: /* * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294: * * b'31 b'21 b'4 b'0 * +-----------------------+---------+-----------+ * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 | * +-----------------------+---------+-----------+ */ addr = end_addr - 4; cs_etm__mem_access(etmq, trace_chan_id, addr, sizeof(instr32), (u8 *)&instr32); if ((instr32 & 0xFFE0001F) == 0xd4000001) return true; break; case CS_ETM_ISA_UNKNOWN: default: break; } return false; } static bool cs_etm__is_syscall(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq, u64 magic) { u8 trace_chan_id = tidq->trace_chan_id; struct cs_etm_packet *packet = tidq->packet; struct cs_etm_packet *prev_packet = tidq->prev_packet; if (magic == __perf_cs_etmv3_magic) if (packet->exception_number == CS_ETMV3_EXC_SVC) return true; /* * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and * HVC cases; need to check if it's SVC instruction based on * packet address. */ if (magic == __perf_cs_etmv4_magic) { if (packet->exception_number == CS_ETMV4_EXC_CALL && cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, prev_packet->end_addr)) return true; } return false; } static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq, u64 magic) { struct cs_etm_packet *packet = tidq->packet; if (magic == __perf_cs_etmv3_magic) if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT || packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT || packet->exception_number == CS_ETMV3_EXC_PE_RESET || packet->exception_number == CS_ETMV3_EXC_IRQ || packet->exception_number == CS_ETMV3_EXC_FIQ) return true; if (magic == __perf_cs_etmv4_magic) if (packet->exception_number == CS_ETMV4_EXC_RESET || packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT || packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR || packet->exception_number == CS_ETMV4_EXC_INST_DEBUG || packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG || packet->exception_number == CS_ETMV4_EXC_IRQ || packet->exception_number == CS_ETMV4_EXC_FIQ) return true; return false; } static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq, u64 magic) { u8 trace_chan_id = tidq->trace_chan_id; struct cs_etm_packet *packet = tidq->packet; struct cs_etm_packet *prev_packet = tidq->prev_packet; if (magic == __perf_cs_etmv3_magic) if (packet->exception_number == CS_ETMV3_EXC_SMC || packet->exception_number == CS_ETMV3_EXC_HYP || packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE || packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR || packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT || packet->exception_number == CS_ETMV3_EXC_DATA_FAULT || packet->exception_number == CS_ETMV3_EXC_GENERIC) return true; if (magic == __perf_cs_etmv4_magic) { if (packet->exception_number == CS_ETMV4_EXC_TRAP || packet->exception_number == CS_ETMV4_EXC_ALIGNMENT || packet->exception_number == CS_ETMV4_EXC_INST_FAULT || packet->exception_number == CS_ETMV4_EXC_DATA_FAULT) return true; /* * For CS_ETMV4_EXC_CALL, except SVC other instructions * (SMC, HVC) are taken as sync exceptions. */ if (packet->exception_number == CS_ETMV4_EXC_CALL && !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet, prev_packet->end_addr)) return true; /* * ETMv4 has 5 bits for exception number; if the numbers * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ] * they are implementation defined exceptions. * * For this case, simply take it as sync exception. */ if (packet->exception_number > CS_ETMV4_EXC_FIQ && packet->exception_number <= CS_ETMV4_EXC_END) return true; } return false; } static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq) { struct cs_etm_packet *packet = tidq->packet; struct cs_etm_packet *prev_packet = tidq->prev_packet; u8 trace_chan_id = tidq->trace_chan_id; u64 magic; int ret; switch (packet->sample_type) { case CS_ETM_RANGE: /* * Immediate branch instruction without neither link nor * return flag, it's normal branch instruction within * the function. */ if (packet->last_instr_type == OCSD_INSTR_BR && packet->last_instr_subtype == OCSD_S_INSTR_NONE) { packet->flags = PERF_IP_FLAG_BRANCH; if (packet->last_instr_cond) packet->flags |= PERF_IP_FLAG_CONDITIONAL; } /* * Immediate branch instruction with link (e.g. BL), this is * branch instruction for function call. */ if (packet->last_instr_type == OCSD_INSTR_BR && packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) packet->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL; /* * Indirect branch instruction with link (e.g. BLR), this is * branch instruction for function call. */ if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK) packet->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL; /* * Indirect