/* * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved. * * Author: Yu Liu, yu.liu@freescale.com * Ashish Kalra, ashish.kalra@freescale.com * * Description: * This file is based on arch/powerpc/kvm/44x_tlb.c, * by Hollis Blanchard . * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "e500.h" #include "trace.h" #include "timing.h" #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1) static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM]; static inline unsigned int gtlb0_get_next_victim( struct kvmppc_vcpu_e500 *vcpu_e500) { unsigned int victim; victim = vcpu_e500->gtlb_nv[0]++; if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways)) vcpu_e500->gtlb_nv[0] = 0; return victim; } static inline unsigned int tlb1_max_shadow_size(void) { /* reserve one entry for magic page */ return host_tlb_params[1].entries - tlbcam_index - 1; } static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe) { return tlbe->mas7_3 & (MAS3_SW|MAS3_UW); } static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode) { /* Mask off reserved bits. */ mas3 &= MAS3_ATTRIB_MASK; if (!usermode) { /* Guest is in supervisor mode, * so we need to translate guest * supervisor permissions into user permissions. */ mas3 &= ~E500_TLB_USER_PERM_MASK; mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1; } return mas3 | E500_TLB_SUPER_PERM_MASK; } static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode) { #ifdef CONFIG_SMP return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M; #else return mas2 & MAS2_ATTRIB_MASK; #endif } /* * writing shadow tlb entry to host TLB */ static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe, uint32_t mas0) { unsigned long flags; local_irq_save(flags); mtspr(SPRN_MAS0, mas0); mtspr(SPRN_MAS1, stlbe->mas1); mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2); mtspr(SPRN_MAS3, (u32)stlbe->mas7_3); mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32)); asm volatile("isync; tlbwe" : : : "memory"); local_irq_restore(flags); trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1, stlbe->mas2, stlbe->mas7_3); } /* * Acquire a mas0 with victim hint, as if we just took a TLB miss. * * We don't care about the address we're searching for, other than that it's * in the right set and is not present in the TLB. Using a zero PID and a * userspace address means we don't have to set and then restore MAS5, or * calculate a proper MAS6 value. */ static u32 get_host_mas0(unsigned long eaddr) { unsigned long flags; u32 mas0; local_irq_save(flags); mtspr(SPRN_MAS6, 0); asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET)); mas0 = mfspr(SPRN_MAS0); local_irq_restore(flags); return mas0; } /* sesel is for tlb1 only */ static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe) { u32 mas0; if (tlbsel == 0) { mas0 = get_host_mas0(stlbe->mas2); __write_host_tlbe(stlbe, mas0); } else { __write_host_tlbe(stlbe, MAS0_TLBSEL(1) | MAS0_ESEL(to_htlb1_esel(sesel))); } } #ifdef CONFIG_KVM_E500 void kvmppc_map_magic(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct kvm_book3e_206_tlb_entry magic; ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK; unsigned int stid; pfn_t pfn; pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT; get_page(pfn_to_page(pfn)); preempt_disable(); stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0); magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) | MAS1_TSIZE(BOOK3E_PAGESZ_4K); magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M; magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) | MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR; magic.mas8 = 0; __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index)); preempt_enable(); } #endif static void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int esel) { struct kvm_book3e_206_tlb_entry *gtlbe = get_entry(vcpu_e500, tlbsel, esel); if (tlbsel == 1 && vcpu_e500->gtlb_priv[1][esel].ref.flags & E500_TLB_BITMAP) { u64 tmp = vcpu_e500->g2h_tlb1_map[esel]; int hw_tlb_indx; unsigned long flags; local_irq_save(flags); while (tmp) { hw_tlb_indx = __ilog2_u64(tmp & -tmp); mtspr(SPRN_MAS0, MAS0_TLBSEL(1) | MAS0_ESEL(to_htlb1_esel(hw_tlb_indx))); mtspr(SPRN_MAS1, 0); asm volatile("tlbwe"); vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0; tmp &= tmp - 1; } mb(); vcpu_e500->g2h_tlb1_map[esel] = 0; vcpu_e500->gtlb_priv[1][esel].ref.flags &= ~E500_TLB_BITMAP; local_irq_restore(flags); return; } /* Guest tlbe is backed by at most one host tlbe per shadow pid. */ kvmppc_e500_tlbil_one(vcpu_e500, gtlbe); } static int tlb0_set_base(gva_t addr, int sets, int ways) { int set_base; set_base = (addr >> PAGE_SHIFT) & (sets - 1); set_base *= ways; return set_base; } static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr) { return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets, vcpu_e500->gtlb_params[0].ways); } static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int esel = get_tlb_esel_bit(vcpu); if (tlbsel == 0) { esel &= vcpu_e500->gtlb_params[0].ways - 1; esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2); } else { esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1; } return esel; } /* Search the guest TLB for a matching entry. */ static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t eaddr, int tlbsel, unsigned int pid, int as) { int size = vcpu_e500->gtlb_params[tlbsel].entries; unsigned int set_base, offset; int i; if (tlbsel == 0) { set_base = gtlb0_set_base(vcpu_e500, eaddr); size = vcpu_e500->gtlb_params[0].ways; } else { set_base = 0; } offset = vcpu_e500->gtlb_offset[tlbsel]; for (i = 0; i < size; i++) { struct kvm_book3e_206_tlb_entry *tlbe = &vcpu_e500->gtlb_arch[offset + set_base + i]; unsigned int tid; if (eaddr < get_tlb_eaddr(tlbe)) continue; if (eaddr > get_tlb_end(tlbe)) continue; tid = get_tlb_tid(tlbe); if (tid && (tid != pid)) continue; if (!get_tlb_v(tlbe)) continue; if (get_tlb_ts(tlbe) != as && as != -1) continue; return set_base + i; } return -1; } static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref, struct kvm_book3e_206_tlb_entry *gtlbe, pfn_t pfn) { ref->pfn = pfn; ref->flags = E500_TLB_VALID; if (tlbe_is_writable(gtlbe)) ref->flags |= E500_TLB_DIRTY; } static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref) { if (ref->flags & E500_TLB_VALID) { if (ref->flags & E500_TLB_DIRTY) kvm_release_pfn_dirty(ref->pfn); else kvm_release_pfn_clean(ref->pfn); ref->flags = 0; } } static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500) { if (vcpu_e500->g2h_tlb1_map) memset(vcpu_e500->g2h_tlb1_map, sizeof(u64) * vcpu_e500->gtlb_params[1].entries, 0); if (vcpu_e500->h2g_tlb1_rmap) memset(vcpu_e500->h2g_tlb1_rmap, sizeof(unsigned int) * host_tlb_params[1].entries, 0); } static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500) { int tlbsel = 0; int i; for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) { struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][i].ref; kvmppc_e500_ref_release(ref); } } static void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500) { int stlbsel = 1; int i; kvmppc_e500_tlbil_all(vcpu_e500); for (i = 0; i < host_tlb_params[stlbsel].entries; i++) { struct tlbe_ref *ref = &vcpu_e500->tlb_refs[stlbsel][i]; kvmppc_e500_ref_release(ref); } clear_tlb_privs(vcpu_e500); } static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu, unsigned int eaddr, int as) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); unsigned int victim, tsized; int tlbsel; /* since we only have two TLBs, only lower bit is used. */ tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1; victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0; tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f; vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim) | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0) | MAS1_TID(get_tlbmiss_tid(vcpu)) | MAS1_TSIZE(tsized); vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN) | (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK); vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3; vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1) | (get_cur_pid(vcpu) << 16) | (as ? MAS6_SAS : 0); } /* TID must be supplied by the caller */ static inline void kvmppc_e500_setup_stlbe( struct kvm_vcpu *vcpu, struct kvm_book3e_206_tlb_entry *gtlbe, int tsize, struct tlbe_ref *ref, u64 gvaddr, struct kvm_book3e_206_tlb_entry *stlbe) { pfn_t pfn = ref->pfn; u32 pr = vcpu->arch.shared->msr & MSR_PR; BUG_ON(!