/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Copyright IBM Corp. 2007 * Copyright 2010-2011 Freescale Semiconductor, Inc. * * Authors: Hollis Blanchard * Christian Ehrhardt * Scott Wood * Varun Sethi */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "timing.h" #include "booke.h" #define CREATE_TRACE_POINTS #include "trace_booke.h" unsigned long kvmppc_booke_handlers; #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU struct kvm_stats_debugfs_item debugfs_entries[] = { { "mmio", VCPU_STAT(mmio_exits) }, { "sig", VCPU_STAT(signal_exits) }, { "itlb_r", VCPU_STAT(itlb_real_miss_exits) }, { "itlb_v", VCPU_STAT(itlb_virt_miss_exits) }, { "dtlb_r", VCPU_STAT(dtlb_real_miss_exits) }, { "dtlb_v", VCPU_STAT(dtlb_virt_miss_exits) }, { "sysc", VCPU_STAT(syscall_exits) }, { "isi", VCPU_STAT(isi_exits) }, { "dsi", VCPU_STAT(dsi_exits) }, { "inst_emu", VCPU_STAT(emulated_inst_exits) }, { "dec", VCPU_STAT(dec_exits) }, { "ext_intr", VCPU_STAT(ext_intr_exits) }, { "halt_wakeup", VCPU_STAT(halt_wakeup) }, { "doorbell", VCPU_STAT(dbell_exits) }, { "guest doorbell", VCPU_STAT(gdbell_exits) }, { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, { NULL } }; /* TODO: use vcpu_printf() */ void kvmppc_dump_vcpu(struct kvm_vcpu *vcpu) { int i; printk("pc: %08lx msr: %08llx\n", vcpu->arch.pc, vcpu->arch.shared->msr); printk("lr: %08lx ctr: %08lx\n", vcpu->arch.lr, vcpu->arch.ctr); printk("srr0: %08llx srr1: %08llx\n", vcpu->arch.shared->srr0, vcpu->arch.shared->srr1); printk("exceptions: %08lx\n", vcpu->arch.pending_exceptions); for (i = 0; i < 32; i += 4) { printk("gpr%02d: %08lx %08lx %08lx %08lx\n", i, kvmppc_get_gpr(vcpu, i), kvmppc_get_gpr(vcpu, i+1), kvmppc_get_gpr(vcpu, i+2), kvmppc_get_gpr(vcpu, i+3)); } } #ifdef CONFIG_SPE void kvmppc_vcpu_disable_spe(struct kvm_vcpu *vcpu) { preempt_disable(); enable_kernel_spe(); kvmppc_save_guest_spe(vcpu); vcpu->arch.shadow_msr &= ~MSR_SPE; preempt_enable(); } static void kvmppc_vcpu_enable_spe(struct kvm_vcpu *vcpu) { preempt_disable(); enable_kernel_spe(); kvmppc_load_guest_spe(vcpu); vcpu->arch.shadow_msr |= MSR_SPE; preempt_enable(); } static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu) { if (vcpu->arch.shared->msr & MSR_SPE) { if (!(vcpu->arch.shadow_msr & MSR_SPE)) kvmppc_vcpu_enable_spe(vcpu); } else if (vcpu->arch.shadow_msr & MSR_SPE) { kvmppc_vcpu_disable_spe(vcpu); } } #else static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu) { } #endif /* * Load up guest vcpu FP state if it's needed. * It also set the MSR_FP in thread so that host know * we're holding FPU, and then host can help to save * guest vcpu FP state if other threads require to use FPU. * This simulates an FP unavailable fault. * * It requires to be called with preemption disabled. */ static inline void kvmppc_load_guest_fp(struct kvm_vcpu *vcpu) { #ifdef CONFIG_PPC_FPU if (!(current->thread.regs->msr & MSR_FP)) { enable_kernel_fp(); load_fp_state(&vcpu->arch.fp); current->thread.fp_save_area = &vcpu->arch.fp; current->thread.regs->msr |= MSR_FP; } #endif } /* * Save guest vcpu FP state into thread. * It requires to be called with preemption disabled. */ static inline void kvmppc_save_guest_fp(struct kvm_vcpu *vcpu) { #ifdef CONFIG_PPC_FPU if (current->thread.regs->msr & MSR_FP) giveup_fpu(current); current->thread.fp_save_area = NULL; #endif } static void kvmppc_vcpu_sync_fpu(struct kvm_vcpu *vcpu) { #if defined(CONFIG_PPC_FPU) && !defined(CONFIG_KVM_BOOKE_HV) /* We always treat the FP bit as enabled from the host perspective, so only need to adjust the shadow MSR */ vcpu->arch.shadow_msr &= ~MSR_FP; vcpu->arch.shadow_msr |= vcpu->arch.shared->msr & MSR_FP; #endif } /* * Simulate AltiVec unavailable fault to load guest state * from thread to AltiVec unit. * It requires to be called with preemption disabled. */ static inline void kvmppc_load_guest_altivec(struct kvm_vcpu *vcpu) { #ifdef CONFIG_ALTIVEC if (cpu_has_feature(CPU_FTR_ALTIVEC)) { if (!