branch instruction with subtype of * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for * function return for A32/T32. */ if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET) packet->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_RETURN; /* * Indirect branch instruction without link (e.g. BR), usually * this is used for function return, especially for functions * within dynamic link lib. */ if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && packet->last_instr_subtype == OCSD_S_INSTR_NONE) packet->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_RETURN; /* Return instruction for function return. */ if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT && packet->last_instr_subtype == OCSD_S_INSTR_V8_RET) packet->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_RETURN; /* * Decoder might insert a discontinuity in the middle of * instruction packets, fixup prev_packet with flag * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace. */ if (prev_packet->sample_type == CS_ETM_DISCONTINUITY) prev_packet->flags |= PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TRACE_BEGIN; /* * If the previous packet is an exception return packet * and the return address just follows SVC instruction, * it needs to calibrate the previous packet sample flags * as PERF_IP_FLAG_SYSCALLRET. */ if (prev_packet->flags == (PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_RETURN | PERF_IP_FLAG_INTERRUPT) && cs_etm__is_svc_instr(etmq, trace_chan_id, packet, packet->start_addr)) prev_packet->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_RETURN | PERF_IP_FLAG_SYSCALLRET; break; case CS_ETM_DISCONTINUITY: /* * The trace is discontinuous, if the previous packet is * instruction packet, set flag PERF_IP_FLAG_TRACE_END * for previous packet. */ if (prev_packet->sample_type == CS_ETM_RANGE) prev_packet->flags |= PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TRACE_END; break; case CS_ETM_EXCEPTION: ret = cs_etm__get_magic(packet->trace_chan_id, &magic); if (ret) return ret; /* The exception is for system call. */ if (cs_etm__is_syscall(etmq, tidq, magic)) packet->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | PERF_IP_FLAG_SYSCALLRET; /* * The exceptions are triggered by external signals from bus, * interrupt controller, debug module, PE reset or halt. */ else if (cs_etm__is_async_exception(tidq, magic)) packet->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | PERF_IP_FLAG_INTERRUPT; /* * Otherwise, exception is caused by trap, instruction & * data fault, or alignment errors. */ else if (cs_etm__is_sync_exception(etmq, tidq, magic)) packet->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | PERF_IP_FLAG_INTERRUPT; /* * When the exception packet is inserted, since exception * packet is not used standalone for generating samples * and it's affiliation to the previous instruction range * packet; so set previous range packet flags to tell perf * it is an exception taken branch. */ if (prev_packet->sample_type == CS_ETM_RANGE) prev_packet->flags = packet->flags; break; case CS_ETM_EXCEPTION_RET: /* * When the exception return packet is inserted, since * exception return packet is not used standalone for * generating samples and it's affiliation to the previous * instruction range packet; so set previous range packet * flags to tell perf it is an exception return branch. * * The exception return can be for either system call or * other exception types; unfortunately the packet doesn't * contain exception type related info so we cannot decide * the exception type purely based on exception return packet. * If we record the exception number from exception packet and * reuse it for exception return packet, this is not reliable * due the trace can be discontinuity or the interrupt can * be nested, thus the recorded exception number cannot be * used for exception return packet for these two cases. * * For exception return packet, we only need to distinguish the * packet is for system call or for other types. Thus the * decision can be deferred when receive the next packet which * contains the return address, based on the return address we * can read out the previous instruction and check if it's a * system call instruction and then calibrate the sample flag * as needed. */ if (prev_packet->sample_type == CS_ETM_RANGE) prev_packet->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_RETURN | PERF_IP_FLAG_INTERRUPT; break; case CS_ETM_EMPTY: default: break; } return 0; } static int cs_etm__decode_data_block(struct cs_etm_queue *etmq) { int ret = 0; size_t processed = 0; /* * Packets are decoded and added to