(ref->flags & E500_TLB_VALID)); /* Force IPROT=0 for all guest mappings. */ stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID; stlbe->mas2 = (gvaddr & MAS2_EPN) | e500_shadow_mas2_attrib(gtlbe->mas2, pr); stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) | e500_shadow_mas3_attrib(gtlbe->mas7_3, pr); } static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe, struct tlbe_ref *ref) { struct kvm_memory_slot *slot; unsigned long pfn, hva; int pfnmap = 0; int tsize = BOOK3E_PAGESZ_4K; /* * Translate guest physical to true physical, acquiring * a page reference if it is normal, non-reserved memory. * * gfn_to_memslot() must succeed because otherwise we wouldn't * have gotten this far. Eventually we should just pass the slot * pointer through from the first lookup. */ slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn); hva = gfn_to_hva_memslot(slot, gfn); if (tlbsel == 1) { struct vm_area_struct *vma; down_read(¤t->mm->mmap_sem); vma = find_vma(current->mm, hva); if (vma && hva >= vma->vm_start && (vma->vm_flags & VM_PFNMAP)) { /* * This VMA is a physically contiguous region (e.g. * /dev/mem) that bypasses normal Linux page * management. Find the overlap between the * vma and the memslot. */ unsigned long start, end; unsigned long slot_start, slot_end; pfnmap = 1; start = vma->vm_pgoff; end = start + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT); pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT); slot_start = pfn - (gfn - slot->base_gfn); slot_end = slot_start + slot->npages; if (start < slot_start) start = slot_start; if (end > slot_end) end = slot_end; tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; /* * e500 doesn't implement the lowest tsize bit, * or 1K pages. */ tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); /* * Now find the largest tsize (up to what the guest * requested) that will cover gfn, stay within the * range, and for which gfn and pfn are mutually * aligned. */ for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) { unsigned long gfn_start, gfn_end, tsize_pages; tsize_pages = 1 << (tsize - 2); gfn_start = gfn & ~(tsize_pages - 1); gfn_end = gfn_start + tsize_pages; if (gfn_start + pfn - gfn < start) continue; if (gfn_end + pfn - gfn > end) continue; if ((gfn & (tsize_pages - 1)) != (pfn & (tsize_pages - 1))) continue; gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); pfn &= ~(tsize_pages - 1); break; } } else if (vma && hva >= vma->vm_start && (vma->vm_flags & VM_HUGETLB)) { unsigned long psize = vma_kernel_pagesize(vma); tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; /* * Take the largest page size that satisfies both host * and guest mapping */ tsize = min(__ilog2(psize) - 10, tsize); /* * e500 doesn't implement the lowest tsize bit, * or 1K pages. */ tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); } up_read(¤t->mm->mmap_sem); } if (likely(!pfnmap)) { unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT); pfn = gfn_to_pfn_memslot(vcpu_e500->vcpu.kvm, slot, gfn); if (is_error_pfn(pfn)) { printk(KERN_ERR "Couldn't get real page for gfn %lx!\n", (long)gfn); kvm_release_pfn_clean(pfn); return; } /* Align guest and physical address to page map boundaries */ pfn &= ~(tsize_pages - 1); gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); } /* Drop old ref and setup new one. */ kvmppc_e500_ref_release(ref); kvmppc_e500_ref_setup(ref, gtlbe, pfn); kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize, ref, gvaddr, stlbe); } /* XXX only map the one-one case, for now use TLB0 */ static void kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel, struct kvm_book3e_206_tlb_entry *stlbe) { struct kvm_book3e_206_tlb_entry *gtlbe; struct tlbe_ref *ref; gtlbe = get_entry(vcpu_e500, 0, esel); ref = &vcpu_e500->gtlb_priv[0][esel].ref; kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe), get_tlb_raddr(gtlbe) >> PAGE_SHIFT, gtlbe, 0, stlbe, ref); } /* Caller must ensure that the specified guest TLB entry is safe to insert into * the shadow TLB. */ /* XXX for both one-one and one-to-many , for now use TLB1 */ static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500, u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, struct kvm_book3e_206_tlb_entry *stlbe, int esel) { struct tlbe_ref *ref; unsigned int victim; victim = vcpu_e500->host_tlb1_nv++; if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size())) vcpu_e500->host_tlb1_nv = 0; ref = &vcpu_e500->tlb_refs[1][victim]; kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, ref); vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << victim; vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP; if (vcpu_e500->h2g_tlb1_rmap[victim]) { unsigned int idx = vcpu_e500->h2g_tlb1_rmap[victim]; vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << victim); } vcpu_e500->h2g_tlb1_rmap[victim] = esel; return victim; } static inline int kvmppc_e500_gtlbe_invalidate( struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int esel) { struct kvm_book3e_206_tlb_entry *gtlbe = get_entry(vcpu_e500, tlbsel, esel); if (unlikely(get_tlb_iprot(gtlbe))) return -1; gtlbe->mas1 = 0; return 0; } int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value) { int esel; if (value & MMUCSR0_TLB0FI) for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++) kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel); if (value & MMUCSR0_TLB1FI) for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++) kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel); /* Invalidate all vcpu id mappings */ kvmppc_e500_tlbil_all(vcpu_e500); return EMULATE_DONE; } int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); unsigned int ia; int esel, tlbsel; gva_t ea; ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb); ia = (ea >> 2) & 0x1; /* since we only have two TLBs, only lower bit is used. */ tlbsel = (ea >> 3) & 0x1; if (ia) { /* invalidate all entries */ for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); } else { ea &= 0xfffff000; esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, get_cur_pid(vcpu), -1); if (esel >= 0) kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); } /* Invalidate all vcpu id mappings */ kvmppc_e500_tlbil_all(vcpu_e500); return EMULATE_DONE; } static void tlbilx_all(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int pid, int rt) { struct kvm_book3e_206_tlb_entry *tlbe; int tid, esel; /* invalidate all entries */ for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) { tlbe = get_entry(vcpu_e500, tlbsel, esel); tid = get_tlb_tid(tlbe); if (rt == 0 || tid == pid) { inval_gtlbe_on_host(vcpu_e500, tlbsel, esel); kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); } } } static void tlbilx_one(struct kvmppc_vcpu_e500 *vcpu_e500, int pid, int ra, int rb) { int tlbsel, esel; gva_t ea; ea = kvmppc_get_gpr(&vcpu_e500->vcpu, rb); if (ra) ea += kvmppc_get_gpr(&vcpu_e500->vcpu, ra); for (tlbsel = 0; tlbsel < 2; tlbsel++) { esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, -1); if (esel >= 0) { inval_gtlbe_on_host(vcpu_e500, tlbsel, esel); kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); break; } } } int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int rt, int ra, int rb) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int pid = get_cur_spid(vcpu); if (rt == 0 || rt == 1) { tlbilx_all(vcpu_e500, 0, pid, rt); tlbilx_all(vcpu_e500, 1, pid, rt); } else if (rt == 3) { tlbilx_one(vcpu_e500, pid, ra, rb); } return EMULATE_DONE; } int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int tlbsel, esel; struct kvm_book3e_206_tlb_entry *gtlbe; tlbsel = get_tlb_tlbsel(vcpu); esel = get_tlb_esel(vcpu, tlbsel); gtlbe = get_entry(vcpu_e500, tlbsel, esel); vcpu->arch.shared->mas0 &= ~MAS0_NV(~0); vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); vcpu->arch.shared->mas1 = gtlbe->mas1; vcpu->arch.shared->mas2 = gtlbe->mas2; vcpu->arch.shared->mas7_3 = gtlbe->mas7_3; return EMULATE_DONE; } int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int as = !!get_cur_sas(vcpu); unsigned int pid = get_cur_spid(vcpu); int esel, tlbsel; struct kvm_book3e_206_tlb_entry *gtlbe = NULL; gva_t ea; ea = kvmppc_get_gpr(vcpu, rb); for (tlbsel = 0; tlbsel < 2; tlbsel++) { esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as); if (esel >= 0) { gtlbe = get_entry(vcpu_e500, tlbsel, esel); break; } } if (gtlbe) { esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1; vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel) | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); vcpu->arch.shared->mas1 = gtlbe->mas1; vcpu->arch.shared->mas2 = gtlbe->mas2; vcpu->arch.shared->mas7_3 = gtlbe->mas7_3; } else { int victim; /* since we only have two TLBs, only lower bit is used. */ tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1; victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0; vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim) | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); vcpu->arch.shared->mas1 = (vcpu->arch.shared->mas6 & MAS6_SPID0) | (vcpu->arch.shared->mas6 & (MAS6_SAS ? MAS1_TS : 0)) | (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0)); vcpu->arch.shared->mas2 &= MAS2_EPN; vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK; vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3; } kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS); return EMULATE_DONE; } /* sesel is for tlb1 only */ static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500, struct kvm_book3e_206_tlb_entry *gtlbe, struct kvm_book3e_206_tlb_entry *stlbe, int stlbsel, int sesel) { int stid; preempt_disable(); stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe); stlbe->mas1 |= MAS1_TID(stid); write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe); preempt_enable(); } int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct kvm_book3e_206_tlb_entry *gtlbe, stlbe; int tlbsel, esel, stlbsel, sesel; tlbsel = get_tlb_tlbsel(vcpu); esel = get_tlb_esel(vcpu, tlbsel); gtlbe = get_entry(vcpu_e500, tlbsel, esel); if (get_tlb_v(gtlbe)) inval_gtlbe_on_host(vcpu_e500, tlbsel, esel); gtlbe->mas1 = vcpu->arch.shared->mas1; gtlbe->mas2 = vcpu->arch.shared->mas2; gtlbe->mas7_3 = vcpu->arch.shared->mas7_3; trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1, gtlbe->mas2, gtlbe->mas7_3); /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */ if (tlbe_is_host_safe(vcpu, gtlbe)) { u64 eaddr; u64 raddr; switch (tlbsel) { case 0: /* TLB0 */ gtlbe->mas1 &= ~MAS1_TSIZE(~0); gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K); stlbsel = 0; kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe); sesel = 0; /* unused */ break; case 1: /* TLB1 */ eaddr = get_tlb_eaddr(gtlbe); raddr = get_tlb_raddr(gtlbe); /* Create a 4KB mapping on the host. * If the guest wanted a large page, * only the first 4KB is mapped here and the rest * are mapped on the fly. */ stlbsel = 1; sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, raddr >> PAGE_SHIFT, gtlbe, &stlbe, esel); break; default: BUG(); } write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel); } kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS); return EMULATE_DONE; } static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu, gva_t eaddr, unsigned int pid, int as) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int esel, tlbsel; for (tlbsel = 0; tlbsel < 2; tlbsel++) { esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as); if (esel >= 0) return index_of(tlbsel, esel); } return -1; } /* 'linear_address' is actually an encoding of AS|PID|EADDR . */ int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { int index; gva_t eaddr; u8 pid; u8 as; eaddr = tr->linear_address; pid = (tr->linear_address >> 32) & 0xff; as = (tr->linear_address >> 40) & 0x1; index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as); if (index < 0) { tr->valid = 0; return 0; } tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr); /* XXX what does "writeable" and "usermode" even mean? */ tr->valid = 1; return 0; } int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) { unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS); return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); } int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) { unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS); return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); } void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu) { unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS); kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as); } void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu) { unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS); kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as); } gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index, gva_t eaddr) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct kvm_book3e_206_tlb_entry *gtlbe; u64 pgmask; gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index)); pgmask = get_tlb_bytes(gtlbe) - 1; return get_tlb_raddr(gtlbe) | (eaddr & pgmask); } void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) { } void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr, unsigned int index) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct tlbe_priv *priv; struct kvm_book3e_206_tlb_entry *gtlbe, stlbe; int tlbsel = tlbsel_of(index); int