(current->thread.regs->msr & MSR_VEC)) { enable_kernel_altivec(); load_vr_state(&vcpu->arch.vr); current->thread.vr_save_area = &vcpu->arch.vr; current->thread.regs->msr |= MSR_VEC; } } #endif } /* * Save guest vcpu AltiVec state into thread. * It requires to be called with preemption disabled. */ static inline void kvmppc_save_guest_altivec(struct kvm_vcpu *vcpu) { #ifdef CONFIG_ALTIVEC if (cpu_has_feature(CPU_FTR_ALTIVEC)) { if (current->thread.regs->msr & MSR_VEC) giveup_altivec(current); current->thread.vr_save_area = NULL; } #endif } static void kvmppc_vcpu_sync_debug(struct kvm_vcpu *vcpu) { /* Synchronize guest's desire to get debug interrupts into shadow MSR */ #ifndef CONFIG_KVM_BOOKE_HV vcpu->arch.shadow_msr &= ~MSR_DE; vcpu->arch.shadow_msr |= vcpu->arch.shared->msr & MSR_DE; #endif /* Force enable debug interrupts when user space wants to debug */ if (vcpu->guest_debug) { #ifdef CONFIG_KVM_BOOKE_HV /* * Since there is no shadow MSR, sync MSR_DE into the guest * visible MSR. */ vcpu->arch.shared->msr |= MSR_DE; #else vcpu->arch.shadow_msr |= MSR_DE; vcpu->arch.shared->msr &= ~MSR_DE; #endif } } /* * Helper function for "full" MSR writes. No need to call this if only * EE/CE/ME/DE/RI are changing. */ void kvmppc_set_msr(struct kvm_vcpu *vcpu, u32 new_msr) { u32 old_msr = vcpu->arch.shared->msr; #ifdef CONFIG_KVM_BOOKE_HV new_msr |= MSR_GS; #endif vcpu->arch.shared->msr = new_msr; kvmppc_mmu_msr_notify(vcpu, old_msr); kvmppc_vcpu_sync_spe(vcpu); kvmppc_vcpu_sync_fpu(vcpu); kvmppc_vcpu_sync_debug(vcpu); } static void kvmppc_booke_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int priority) { trace_kvm_booke_queue_irqprio(vcpu, priority); set_bit(priority, &vcpu->arch.pending_exceptions); } void kvmppc_core_queue_dtlb_miss(struct kvm_vcpu *vcpu, ulong dear_flags, ulong esr_flags) { vcpu->arch.queued_dear = dear_flags; vcpu->arch.queued_esr = esr_flags; kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DTLB_MISS); } void kvmppc_core_queue_data_storage(struct kvm_vcpu *vcpu, ulong dear_flags, ulong esr_flags) { vcpu->arch.queued_dear = dear_flags; vcpu->arch.queued_esr = esr_flags; kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DATA_STORAGE); } void kvmppc_core_queue_itlb_miss(struct kvm_vcpu *vcpu) { kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ITLB_MISS); } void kvmppc_core_queue_inst_storage(struct kvm_vcpu *vcpu, ulong esr_flags) { vcpu->arch.queued_esr = esr_flags; kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_INST_STORAGE); } static void kvmppc_core_queue_alignment(struct kvm_vcpu *vcpu, ulong dear_flags, ulong esr_flags) { vcpu->arch.queued_dear = dear_flags; vcpu->arch.queued_esr = esr_flags; kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALIGNMENT); } void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong esr_flags) { vcpu->arch.queued_esr = esr_flags; kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_PROGRAM); } void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu) { kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DECREMENTER); } int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu) { return test_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions); } void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu) { clear_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions); } void kvmppc_core_queue_external(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { unsigned int prio = BOOKE_IRQPRIO_EXTERNAL; if (irq->irq == KVM_INTERRUPT_SET_LEVEL) prio = BOOKE_IRQPRIO_EXTERNAL_LEVEL; kvmppc_booke_queue_irqprio(vcpu, prio); } void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu) { clear_bit(BOOKE_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions); clear_bit(BOOKE_IRQPRIO_EXTERNAL_LEVEL, &vcpu->arch.pending_exceptions); } static