the decoder's packet queue * until the decoder packet processing callback has requested that * processing stops or there is nothing left in the buffer. Normal * operations that stop processing are a timestamp packet or a full * decoder buffer queue. */ ret = cs_etm_decoder__process_data_block(etmq->decoder, etmq->offset, &etmq->buf[etmq->buf_used], etmq->buf_len, &processed); if (ret) goto out; etmq->offset += processed; etmq->buf_used += processed; etmq->buf_len -= processed; out: return ret; } static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq) { int ret; struct cs_etm_packet_queue *packet_queue; packet_queue = &tidq->packet_queue; /* Process each packet in this chunk */ while (1) { ret = cs_etm_decoder__get_packet(packet_queue, tidq->packet); if (ret <= 0) /* * Stop processing this chunk on * end of data or error */ break; /* * Since packet addresses are swapped in packet * handling within below switch() statements, * thus setting sample flags must be called * prior to switch() statement to use address * information before packets swapping. */ ret = cs_etm__set_sample_flags(etmq, tidq); if (ret < 0) break; switch (tidq->packet->sample_type) { case CS_ETM_RANGE: /* * If the packet contains an instruction * range, generate instruction sequence * events. */ cs_etm__sample(etmq, tidq); break; case CS_ETM_EXCEPTION: case CS_ETM_EXCEPTION_RET: /* * If the exception packet is coming, * make sure the previous instruction * range packet to be handled properly. */ cs_etm__exception(tidq); break; case CS_ETM_DISCONTINUITY: /* * Discontinuity in trace, flush * previous branch stack */ cs_etm__flush(etmq, tidq); break; case CS_ETM_EMPTY: /* * Should not receive empty packet, * report error. */ pr_err("CS ETM Trace: empty packet\n"); return -EINVAL; default: break; } } return ret; } static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq) { int idx; struct int_node *inode; struct cs_etm_traceid_queue *tidq; struct intlist *traceid_queues_list = etmq->traceid_queues_list; intlist__for_each_entry(inode, traceid_queues_list) { idx = (int)(intptr_t)inode->priv; tidq = etmq->traceid_queues[idx]; /* Ignore return value */ cs_etm__process_traceid_queue(etmq, tidq); /* * Generate an instruction sample with the remaining * branchstack entries. */ cs_etm__flush(etmq, tidq); } } static int cs_etm__run_decoder(struct cs_etm_queue *etmq) { int err = 0; struct cs_etm_traceid_queue *tidq; tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID); if (!tidq) return -EINVAL; /* Go through each buffer in the queue and decode them one by one */ while (1) { err = cs_etm__get_data_block(etmq); if (err <= 0) return err; /* Run trace decoder until buffer consumed or end of trace */ do { err = cs_etm__decode_data_block(etmq); if (err) return err; /* * Process each packet in this chunk, nothing to do if * an error occurs other than hoping the next one will * be better. */ err = cs_etm__process_traceid_queue(etmq, tidq); } while (etmq->buf_len); if (err == 0) /* Flush any remaining branch stack entries */ err = cs_etm__end_block(etmq, tidq); } return err; } static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm, pid_t tid) { unsigned int i; struct auxtrace_queues *queues = &etm->queues; for (i = 0; i < queues->nr_queues; i++) { struct auxtrace_queue *queue = &etm->queues.queue_array[i]; struct cs_etm_queue *etmq = queue->priv; struct cs_etm_traceid_queue *tidq; if (!etmq) continue; tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID); if (!tidq) continue; if ((tid == -1) || (tidq->tid == tid)) { cs_etm__set_pid_tid_cpu(etm, tidq); cs_etm__run_decoder(etmq); } } return 0; } static int cs_etm__process_queues(struct cs_etm_auxtrace *etm) { int ret = 0; unsigned int cs_queue_nr, queue_nr, i; u8 trace_chan_id; u64 cs_timestamp; struct auxtrace_queue *queue; struct cs_etm_queue *etmq; struct cs_etm_traceid_queue *tidq; /* * Pre-populate the heap with one entry from each queue so that we can * start processing in time order across all queues. */ for (i = 0; i < etm->queues.nr_queues; i++) { etmq = etm->queues.queue_array[i].priv; if (!etmq) continue; ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i); if (ret) return ret; } while (1) { if (!etm->heap.heap_cnt) goto out; /* Take the entry at the top of the min heap */ cs_queue_nr = etm->heap.heap_array[0].queue_nr; queue_nr = TO_QUEUE_NR(cs_queue_nr); trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr); queue = &etm->queues.queue_array[queue_nr]; etmq = queue->priv; /* * Remove the top entry from the heap since we are about * to process it. */ auxtrace_heap__pop(&etm->heap); tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id); if (!tidq) { /* * No traceID queue has been allocated for this traceID, * which means something somewhere went very wrong. No * other choice than simply exit. */ ret = -EINVAL; goto out; } /* * Packets associated with this timestamp are already in * the etmq's traceID queue, so process them. */ ret = cs_etm__process_traceid_queue(etmq, tidq); if (ret < 0) goto out; /* * Packets for this timestamp have been processed, time to * move on to the next timestamp, fetching a new auxtrace_buffer * if need be. */ refetch: ret = cs_etm__get_data_block(etmq); if (ret < 0) goto out; /* * No more auxtrace_buffers to process in this etmq, simply * move on to another entry in the auxtrace_heap. */ if (!ret) continue; ret = cs_etm__decode_data_block(etmq); if (ret) goto out; cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id); if (!cs_timestamp) { /* * Function cs_etm__decode_data_block() returns when * there is no more traces to decode in the current * auxtrace_buffer OR when a timestamp has been * encountered on any of the traceID queues. Since we * did not get a timestamp, there is no more traces to * process in this auxtrace_buffer. As such empty and * flush all traceID queues. */ cs_etm__clear_all_traceid_queues(etmq); /* Fetch another auxtrace_buffer for this etmq */ goto refetch; } /* * Add to the min heap the timestamp for packets that have * just been decoded. They will be processed and synthesized * during the next call to cs_etm__process_traceid_queue() for * this queue/traceID. */ cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id); ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp); } out: return ret; } static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm, union perf_event *event) { struct thread *th; if (etm->timeless_decoding) return 0; /* * Add the tid/pid to the log so that we can get a match when * we get a contextID from the decoder. */ th = machine__findnew_thread(etm->machine, event->itrace_start.pid, event->itrace_start.tid); if (!th) return -ENOMEM; thread__put(th); return 0; } static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm, union perf_event *event) { struct thread *th; bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; /* * Context switch in per-thread mode are irrelevant since perf * will start/stop tracing as the process is scheduled. */ if (etm->timeless_decoding) return 0; /* * SWITCH_IN events carry the next process to be switched out while * SWITCH_OUT events carry the process to be switched in. As such * we don't care about IN events. */ if (!out) return 0; /* * Add the tid/pid to the log so that we can get a match when * we get a contextID from the decoder. */ th = machine__findnew_thread(etm->machine, event->context_switch.next_prev_pid, event->context_switch.next_prev_tid); if (!th) return -ENOMEM; thread__put(th); return 0; } static int cs_etm__process_event(struct perf_session *session, union perf_event *event, struct perf_sample *sample, struct perf_tool *tool) { u64 sample_kernel_timestamp; struct cs_etm_auxtrace *etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); if (dump_trace) return 0; if (!tool->ordered_events) { pr_err("CoreSight ETM Trace requires ordered events\n"); return -EINVAL; } if (sample->time && (sample->time != (u64) -1)) sample_kernel_timestamp = sample->time; else sample_kernel_timestamp = 0; /* * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because * ETM_OPT_CTXTID is not enabled. */ if (etm->timeless_decoding && event->header.type == PERF_RECORD_EXIT) return cs_etm__process_timeless_queues(etm, event->fork.tid); if (event->header.type == PERF_RECORD_ITRACE_START) return cs_etm__process_itrace_start(etm, event); else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) return cs_etm__process_switch_cpu_wide(etm, event); if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) { /* * Record the latest kernel timestamp available in the header * for samples so that synthesised samples occur from this point * onwards. */ etm->latest_kernel_timestamp = sample_kernel_timestamp; } return 0; } static void dump_queued_data(struct cs_etm_auxtrace *etm, struct perf_record_auxtrace *event) { struct auxtrace_buffer *buf; unsigned int i; /* * Find all buffers with same reference in the queues and dump them. * This is because the queues can contain multiple entries of the same * buffer that were split on aux records. */ for (i = 0; i < etm->queues.nr_queues; ++i) list_for_each_entry(buf, &etm->queues.queue_array[i].head, list) if (buf->reference == event->reference) cs_etm__dump_event(etm->queues.queue_array[i].priv, buf); } static int cs_etm__process_auxtrace_event(struct perf_session *session, union perf_event *event, struct perf_tool *tool __maybe_unused) { struct cs_etm_auxtrace *etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); if (!etm->data_queued) { struct auxtrace_buffer *buffer; off_t data_offset; int fd = perf_data__fd(session->data); bool is_pipe = perf_data__is_pipe(session->data); int err; int idx = event->auxtrace.idx; if (is_pipe) data_offset = 0; else { data_offset = lseek(fd, 0, SEEK_CUR); if (data_offset == -1) return -errno; } err = auxtrace_queues__add_event(&etm->queues, session, event, data_offset, &buffer); if (err) return err; /* * Knowing if the trace is formatted or not requires a lookup of * the aux record so only works in non-piped mode where data is * queued in cs_etm__queue_aux_records(). Always assume * formatted in piped mode (true). */ err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], idx, true); if (err) return err; if (dump_trace) if (auxtrace_buffer__get_data(buffer, fd)) { cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer); auxtrace_buffer__put_data(buffer); } } else if (dump_trace) dump_queued_data(etm, &event->auxtrace); return 0; } static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm) { struct evsel *evsel; struct evlist *evlist = etm->session->evlist; bool timeless_decoding = true; /* Override timeless mode with user input from --itrace=Z */ if (etm->synth_opts.timeless_decoding) return true; /* * Circle through the list of event and complain if we find one * with the time bit set. */ evlist__for_each_entry(evlist, evsel) { if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) timeless_decoding = false; } return timeless_decoding; } /* * Read a single cpu parameter block from the auxtrace_info priv block. * * For version 1 there is a per cpu nr_params entry. If we are handling * version 1 file, then there may be less, the same, or more params * indicated by this value than the compile time number we understand. * * For a version 0 info block, there are a fixed number, and we need to * fill out the nr_param value in the metadata we create. */ static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset, int out_blk_size, int nr_params_v0) { u64 *metadata = NULL; int hdr_version; int nr_in_params, nr_out_params, nr_cmn_params; int i, k; metadata = zalloc(sizeof(*metadata) * out_blk_size); if (!metadata) return NULL; /* read block current index & version */ i = *buff_in_offset; hdr_version = buff_in[CS_HEADER_VERSION]; if (!hdr_version) { /* read version 0 info block into a version 1 metadata block */ nr_in_params = nr_params_v0; metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC]; metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU]; metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params; /* remaining block params at offset +1 from source */ for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++) metadata[k + 1] = buff_in[i + k]; /* version 0 has 2 common params */ nr_cmn_params = 2; } else { /* read version 1 info block - input and output nr_params may differ */ /* version 1 has 3 common params */ nr_cmn_params = 3; nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS]; /* if input has more params than output - skip excess */ nr_out_params = nr_in_params + nr_cmn_params; if (nr_out_params > out_blk_size) nr_out_params = out_blk_size; for (k = CS_ETM_MAGIC; k < nr_out_params; k++) metadata[k] = buff_in[i + k]; /* record the actual nr params we copied */ metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params; } /* adjust in offset by number of in params used */ i += nr_in_params + nr_cmn_params; *buff_in_offset = i; return metadata; } /** * Puts a fragment of an auxtrace buffer into the auxtrace queues based * on the bounds of aux_event, if it matches with the buffer that's at * file_offset. * * Normally, whole auxtrace buffers would be added to the queue. But we * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder * is reset across each buffer, so splitting the buffers up in advance has * the same effect. */ static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz, struct perf_record_aux *aux_event, struct perf_sample *sample) { int err; char buf[PERF_SAMPLE_MAX_SIZE]; union perf_event *auxtrace_event_union; struct perf_record_auxtrace *auxtrace_event; union perf_event auxtrace_fragment; __u64 aux_offset, aux_size; __u32 idx; bool formatted; struct cs_etm_auxtrace *etm = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); /* * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got * from looping through the auxtrace index. */ err = perf_session__peek_event(session, file_offset, buf, PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL); if (err) return err; auxtrace_event = &auxtrace_event_union->auxtrace; if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE) return -EINVAL; if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) || auxtrace_event->header.size != sz) { return -EINVAL; } /* * In per-thread mode, auxtrace CPU is set to -1, but TID will be set instead. See * auxtrace_mmap_params__set_idx(). However, the sample AUX event will contain a * CPU as we set this always for the AUX_OUTPUT_HW_ID event. * So now compare only TIDs if auxtrace CPU is -1, and CPUs if auxtrace CPU is not -1. * Return 'not found' if mismatch. */ if (auxtrace_event->cpu == (__u32) -1) { if (auxtrace_event->tid != sample->tid) return 1; } else if (auxtrace_event->cpu != sample->cpu) return 1; if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) { /* * Clamp size in snapshot mode. The buffer size is clamped in * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect * the buffer size. */ aux_size = min(aux_event->aux_size, auxtrace_event->size); /* * In this mode, the head also points to the end of the buffer so aux_offset * needs to have the size subtracted so it points to the beginning as in normal mode */ aux_offset = aux_event->aux_offset - aux_size; } else { aux_size = aux_event->aux_size; aux_offset = aux_event->aux_offset; } if (aux_offset >= auxtrace_event->offset && aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) { /* * If this AUX event was inside this buffer somewhere, create a new auxtrace event * based on the sizes of the aux event, and queue that fragment. */ auxtrace_fragment.auxtrace = *auxtrace_event; auxtrace_fragment.auxtrace.size = aux_size; auxtrace_fragment.auxtrace.offset = aux_offset; file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size; pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64 " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu); err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment, file_offset, NULL); if (err) return err; idx = auxtrace_event->idx; formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW); return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx], idx, formatted); } /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */ return 1; } static int cs_etm__process_aux_hw_id_cb(struct perf_session *session, union perf_event *event, u64 offset __maybe_unused, void *data __maybe_unused) { /* look to handle PERF_RECORD_AUX_OUTPUT_HW_ID early to ensure decoders can be set up */ if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) { (*(int *)data)++; /* increment found count */ return cs_etm__process_aux_output_hw_id(session, event); } return 0; } static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event, u64 offset __maybe_unused, void *data __maybe_unused) { struct perf_sample sample; int ret; struct auxtrace_index_entry *ent; struct auxtrace_index *auxtrace_index; struct evsel *evsel; size_t i; /* Don't care about any other events, we're only queuing buffers for AUX events */ if (event->header.type != PERF_RECORD_AUX) return 0; if (event->header.size < sizeof(struct perf_record_aux)) return -EINVAL; /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */ if (!event->aux.aux_size) return 0; /* * Parse the sample, we need the sample_id_all data that comes after the event so that the * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID. */ evsel = evlist__event2evsel(session->evlist, event); if (!evsel) return -EINVAL; ret = evsel__parse_sample(evsel, event, &sample); if (ret) return ret; /* * Loop through the auxtrace index to find the buffer that matches up with this aux event. */ list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { for (i = 0; i < auxtrace_index->nr; i++) { ent = &auxtrace_index->entries[i]; ret = cs_etm__queue_aux_fragment(session, ent->file_offset, ent->sz, &event->aux, &sample); /* * Stop search on error or successful values. Continue search on * 1 ('not found') */ if (ret != 1) return ret; } } /* * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but * don't exit with an error because it will still be possible to decode other aux records. */ pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64 " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu); return 0; } static int cs_etm__queue_aux_records(struct perf_session *session) { struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index, struct auxtrace_index, list); if (index && index->nr > 0) return perf_session__peek_events(session, session->header.data_offset, session->header.data_size, cs_etm__queue_aux_records_cb, NULL); /* * We would get here if there are no entries in the index (either no auxtrace * buffers or no index