esel = esel_of(index); int stlbsel, sesel; gtlbe = get_entry(vcpu_e500, tlbsel, esel); switch (tlbsel) { case 0: stlbsel = 0; sesel = 0; /* unused */ priv = &vcpu_e500->gtlb_priv[tlbsel][esel]; kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K, &priv->ref, eaddr, &stlbe); break; case 1: { gfn_t gfn = gpaddr >> PAGE_SHIFT; stlbsel = 1; sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe, esel); break; } default: BUG(); break; } write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel); } static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500) { int i; clear_tlb1_bitmap(vcpu_e500); kfree(vcpu_e500->g2h_tlb1_map); clear_tlb_refs(vcpu_e500); kfree(vcpu_e500->gtlb_priv[0]); kfree(vcpu_e500->gtlb_priv[1]); if (vcpu_e500->shared_tlb_pages) { vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch, PAGE_SIZE))); for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) { set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]); put_page(vcpu_e500->shared_tlb_pages[i]); } vcpu_e500->num_shared_tlb_pages = 0; vcpu_e500->shared_tlb_pages = NULL; } else { kfree(vcpu_e500->gtlb_arch); } vcpu_e500->gtlb_arch = NULL; } void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { sregs->u.e.mas0 = vcpu->arch.shared->mas0; sregs->u.e.mas1 = vcpu->arch.shared->mas1; sregs->u.e.mas2 = vcpu->arch.shared->mas2; sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3; sregs->u.e.mas4 = vcpu->arch.shared->mas4; sregs->u.e.mas6 = vcpu->arch.shared->mas6; sregs->u.e.mmucfg = vcpu->arch.mmucfg; sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0]; sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1]; sregs->u.e.tlbcfg[2] = 0; sregs->u.e.tlbcfg[3] = 0; } int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) { vcpu->arch.shared->mas0 = sregs->u.e.mas0; vcpu->arch.shared->mas1 = sregs->u.e.mas1; vcpu->arch.shared->mas2 = sregs->u.e.mas2; vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3; vcpu->arch.shared->mas4 = sregs->u.e.mas4; vcpu->arch.shared->mas6 = sregs->u.e.mas6; } return 0; } int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu, struct kvm_config_tlb *cfg) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct kvm_book3e_206_tlb_params params; char *virt; struct page **pages; struct tlbe_priv *privs[2] = {}; u64 *g2h_bitmap = NULL; size_t array_len; u32 sets; int num_pages, ret, i; if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV) return -EINVAL; if (copy_from_user(¶ms, (void __user *)(uintptr_t)cfg->params, sizeof(params))) return -EFAULT; if (params.tlb_sizes[1] > 64) return -EINVAL; if (params.tlb_ways[1] != params.tlb_sizes[1]) return -EINVAL; if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0) return -EINVAL; if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0) return -EINVAL; if (!is_power_of_2(params.tlb_ways[0])) return -EINVAL; sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]); if (!is_power_of_2(sets)) return -EINVAL; array_len = params.tlb_sizes[0] + params.tlb_sizes[1]; array_len *= sizeof(struct kvm_book3e_206_tlb_entry); if (cfg->array_len < array_len) return -EINVAL; num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) - cfg->array / PAGE_SIZE; pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL); if (!pages) return -ENOMEM; ret = get_user_pages_fast(cfg->array, num_pages, 1, pages); if (ret < 0) goto err_pages; if (ret != num_pages) { num_pages = ret; ret = -EFAULT; goto err_put_page; } virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL); if (!virt) goto err_put_page; privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0], GFP_KERNEL); privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1], GFP_KERNEL); if (!privs[0] || !privs[1]) goto err_put_page; g2h_bitmap = kzalloc(sizeof(u64) * params.tlb_sizes[1], GFP_KERNEL); if (!g2h_bitmap) goto err_put_page; free_gtlb(vcpu_e500); vcpu_e500->gtlb_priv[0] = privs[0]; vcpu_e500->gtlb_priv[1] = privs[1]; vcpu_e500->g2h_tlb1_map = g2h_bitmap; vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *) (virt + (cfg->array & (PAGE_SIZE - 1))); vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0]; vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1]; vcpu_e500->gtlb_offset[0] = 0; vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0]; vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE; vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC); if (params.tlb_sizes[0] <= 2048) vcpu->arch.tlbcfg[0] |= params.tlb_sizes[0]; vcpu->arch.tlbcfg[0] |= params.tlb_ways[0] << TLBnCFG_ASSOC_SHIFT; vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC); vcpu->arch.tlbcfg[1] |= params.tlb_sizes[1]; vcpu->arch.tlbcfg[1] |= params.tlb_ways[1] << TLBnCFG_ASSOC_SHIFT; vcpu_e500->shared_tlb_pages = pages; vcpu_e500->num_shared_tlb_pages = num_pages; vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0]; vcpu_e500->gtlb_params[0].sets = sets; vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1]; vcpu_e500->gtlb_params[1].sets = 1; return 0; err_put_page: kfree(privs[0]); kfree(privs[1]); for (i = 0; i < num_pages; i++) put_page(pages[i]); err_pages: kfree(pages); return ret; } int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu, struct kvm_dirty_tlb *dirty) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); clear_tlb_refs(vcpu_e500); return 0; } int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500) { struct kvm_vcpu *vcpu = &vcpu_e500->vcpu; int entry_size = sizeof(struct kvm_book3e_206_tlb_entry); int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE; host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY; host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY; /* * This should never happen on real e500 hardware, but is * architecturally possible -- e.g. in some weird nested * virtualization case. */ if (host_tlb_params[0].entries == 0 || host_tlb_params[1].entries == 0) { pr_err("%s: need to know host tlb size\n", __func__); return -ENODEV; } host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >> TLBnCFG_ASSOC_SHIFT; host_tlb_params[1].ways = host_tlb_params[1].entries; if (!is_power_of_2(host_tlb_params[0].entries) || !is_power_of_2(host_tlb_params[0].ways) || host_tlb_params[0].entries < host_tlb_params[0].ways || host_tlb_params[0].ways == 0) { pr_err("%s: bad tlb0 host config: %u entries %u ways\n", __func__, host_tlb_params[0].entries, host_tlb_params[0].ways); return -ENODEV; } host_tlb_params[0].sets = host_tlb_params[0].entries / host_tlb_params[0].ways; host_tlb_params[1].sets = 1; vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE; vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE; vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM; vcpu_e500->gtlb_params[0].sets = KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM; vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE; vcpu_e500->gtlb_params[1].sets = 1; vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL); if (!vcpu_e500->gtlb_arch) return -ENOMEM; vcpu_e500->gtlb_offset[0] = 0; vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE; vcpu_e500->tlb_refs[0] = kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries, GFP_KERNEL); if (!vcpu_e500->tlb_refs[0]) goto err; vcpu_e500->tlb_refs[1] = kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries, GFP_KERNEL); if (!vcpu_e500->tlb_refs[1]) goto err; vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) * vcpu_e500->gtlb_params[0].entries, GFP_KERNEL); if (!vcpu_e500->gtlb_priv[0]) goto err; vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) * vcpu_e500->gtlb_params[1].entries, GFP_KERNEL); if (!vcpu_e500->gtlb_priv[1]) goto err; vcpu_e500->g2h_tlb1_map = kzalloc(sizeof(unsigned int) * vcpu_e500->gtlb_params[1].entries, GFP_KERNEL); if (!vcpu_e500->g2h_tlb1_map) goto err; vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) * host_tlb_params[1].entries, GFP_KERNEL); if (!vcpu_e500->h2g_tlb1_rmap) goto err; /* Init TLB configuration register */ vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) & ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC); vcpu->arch.tlbcfg[0] |= vcpu_e500->gtlb_params[0].entries; vcpu->arch.tlbcfg[0] |= vcpu_e500->gtlb_params[0].ways << TLBnCFG_ASSOC_SHIFT; vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) & ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC); vcpu->arch.tlbcfg[0] |= vcpu_e500->gtlb_params[1].entries; vcpu->arch.tlbcfg[0] |= vcpu_e500->gtlb_params[1].ways << TLBnCFG_ASSOC_SHIFT; return 0; err: free_gtlb(vcpu_e500); kfree(vcpu_e500->tlb_refs[0]); kfree(vcpu_e500->tlb_refs[1]); return -1; } void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) { free_gtlb(vcpu_e500); kfree(vcpu_e500->h2g_tlb1_rmap); kfree(vcpu_e500->tlb_refs[0]); kfree(vcpu_e500->tlb_refs[1]); }