void kvmppc_core_queue_watchdog(struct kvm_vcpu *vcpu) { kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_WATCHDOG); } static void kvmppc_core_dequeue_watchdog(struct kvm_vcpu *vcpu) { clear_bit(BOOKE_IRQPRIO_WATCHDOG, &vcpu->arch.pending_exceptions); } static void set_guest_srr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1) { kvmppc_set_srr0(vcpu, srr0); kvmppc_set_srr1(vcpu, srr1); } static void set_guest_csrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1) { vcpu->arch.csrr0 = srr0; vcpu->arch.csrr1 = srr1; } static void set_guest_dsrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1) { if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) { vcpu->arch.dsrr0 = srr0; vcpu->arch.dsrr1 = srr1; } else { set_guest_csrr(vcpu, srr0, srr1); } } static void set_guest_mcsrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1) { vcpu->arch.mcsrr0 = srr0; vcpu->arch.mcsrr1 = srr1; } /* Deliver the interrupt of the corresponding priority, if possible. */ static int kvmppc_booke_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority) { int allowed = 0; ulong msr_mask = 0; bool update_esr = false, update_dear = false, update_epr = false; ulong crit_raw = vcpu->arch.shared->critical; ulong crit_r1 = kvmppc_get_gpr(vcpu, 1); bool crit; bool keep_irq = false; enum int_class int_class; ulong new_msr = vcpu->arch.shared->msr; /* Truncate crit indicators in 32 bit mode */ if (!(vcpu->arch.shared->msr & MSR_SF)) { crit_raw &= 0xffffffff; crit_r1 &= 0xffffffff; } /* Critical section when crit == r1 */ crit = (crit_raw == crit_r1); /* ... and we're in supervisor mode */ crit = crit && !(vcpu->arch.shared->msr & MSR_PR); if (priority == BOOKE_IRQPRIO_EXTERNAL_LEVEL) { priority = BOOKE_IRQPRIO_EXTERNAL; keep_irq = true; } if ((priority == BOOKE_IRQPRIO_EXTERNAL) && vcpu->arch.epr_flags) update_epr = true; switch (priority) { case BOOKE_IRQPRIO_DTLB_MISS: case BOOKE_IRQPRIO_DATA_STORAGE: case BOOKE_IRQPRIO_ALIGNMENT: update_dear = true; /* fall through */ case BOOKE_IRQPRIO_INST_STORAGE: case BOOKE_IRQPRIO_PROGRAM: update_esr = true; /* fall through */ case BOOKE_IRQPRIO_ITLB_MISS: case BOOKE_IRQPRIO_SYSCALL: case BOOKE_IRQPRIO_FP_UNAVAIL: #ifdef CONFIG_SPE_POSSIBLE case BOOKE_IRQPRIO_SPE_UNAVAIL: case BOOKE_IRQPRIO_SPE_FP_DATA: case BOOKE_IRQPRIO_SPE_FP_ROUND: #endif #ifdef CONFIG_ALTIVEC case BOOKE_IRQPRIO_ALTIVEC_UNAVAIL: case BOOKE_IRQPRIO_ALTIVEC_ASSIST: #endif case BOOKE_IRQPRIO_AP_UNAVAIL: allowed = 1; msr_mask = MSR_CE | MSR_ME | MSR_DE; int_class = INT_CLASS_NONCRIT; break; case BOOKE_IRQPRIO_WATCHDOG: case BOOKE_IRQPRIO_CRITICAL: case BOOKE_IRQPRIO_DBELL_CRIT: allowed = vcpu->arch.shared->msr & MSR_CE; allowed = allowed && !crit; msr_mask = MSR_ME; int_class = INT_CLASS_CRIT; break; case BOOKE_IRQPRIO_MACHINE_CHECK: allowed = vcpu->arch.shared->msr & MSR_ME; allowed = allowed && !crit; int_class = INT_CLASS_MC; break; case BOOKE_IRQPRIO_DECREMENTER: case BOOKE_IRQPRIO_FIT: keep_irq = true; /* fall through */ case BOOKE_IRQPRIO_EXTERNAL: case BOOKE_IRQPRIO_DBELL: allowed = vcpu->arch.shared->msr & MSR_EE; allowed = allowed && !crit; msr_mask = MSR_CE | MSR_ME | MSR_DE; int_class = INT_CLASS_NONCRIT; break; case BOOKE_IRQPRIO_DEBUG: allowed = vcpu->arch.shared->msr & MSR_DE; allowed = allowed && !crit; msr_mask = MSR_ME; if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) int_class = INT_CLASS_DBG; else int_class = INT_CLASS_CRIT; break; } if (allowed) { switch (int_class) { case INT_CLASS_NONCRIT: set_guest_srr(vcpu, vcpu->arch.pc, vcpu->arch.shared->msr); break; case INT_CLASS_CRIT: set_guest_csrr(vcpu, vcpu->arch.pc, vcpu->arch.shared->msr); break; case INT_CLASS_DBG: set_guest_dsrr(vcpu, vcpu->arch.pc, vcpu->arch.shared->msr); break; case INT_CLASS_MC: set_guest_mcsrr(vcpu, vcpu->arch.pc, vcpu->arch.shared->msr); break; } vcpu->arch.pc = vcpu->arch.ivpr | vcpu->arch.ivor[priority]; if (update_esr == true) kvmppc_set_esr(vcpu, vcpu->arch.queued_esr); if (update_dear == true) kvmppc_set_dar(vcpu, vcpu->arch.queued_dear); if (update_epr == true) { if (vcpu->arch.epr_flags & KVMPPC_EPR_USER) kvm_make_request(KVM_REQ_EPR_EXIT, vcpu); else if (vcpu->arch.epr_flags & KVMPPC_EPR_KERNEL) { BUG_ON(vcpu->arch.irq_type != KVMPPC_IRQ_MPIC); kvmppc_mpic_set_epr(vcpu); } } new_msr &= msr_mask; #if defined(CONFIG_64BIT) if (vcpu->arch.epcr & SPRN_EPCR_ICM) new_msr |= MSR_CM; #endif kvmppc_set_msr(vcpu, new_msr); if (!keep_irq) clear_bit(priority, &vcpu->arch.pending_exceptions); } #ifdef CONFIG_KVM_BOOKE_HV /* * If an interrupt is pending but masked, raise a guest doorbell * so that we are notified when the guest enables the relevant * MSR bit. */ if (vcpu->arch.pending_exceptions & BOOKE_IRQMASK_EE) kvmppc_set_pending_interrupt(vcpu, INT_CLASS_NONCRIT); if (vcpu->arch.pending_exceptions & BOOKE_IRQMASK_CE) kvmppc_set_pending_interrupt(vcpu, INT_CLASS_CRIT); if (vcpu->arch.pending_exceptions & BOOKE_IRQPRIO_MACHINE_CHECK) kvmppc_set_pending_interrupt(vcpu, INT_CLASS_MC); #endif return allowed; } /* * Return the number of jiffies until the next timeout. If the timeout is * longer than the NEXT_TIMER_MAX_DELTA, then return NEXT_TIMER_MAX_DELTA * because the larger value can break the timer APIs. */ static unsigned long watchdog_next_timeout(struct kvm_vcpu *vcpu) { u64 tb, wdt_tb, wdt_ticks = 0; u64 nr_jiffies = 0; u32 period = TCR_GET_WP(vcpu->arch.tcr); wdt_tb = 1ULL << (63 - period); tb = get_tb(); /* * The watchdog timeout will hapeen when TB bit corresponding * to watchdog will toggle from 0 to 1. */ if (tb & wdt_tb) wdt_ticks = wdt_tb; wdt_ticks += wdt_tb - (tb & (wdt_tb - 1)); /* Convert timebase ticks to jiffies */ nr_jiffies = wdt_ticks; if (do_div(nr_jiffies, tb_ticks_per_jiffy)) nr_jiffies++; return min_t(unsigned long long, nr_jiffies, NEXT_TIMER_MAX_DELTA); } static void arm_next_watchdog(struct kvm_vcpu *vcpu) { unsigned long nr_jiffies; unsigned long flags; /* * If TSR_ENW and TSR_WIS are not set then no need to exit to * userspace, so clear the KVM_REQ_WATCHDOG request. */ if ((vcpu->arch.tsr & (TSR_ENW | TSR_WIS)) != (TSR_ENW | TSR_WIS)) clear_bit(KVM_REQ_WATCHDOG, &vcpu->requests); spin_lock_irqsave(&vcpu->arch.wdt_lock, flags); nr_jiffies = watchdog_next_timeout(vcpu); /* * If the number of jiffies of watchdog timer >= NEXT_TIMER_MAX_DELTA * then do not run the watchdog timer as this can break timer APIs. */ if (nr_jiffies < NEXT_TIMER_MAX_DELTA) mod_timer(&vcpu->arch.wdt_timer, jiffies + nr_jiffies); else del_timer(&vcpu->arch.wdt_timer); spin_unlock_irqrestore(&vcpu->arch.wdt_lock, flags); } void kvmppc_watchdog_func(unsigned long data) { struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data; u32 tsr, new_tsr; int final; do { new_tsr = tsr = vcpu->arch.tsr; final = 0; /* Time out event */ if (tsr & TSR_ENW) { if (tsr & TSR_WIS) final = 1; else new_tsr = tsr | TSR_WIS; } else { new_tsr = tsr | TSR_ENW; } } while (cmpxchg(&vcpu->arch.tsr, tsr, new_tsr) != tsr); if (new_tsr & TSR_WIS) { smp_wmb(); kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); kvm_vcpu_kick(vcpu); } /* * If this is final watchdog expiry and some action is required * then exit to userspace. */ if (final && (vcpu->arch.tcr & TCR_WRC_MASK) && vcpu->arch.watchdog_enabled) { smp_wmb(); kvm_make_request(KVM_REQ_WATCHDOG, vcpu); kvm_vcpu_kick(vcpu); } /* * Stop running the watchdog timer after final expiration to * prevent the host from being flooded with timers if the * guest sets a short period. * Timers will resume when TSR/TCR is updated next time. */ if (!final) arm_next_watchdog(vcpu); } static void update_timer_ints(struct kvm_vcpu *vcpu) { if ((vcpu->arch.tcr & TCR_DIE) && (vcpu->arch.tsr & TSR_DIS)) kvmppc_core_queue_dec(vcpu); else kvmppc_core_dequeue_dec(vcpu); if ((vcpu->arch.tcr & TCR_WIE) && (vcpu->arch.tsr & TSR_WIS)) kvmppc_core_queue_watchdog(vcpu); else kvmppc_core_dequeue_watchdog(vcpu); } static void kvmppc_core_check_exceptions(struct kvm_vcpu *vcpu) { unsigned long *pending = &vcpu->arch.pending_exceptions; unsigned int priority; priority = __ffs(*pending); while (priority < BOOKE_IRQPRIO_MAX) { if (kvmppc_booke_irqprio_deliver(vcpu, priority)) break; priority = find_next_bit(pending, BITS_PER_BYTE * sizeof(*pending), priority + 1); } /* Tell the guest about our interrupt status */ vcpu->arch.shared->int_pending = !!*pending; } /* Check pending exceptions and deliver one, if possible. */ int kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu) { int r = 0; WARN_ON_ONCE(!irqs_disabled()); kvmppc_core_check_exceptions(vcpu); if (vcpu->requests) { /* Exception delivery raised request; start over */ return 1; } if (vcpu->arch.shared->msr & MSR_WE) { local_irq_enable(); kvm_vcpu_block(vcpu); clear_bit(KVM_REQ_UNHALT, &vcpu->requests); hard_irq_disable(); kvmppc_set_exit_type(vcpu, EMULATED_MTMSRWE_EXITS); r = 1; }; return r; } int kvmppc_core_check_requests(struct kvm_vcpu *vcpu) { int r = 1; /* Indicate we want to get back into the guest */ if (kvm_check_request(KVM_REQ_PENDING_TIMER, vcpu)) update_timer_ints(vcpu); #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) kvmppc_core_flush_tlb(vcpu); #endif if (kvm_check_request(KVM_REQ_WATCHDOG, vcpu)) { vcpu->run->exit_reason = KVM_EXIT_WATCHDOG; r = 0; } if (kvm_check_request(KVM_REQ_EPR_EXIT, vcpu)) { vcpu->run->epr.epr = 0; vcpu->arch.epr_needed = true; vcpu->run->exit_reason = KVM_EXIT_EPR; r = 0; } return r; } int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) { int ret, s; struct debug_reg debug; if (!vcpu->arch.sane) { kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return -EINVAL; } s = kvmppc_prepare_to_enter(vcpu); if (s <= 0) { ret = s; goto out; } /* interrupts now hard-disabled */ #ifdef CONFIG_PPC_FPU /* Save userspace FPU state in stack */ enable_kernel_fp(); /* * Since we can't trap on MSR_FP in GS-mode, we consider the guest * as always using the FPU. */ kvmppc_load_guest_fp(vcpu); #endif #ifdef CONFIG_ALTIVEC /* Save userspace AltiVec state in stack */ if (cpu_has_feature(CPU_FTR_ALTIVEC)) enable_kernel_altivec(); /* * Since we can't trap on MSR_VEC in GS-mode, we consider the guest * as always using the AltiVec. */ kvmppc_load_guest_altivec(vcpu); #endif /* Switch to guest debug context */ debug = vcpu->arch.dbg_reg; switch_booke_debug_regs(&debug); debug = current->thread.debug; current->thread.debug = vcpu->arch.dbg_reg; vcpu->arch.pgdir = current->mm->pgd; kvmppc_fix_ee_before_entry(); ret = __kvmppc_vcpu_run(kvm_run, vcpu); /* No need for kvm_guest_exit. It's done in handle_exit. We also get here with interrupts enabled. */ /* Switch back to user space debug context */ switch_booke_debug_regs(&debug); current->thread.debug = debug; #ifdef CONFIG_PPC_FPU kvmppc_save_guest_fp(vcpu); #endif #ifdef CONFIG_ALTIVEC kvmppc_save_guest_altivec(vcpu); #endif out: vcpu->mode = OUTSIDE_GUEST_MODE; return ret; } static int emulation_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) { enum emulation_result er; er = kvmppc_emulate_instruction(run, vcpu); switch (er) { case EMULATE_DONE: /* don't overwrite subtypes, just account kvm_stats */ kvmppc_account_exit_stat(vcpu, EMULATED_INST_EXITS); /* Future optimization: only reload non-volatiles if * they were actually modified by emulation. */ return RESUME_GUEST_NV; case EMULATE_AGAIN: return RESUME_GUEST; case EMULATE_FAIL: printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n", __func__, vcpu->arch.pc, vcpu->arch.last_inst); /* For debugging, encode the failing instruction and * report it to userspace. */ run->hw.hardware_exit_reason = ~0ULL << 32; run->hw.hardware_exit_reason |= vcpu->arch.last_inst; kvmppc_core_queue_program(vcpu, ESR_PIL); return RESUME_HOST; case EMULATE_EXIT_USER: return RESUME_HOST; default: BUG(); } } static int kvmppc_handle_debug(struct kvm_run *run, struct kvm_vcpu *vcpu) { struct debug_reg *dbg_reg = &(vcpu->arch.dbg_reg); u32 dbsr = vcpu->arch.dbsr; /* Clear guest dbsr (vcpu->arch.dbsr) */ vcpu->arch.dbsr = 0; run->debug.arch.status = 0; run->debug.arch.address = vcpu->arch.pc; if (dbsr & (DBSR_IAC1 | DBSR_IAC2 | DBSR_IAC3 | DBSR_IAC4)) { run->debug.arch.status |= KVMPPC_DEBUG_BREAKPOINT; } else { if (dbsr & (DBSR_DAC1W | DBSR_DAC2W)) run->debug.arch.status |= KVMPPC_DEBUG_WATCH_WRITE; else if (dbsr & (DBSR_DAC1R | DBSR_DAC2R)) run->debug.arch.status |= KVMPPC_DEBUG_WATCH_READ; if (dbsr & (DBSR_DAC1R | DBSR_DAC1W)) run->debug.arch.address = dbg_reg->dac1; else if (dbsr & (DBSR_DAC2R | DBSR_DAC2W)) run->debug.arch.address = dbg_reg->dac2; } return RESUME_HOST; } static void kvmppc_fill_pt_regs(struct pt_regs *regs) { ulong r1, ip, msr, lr; asm("mr %0, 1" : "=r"(r1)); asm("mflr %0" : "=r"(lr)); asm("mfmsr %0" : "=r"(msr)); asm("bl 1f; 1: mflr %0" : "=r"(ip)); memset(regs, 0, sizeof(*regs)); regs->gpr[1] = r1; regs->nip = ip; regs->msr = msr; regs->link = lr; } /* * For interrupts needed to be handled by host interrupt handlers, * corresponding host handler are called from here in similar way * (but not exact) as they are called from low level handler * (such as from arch/powerpc/kernel/head_fsl_booke.S). */ static void kvmppc_restart_interrupt(struct kvm_vcpu *vcpu, unsigned int exit_nr) { struct pt_regs regs; switch (exit_nr) { case BOOKE_INTERRUPT_EXTERNAL: kvmppc_fill_pt_regs(®s); do_IRQ(®s); break; case BOOKE_INTERRUPT_DECREMENTER: kvmppc_fill_pt_regs(®s); timer_interrupt(®s); break; #if defined(CONFIG_PPC_DOORBELL) case BOOKE_INTERRUPT_DOORBELL: kvmppc_fill_pt_regs(®s); doorbell_exception(®s); break; #endif case BOOKE_INTERRUPT_MACHINE_CHECK: /* FIXME */ break; case BOOKE_INTERRUPT_PERFORMANCE_MONITOR: kvmppc_fill_pt_regs(®s); performance_monitor_exception(®s); break; case BOOKE_INTERRUPT_WATCHDOG: kvmppc_fill_pt_regs(®s); #ifdef CONFIG_BOOKE_WDT WatchdogException(®s); #else unknown_exception(®s); #endif break; case BOOKE_INTERRUPT_CRITICAL: unknown_exception(®s); break; case BOOKE_INTERRUPT_DEBUG: /* Save DBSR before preemption is enabled */ vcpu->arch.dbsr = mfspr(SPRN_DBSR); kvmppc_clear_dbsr(); break; } } static int kvmppc_resume_inst_load(struct kvm_run *run, struct kvm_vcpu *vcpu, enum emulation_result emulated, u32 last_inst) { switch (emulated) { case EMULATE_AGAIN: return RESUME_GUEST; case EMULATE_FAIL: pr_debug("%s: load instruction from guest address %lx failed\n", __func__, vcpu->arch.pc); /* For debugging, encode the failing instruction and * report it to userspace. */ run->hw.hardware_exit_reason = ~0ULL << 32; run->hw.hardware_exit_reason |= last_inst; kvmppc_core_queue_program(vcpu, ESR_PIL); return RESUME_HOST; default: BUG(); } } /** * kvmppc_handle_exit * * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV) */ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned int exit_nr) { int r = RESUME_HOST; int s; int idx; u32 last_inst = KVM_INST_FETCH_FAILED; enum emulation_result emulated = EMULATE_DONE; /* update before a new last_exit_type is rewritten */ kvmppc_update_timing_stats(vcpu); /* restart interrupts if they were meant for the host */ kvmppc_restart_interrupt(vcpu, exit_nr); /* * get last instruction before beeing preempted * TODO: for e6500 check also BOOKE_INTERRUPT_LRAT_ERROR & ESR_DATA */ switch (exit_nr) { case BOOKE_INTERRUPT_DATA_STORAGE: case BOOKE_INTERRUPT_DTLB_MISS: case BOOKE_INTERRUPT_HV_PRIV: emulated = kvmppc_get_last_inst(vcpu, false, &last_inst); break; default: break; } local_irq_enable(); trace_kvm_exit(exit_nr, vcpu); kvm_guest_exit(); run->exit_reason = KVM_EXIT_UNKNOWN; run->ready_for_interrupt_injection = 1; if (emulated != EMULATE_DONE) { r = kvmppc_resume_inst_load(run, vcpu, emulated, last_inst); goto out; } switch (exit_nr) { case BOOKE_INTERRUPT_MACHINE_CHECK: printk("MACHINE CHECK: %lx\n", mfspr(SPRN_MCSR)); kvmppc_dump_vcpu(vcpu); /* For debugging, send invalid exit reason to user space */ run->hw.hardware_exit_reason = ~1ULL << 32; run->hw.hardware_exit_reason |= mfspr(SPRN_MCSR); r = RESUME_HOST; break; case BOOKE_INTERRUPT_EXTERNAL: kvmppc_account_exit(vcpu, EXT_INTR_EXITS); r = RESUME_GUEST; break; case BOOKE_INTERRUPT_DECREMENTER: kvmppc_account_exit(vcpu, DEC_EXITS); r = RESUME_GUEST; break; case BOOKE_INTERRUPT_WATCHDOG: r = RESUME_GUEST; break; case BOOKE_INTERRUPT_DOORBELL: kvmppc_account_exit(vcpu, DBELL_EXITS); r = RESUME_GUEST; break; case BOOKE_INTERRUPT_GUEST_DBELL_CRIT: kvmppc_account_exit(vcpu, GDBELL_EXITS); /* * We are here because there is a pending guest interrupt * which could not be delivered as MSR_CE or MSR_ME was not * set. Once we break from here we will retry delivery. */ r = RESUME_GUEST; break; case BOOKE_INTERRUPT_GUEST_DBELL: kvmppc_account_exit(vcpu, GDBELL_EXITS); /* * We are here because there is a pending guest interrupt * which could not be delivered as MSR_EE was not set. Once * we break from here we will retry delivery. */ r = RESUME_GUEST; break; case BOOKE_INTERRUPT_PERFORMANCE_MONITOR: r = RESUME_GUEST; break; case BOOKE_INTERRUPT_HV_PRIV: r = emulation_exit(run, vcpu); break; case BOOKE_INTERRUPT_PROGRAM: if (vcpu->arch.shared->msr & (MSR_PR | MSR_GS)) { /* * Program traps generated by user-level software must * be handled by the guest kernel. * * In GS mode, hypervisor privileged instructions trap * on BOOKE_INTERRUPT_HV_PRIV, not here, so these are * actual program interrupts, handled by the guest. */ kvmppc_core_queue_program(vcpu, vcpu->arch.fault_esr); r = RESUME_GUEST; kvmppc_account_exit(vcpu, USR_PR_INST); break; } r = emulation_exit(run, vcpu); break; case BOOKE_INTERRUPT_FP_UNAVAIL: kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_FP_UNAVAIL); kvmppc_account_exit(vcpu, FP_UNAVAIL); r = RESUME_GUEST; break; #ifdef CONFIG_SPE case BOOKE_INTERRUPT_SPE_UNAVAIL: { if (vcpu->arch.shared->msr & MSR_SPE) kvmppc_vcpu_enable_spe(vcpu); else kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_UNAVAIL); r = RESUME_GUEST; break; } case BOOKE_INTERRUPT_SPE_FP_DATA: kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_DATA); r = RESUME_GUEST; break; case BOOKE_INTERRUPT_SPE_FP_ROUND: kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_ROUND); r = RESUME_GUEST; break; #elif defined(CONFIG_SPE_POSSIBLE) case BOOKE_INTERRUPT_SPE_UNAVAIL: /* * Guest wants SPE, but host kernel doesn't support it. Send * an "unimplemented operation" program check to the guest. */ kvmppc_core_queue_program(vcpu, ESR_PUO | ESR_SPV); r = RESUME_GUEST; break; /* * These really should never happen without CONFIG_SPE, * as we should never enable the real MSR[SPE] in the guest. */ case BOOKE_INTERRUPT_SPE_FP_DATA: case BOOKE_INTERRUPT_SPE_FP_ROUND: printk(KERN_CRIT "%s: unexpected SPE interrupt %u at %08lx\n", __func__, exit_nr, vcpu->arch.pc); run->hw.hardware_exit_reason = exit_nr; r = RESUME_HOST; break; #endif /* CONFIG_SPE_POSSIBLE */ /* * On cores with Vector category, KVM is loaded only if CONFIG_ALTIVEC, * see kvmppc_core_check_processor_compat(). */ #ifdef CONFIG_ALTIVEC case BOOKE_INTERRUPT_ALTIVEC_UNAVAIL: kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALTIVEC_UNAVAIL); r = RESUME_GUEST; break; case BOOKE_INTERRUPT_ALTIVEC_ASSIST: kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALTIVEC_ASSIST); r = RESUME_GUEST; break; #endif case BOOKE_INTERRUPT_DATA_STORAGE: kvmppc_core_queue_data_storage(vcpu, vcpu->arch.fault_dear, vcpu->arch.fault_esr); kvmppc_account_exit(vcpu, DSI_EXITS); r = RESUME_GUEST; break; case BOOKE_INTERRUPT_INST_STORAGE: kvmppc_core_queue_inst_storage(vcpu, vcpu->arch.fault_esr); kvmppc_account_exit(vcpu, ISI_EXITS); r = RESUME_GUEST; break; case BOOKE_INTERRUPT_ALIGNMENT: kvmppc_core_queue_alignment(vcpu, vcpu->arch.fault_dear, vcpu->arch.fault_esr); r = RESUME_GUEST; break; #ifdef CONFIG_KVM_BOOKE_HV case BOOKE_INTERRUPT_HV_SYSCALL: if (!