at all). Fail silently as there is the possibility of * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still * false. * * In that scenario, buffers will not be split by AUX records. */ return 0; } #define HAS_PARAM(j, type, param) (metadata[(j)][CS_ETM_NR_TRC_PARAMS] <= \ (CS_##type##_##param - CS_ETM_COMMON_BLK_MAX_V1)) /* * Loop through the ETMs and complain if we find at least one where ts_source != 1 (virtual * timestamps). */ static bool cs_etm__has_virtual_ts(u64 **metadata, int num_cpu) { int j; for (j = 0; j < num_cpu; j++) { switch (metadata[j][CS_ETM_MAGIC]) { case __perf_cs_etmv4_magic: if (HAS_PARAM(j, ETMV4, TS_SOURCE) || metadata[j][CS_ETMV4_TS_SOURCE] != 1) return false; break; case __perf_cs_ete_magic: if (HAS_PARAM(j, ETE, TS_SOURCE) || metadata[j][CS_ETE_TS_SOURCE] != 1) return false; break; default: /* Unknown / unsupported magic number. */ return false; } } return true; } /* map trace ids to correct metadata block, from information in metadata */ static int cs_etm__map_trace_ids_metadata(int num_cpu, u64 **metadata) { u64 cs_etm_magic; u8 trace_chan_id; int i, err; for (i = 0; i < num_cpu; i++) { cs_etm_magic = metadata[i][CS_ETM_MAGIC]; switch (cs_etm_magic) { case __perf_cs_etmv3_magic: metadata[i][CS_ETM_ETMTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK; trace_chan_id = (u8)(metadata[i][CS_ETM_ETMTRACEIDR]); break; case __perf_cs_etmv4_magic: case __perf_cs_ete_magic: metadata[i][CS_ETMV4_TRCTRACEIDR] &= CORESIGHT_TRACE_ID_VAL_MASK; trace_chan_id = (u8)(metadata[i][CS_ETMV4_TRCTRACEIDR]); break; default: /* unknown magic number */ return -EINVAL; } err = cs_etm__map_trace_id(trace_chan_id, metadata[i]); if (err) return err; } return 0; } /* * If we found AUX_HW_ID packets, then set any metadata marked as unused to the * unused value to reduce the number of unneeded decoders created. */ static int cs_etm__clear_unused_trace_ids_metadata(int num_cpu, u64 **metadata) { u64 cs_etm_magic; int i; for (i = 0; i < num_cpu; i++) { cs_etm_magic = metadata[i][CS_ETM_MAGIC]; switch (cs_etm_magic) { case __perf_cs_etmv3_magic: if (metadata[i][CS_ETM_ETMTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG) metadata[i][CS_ETM_ETMTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL; break; case __perf_cs_etmv4_magic: case __perf_cs_ete_magic: if (metadata[i][CS_ETMV4_TRCTRACEIDR] & CORESIGHT_TRACE_ID_UNUSED_FLAG) metadata[i][CS_ETMV4_TRCTRACEIDR] = CORESIGHT_TRACE_ID_UNUSED_VAL; break; default: /* unknown magic number */ return -EINVAL; } } return 0; } int cs_etm__process_auxtrace_info_full(union perf_event *event, struct perf_session *session) { struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; struct cs_etm_auxtrace *etm = NULL; struct perf_record_time_conv *tc = &session->time_conv; int event_header_size = sizeof(struct perf_event_header); int total_size = auxtrace_info->header.size; int priv_size = 0; int num_cpu; int err = 0; int aux_hw_id_found; int i, j; u64 *ptr = NULL; u64 **metadata = NULL; /* * Create an RB tree for traceID-metadata tuple. Since the conversion * has to be made for each packet that gets decoded, optimizing access * in anything other than a sequential array is worth doing. */ traceid_list = intlist__new(NULL); if (!traceid_list) return -ENOMEM; /* First the global part */ ptr = (u64 *) auxtrace_info->priv; num_cpu = ptr[CS_PMU_TYPE_CPUS] & 0xffffffff; metadata = zalloc(sizeof(*metadata) * num_cpu); if (!metadata) { err = -ENOMEM; goto err_free_traceid_list; } /* Start parsing after the common part of the header */ i = CS_HEADER_VERSION_MAX; /* * The metadata is stored in the auxtrace_info section and encodes * the configuration of the ARM embedded trace macrocell which is * required by the trace decoder to properly decode the trace due * to its highly compressed nature. */ for (j = 0; j < num_cpu; j++) { if (ptr[i] == __perf_cs_etmv3_magic) { metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETM_PRIV_MAX, CS_ETM_NR_TRC_PARAMS_V0); } else if (ptr[i] == __perf_cs_etmv4_magic) { metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETMV4_PRIV_MAX, CS_ETMV4_NR_TRC_PARAMS_V0); } else if (ptr[i] == __perf_cs_ete_magic) { metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1); } else { ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n", ptr[i]); err = -EINVAL; goto err_free_metadata; } if (!metadata[j]) { err = -ENOMEM; goto err_free_metadata; } } /* * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and * CS_ETMV4_PRIV_MAX mark how many double words are in the * global metadata, and each cpu's metadata respectively. * The following tests if the correct number of double words was * present in the