#include <linux/crypto.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/tcp.h> #include <linux/rcupdate.h> #include <linux/rculist.h> #include <net/inetpeer.h> #include <net/tcp.h> int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE; struct tcp_fastopen_context __rcu *tcp_fastopen_ctx; static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock); void tcp_fastopen_init_key_once(bool publish) { static u8 key[TCP_FASTOPEN_KEY_LENGTH]; /* tcp_fastopen_reset_cipher publishes the new context * atomically, so we allow this race happening here. * * All call sites of tcp_fastopen_cookie_gen also check * for a valid cookie, so this is an acceptable risk. */ if (net_get_random_once(key, sizeof(key)) && publish) tcp_fastopen_reset_cipher(key, sizeof(key)); } static void tcp_fastopen_ctx_free(struct rcu_head *head) { struct tcp_fastopen_context *ctx = container_of(head, struct tcp_fastopen_context, rcu); crypto_free_cipher(ctx->tfm); kfree(ctx); } int tcp_fastopen_reset_cipher(void *key, unsigned int len) { int err; struct tcp_fastopen_context *ctx, *octx; ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->tfm = crypto_alloc_cipher("aes", 0, 0); if (IS_ERR(ctx->tfm)) { err = PTR_ERR(ctx->tfm); error: kfree(ctx); pr_err("TCP: TFO aes cipher alloc error: %d\n", err); return err; } err = crypto_cipher_setkey(ctx->tfm, key, len); if (err) { pr_err("TCP: TFO cipher key error: %d\n", err); crypto_free_cipher(ctx->tfm); goto error; } memcpy(ctx->key, key, len); spin_lock(&tcp_fastopen_ctx_lock); octx = rcu_dereference_protected(tcp_fastopen_ctx, lockdep_is_held(&tcp_fastopen_ctx_lock)); rcu_assign_pointer(tcp_fastopen_ctx, ctx); spin_unlock(&tcp_fastopen_ctx_lock); if (octx) call_rcu(&octx->rcu, tcp_fastopen_ctx_free); return err; } static bool __tcp_fastopen_cookie_gen(const void *path, struct tcp_fastopen_cookie *foc) { struct tcp_fastopen_context *ctx; bool ok = false; rcu_read_lock(); ctx = rcu_dereference(tcp_fastopen_ctx); if (ctx) { crypto_cipher_encrypt_one(ctx->tfm, foc->val, path); foc->len = TCP_FASTOPEN_COOKIE_SIZE; ok = true; } rcu_read_unlock(); return ok; } /* Generate the fastopen cookie by doing aes128 encryption on both * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6 * addresses. For the longer IPv6 addresses use CBC-MAC. * * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE. */ static bool tcp_fastopen_cookie_gen(struct request_sock *req, struct sk_buff *syn, struct tcp_fastopen_cookie *foc) { if (req->rsk_ops->family == AF_INET) { const struct iphdr *iph = ip_hdr(syn); __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 }; return __tcp_fastopen_cookie_gen(path, foc); } #if IS_ENABLED(CONFIG_IPV6) if (req->rsk_ops->family == AF_INET6) { const struct ipv6hdr *ip6h = ipv6_hdr(syn); struct tcp_fastopen_cookie tmp; if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) { struct in6_addr *buf = (struct in6_addr *) tmp.val; int i; for (i = 0; i < 4; i++) buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i]; return __tcp_fastopen_cookie_gen(buf, foc); } } #endif return false; } /* If an incoming SYN or SYNACK frame contains a payload and/or FIN, * queue this additional data / FIN. */ void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb) { struct tcp_sock *tp = tcp_sk(sk); if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt) return; skb = skb_clone(skb, GFP_ATOMIC); if (!skb) return; skb_dst_drop(skb); /* segs_in has been initialized to 1 in tcp_create_openreq_child(). * Hence, reset segs_in to 0 before calling tcp_segs_in() * to avoid double counting. Also, tcp_segs_in() expects * skb->len to include the tcp_hdrlen. Hence, it should * be called before __skb_pull(). */ tp->segs_in = 0; tcp_segs_in(tp, skb); __skb_pull(skb, tcp_hdrlen(skb)); sk_forced_mem_schedule(sk, skb->truesize); skb_set_owner_r(skb, sk); TCP_SKB_CB(skb)->seq++; TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; __skb_queue_tail(&sk->sk_receive_queue, skb); tp->syn_data_acked = 1; /* u64_stats_update_begin(&tp->syncp) not needed here, * as we certainly are not changing upper 32bit value (0) */ tp->bytes_received = skb->len; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) tcp_fin(sk); } static struct sock *tcp_fastopen_create_child(struct sock *sk, struct sk_buff *skb, struct dst_entry *dst, struct request_sock *req) { struct tcp_sock *tp; struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; struct sock *child; bool own_req; req->num_retrans = 0; req->num_timeout = 0; req->sk = NULL; child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, NULL, &own_req); if (!child) return NULL; spin_lock(&queue->fastopenq.lock); queue->fastopenq.qlen++; spin_unlock(&queue->fastopenq.lock); /* Initialize the child socket. Have to fix some values to take * into account the child is a Fast Open socket and is created * only out of the bits carried in the SYN packet. */ tp = tcp_sk(child); tp->fastopen_rsk = req; tcp_rsk(req)->tfo_listener = true; /* RFC1323: The window in SYN & SYN/ACK segments is never * scaled. So correct it appropriately. */ tp->snd_wnd = ntohs(tcp_hdr(skb)->window); /* Activate the retrans timer so that SYNACK can be retransmitted. * The request socket is not added to the ehash * because it's been added to the accept queue directly. */ inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, TCP_TIMEOUT_INIT, TCP_RTO_MAX); atomic_set(&req->rsk_refcnt, 2); /* Now finish processing the fastopen child socket. */ inet_csk(child)->icsk_af_ops->rebuild_header(child); tcp_init_congestion_control(child); tcp_mtup_init(child); tcp_init_metrics(child); tcp_init_buffer_space(child); tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; tcp_fastopen_add_skb(child, skb); tcp_rsk(req)->rcv_nxt = tp->rcv_nxt; tp->rcv_wup = tp->rcv_nxt; /* tcp_conn_request() is sending the SYNACK, * and queues the child into listener accept queue. */ return child; } static bool tcp_fastopen_queue_check(struct sock *sk) { struct fastopen_queue *fastopenq; /* Make sure the listener has enabled fastopen, and we don't * exceed the max # of pending TFO requests allowed before trying * to validating the cookie in order to avoid burning CPU cycles * unnecessarily. * * XXX (TFO) - The implication of checking the max_qlen before * processing a cookie request is that clients can't differentiate * between qlen overflow causing Fast Open to be disabled * temporarily vs a server not supporting Fast Open at all. */ fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq; if (fastopenq->max_qlen == 0) return false; if (fastopenq->qlen >= fastopenq->max_qlen) { struct request_sock *req1; spin_lock(&fastopenq->lock); req1 = fastopenq->rskq_rst_head; if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) { __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); spin_unlock(&fastopenq->lock); return false; } fastopenq->rskq_rst_head = req1->dl_next; fastopenq->qlen--; spin_unlock(&fastopenq->lock); reqsk_put(req1); } return true; } /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) * may be updated and return the client in the SYN-ACK later. E.g., Fast Open * cookie request (foc->len == 0). */ struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct tcp_fastopen_cookie *foc, struct dst_entry *dst) { struct tcp_fastopen_cookie valid_foc = { .len = -1 }; bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; struct sock *child; if (foc->len == 0) /* Client requests a cookie */ NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD); if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) && (syn_data || foc->len >= 0) && tcp_fastopen_queue_check(sk))) { foc->len = -1; return NULL; } if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD)) goto fastopen; if (foc->len >= 0 && /* Client presents or requests a cookie */ tcp_fastopen_cookie_gen(req, skb, &valid_foc) && foc->len == TCP_FASTOPEN_COOKIE_SIZE && foc->len == valid_foc.len && !memcmp(foc->val, valid_foc.val, foc->len)) { /* Cookie is valid. Create a (full) child socket to accept * the data in SYN before returning a SYN-ACK to ack the * data. If we fail to create the socket, fall back and * ack the ISN only but includes the same cookie. * * Note: Data-less SYN with valid cookie is allowed to send * data in SYN_RECV state. */ fastopen: child = tcp_fastopen_create_child(sk, skb, dst, req); if (child) { foc->len = -1; NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE); return child; } NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL); } else if (foc->len > 0) /* Client presents an invalid cookie */ NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL); valid_foc.exp = foc->exp; *foc = valid_foc; return NULL; }