auxtrace info section. */ priv_size = total_size - event_header_size - INFO_HEADER_SIZE; if (i * 8 != priv_size) { err = -EINVAL; goto err_free_metadata; } etm = zalloc(sizeof(*etm)); if (!etm) { err = -ENOMEM; goto err_free_metadata; } err = auxtrace_queues__init(&etm->queues); if (err) goto err_free_etm; if (session->itrace_synth_opts->set) { etm->synth_opts = *session->itrace_synth_opts; } else { itrace_synth_opts__set_default(&etm->synth_opts, session->itrace_synth_opts->default_no_sample); etm->synth_opts.callchain = false; } etm->session = session; etm->machine = &session->machines.host; etm->num_cpu = num_cpu; etm->pmu_type = (unsigned int) ((ptr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff); etm->snapshot_mode = (ptr[CS_ETM_SNAPSHOT] != 0); etm->metadata = metadata; etm->auxtrace_type = auxtrace_info->type; etm->timeless_decoding = cs_etm__is_timeless_decoding(etm); /* Use virtual timestamps if all ETMs report ts_source = 1 */ etm->has_virtual_ts = cs_etm__has_virtual_ts(metadata, num_cpu); if (!etm->has_virtual_ts) ui__warning("Virtual timestamps are not enabled, or not supported by the traced system.\n" "The time field of the samples will not be set accurately.\n\n"); etm->auxtrace.process_event = cs_etm__process_event; etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; etm->auxtrace.flush_events = cs_etm__flush_events; etm->auxtrace.free_events = cs_etm__free_events; etm->auxtrace.free = cs_etm__free; etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace; session->auxtrace = &etm->auxtrace; etm->unknown_thread = thread__new(999999999, 999999999); if (!etm->unknown_thread) { err = -ENOMEM; goto err_free_queues; } /* * Initialize list node so that at thread__zput() we can avoid * segmentation fault at list_del_init(). */ INIT_LIST_HEAD(&etm->unknown_thread->node); err = thread__set_comm(etm->unknown_thread, "unknown", 0); if (err) goto err_delete_thread; if (thread__init_maps(etm->unknown_thread, etm->machine)) { err = -ENOMEM; goto err_delete_thread; } etm->tc.time_shift = tc->time_shift; etm->tc.time_mult = tc->time_mult; etm->tc.time_zero = tc->time_zero; if (event_contains(*tc, time_cycles)) { etm->tc.time_cycles = tc->time_cycles; etm->tc.time_mask = tc->time_mask; etm->tc.cap_user_time_zero = tc->cap_user_time_zero; etm->tc.cap_user_time_short = tc->cap_user_time_short; } err = cs_etm__synth_events(etm, session); if (err) goto err_delete_thread; /* * Map Trace ID values to CPU metadata. * * Trace metadata will always contain Trace ID values from the legacy algorithm. If the * files has been recorded by a "new" perf updated to handle AUX_HW_ID then the metadata * ID value will also have the CORESIGHT_TRACE_ID_UNUSED_FLAG set. * * The updated kernel drivers that use AUX_HW_ID to sent Trace IDs will attempt to use * the same IDs as the old algorithm as far as is possible, unless there are clashes * in which case a different value will be used. This means an older perf may still * be able to record and read files generate on a newer system. * * For a perf able to interpret AUX_HW_ID packets we first check for the presence of * those packets. If they are there then the values will be mapped and plugged into * the metadata. We then set any remaining metadata values with the used flag to a * value CORESIGHT_TRACE_ID_UNUSED_VAL - which indicates no decoder is required. * * If no AUX_HW_ID packets are present - which means a file recorded on an old kernel * then we map Trace ID values to CPU directly from the metadata - clearing any unused * flags if present. */ /* first scan for AUX_OUTPUT_HW_ID records to map trace ID values to CPU metadata */ aux_hw_id_found = 0; err = perf_session__peek_events(session, session->header.data_offset, session->header.data_size, cs_etm__process_aux_hw_id_cb, &aux_hw_id_found); if (err) goto err_delete_thread; /* if HW ID found then clear any unused metadata ID values */ if (aux_hw_id_found) err = cs_etm__clear_unused_trace_ids_metadata(num_cpu, metadata); /* otherwise, this is a file with metadata values only, map from metadata */ else err = cs_etm__map_trace_ids_metadata(num_cpu, metadata); if (err) goto err_delete_thread; err = cs_etm__queue_aux_records(session); if (err) goto err_delete_thread; etm->data_queued = etm->queues.populated; return 0; err_delete_thread: thread__zput(etm->unknown_thread); err_free_queues: auxtrace_queues__free(&etm->queues); session->auxtrace = NULL; err_free_etm: zfree(&etm); err_free_metadata: /* No need to check @metadata[j], free(NULL) is supported */ for (j = 0; j < num_cpu; j++) zfree(&metadata[j]); zfree(&metadata); err_free_traceid_list: intlist__delete(traceid_list); return err; }