(vcpu->arch.shared->msr & MSR_PR)) { kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); } else { /* * hcall from guest userspace -- send privileged * instruction program check. */ kvmppc_core_queue_program(vcpu, ESR_PPR); } r = RESUME_GUEST; break; #else case BOOKE_INTERRUPT_SYSCALL: if (!(vcpu->arch.shared->msr & MSR_PR) && (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { /* KVM PV hypercalls */ kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); r = RESUME_GUEST; } else { /* Guest syscalls */ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SYSCALL); } kvmppc_account_exit(vcpu, SYSCALL_EXITS); r = RESUME_GUEST; break; #endif case BOOKE_INTERRUPT_DTLB_MISS: { unsigned long eaddr = vcpu->arch.fault_dear; int gtlb_index; gpa_t gpaddr; gfn_t gfn; #ifdef CONFIG_KVM_E500V2 if (!(vcpu->arch.shared->msr & MSR_PR) && (eaddr & PAGE_MASK) == vcpu->arch.magic_page_ea) { kvmppc_map_magic(vcpu); kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS); r = RESUME_GUEST; break; } #endif /* Check the guest TLB. */ gtlb_index = kvmppc_mmu_dtlb_index(vcpu, eaddr); if (gtlb_index < 0) { /* The guest didn't have a mapping for it. */ kvmppc_core_queue_dtlb_miss(vcpu, vcpu->arch.fault_dear, vcpu->arch.fault_esr); kvmppc_mmu_dtlb_miss(vcpu); kvmppc_account_exit(vcpu, DTLB_REAL_MISS_EXITS); r = RESUME_GUEST; break; } idx = srcu_read_lock(&vcpu->kvm->srcu); gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr); gfn = gpaddr >> PAGE_SHIFT; if (kvm_is_visible_gfn(vcpu->kvm, gfn)) { /* The guest TLB had a mapping, but the shadow TLB * didn't, and it is RAM. This could be because: * a) the entry is mapping the host kernel, or * b) the guest used a large mapping which we're faking * Either way, we need to satisfy the fault without * invoking the guest. */ kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index); kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS); r = RESUME_GUEST; } else { /* Guest has mapped and accessed a page which is not * actually RAM. */ vcpu->arch.paddr_accessed = gpaddr; vcpu->arch.vaddr_accessed = eaddr; r = kvmppc_emulate_mmio(run, vcpu); kvmppc_account_exit(vcpu, MMIO_EXITS); } srcu_read_unlock(&vcpu->kvm->srcu, idx); break; } case BOOKE_INTERRUPT_ITLB_MISS: { unsigned long eaddr = vcpu->arch.pc; gpa_t gpaddr; gfn_t gfn; int gtlb_index; r = RESUME_GUEST; /* Check the guest TLB. */ gtlb_index = kvmppc_mmu_itlb_index(vcpu, eaddr); if (gtlb_index < 0) { /* The guest didn't have a mapping for it. */ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ITLB_MISS); kvmppc_mmu_itlb_miss(vcpu); kvmppc_account_exit(vcpu, ITLB_REAL_MISS_EXITS); break; } kvmppc_account_exit(vcpu, ITLB_VIRT_MISS_EXITS); idx = srcu_read_lock(&vcpu->kvm->srcu); gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr); gfn = gpaddr >> PAGE_SHIFT; if (kvm_is_visible_gfn(vcpu->kvm, gfn)) { /* The guest TLB had a mapping, but the shadow TLB * didn't. This could be because: * a) the entry is mapping the host kernel, or * b) the guest used a large mapping which we're faking * Either way, we need to satisfy the fault without * invoking the guest. */ kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index); } else { /* Guest mapped and leaped at non-RAM! */ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_MACHINE_CHECK); } srcu_read_unlock(&vcpu->kvm->srcu, idx); break; } case BOOKE_INTERRUPT_DEBUG: { r = kvmppc_handle_debug(run, vcpu); if (r == RESUME_HOST) run->exit_reason = KVM_EXIT_DEBUG; kvmppc_account_exit(vcpu, DEBUG_EXITS); break; } default: printk(KERN_EMERG "exit_nr %d\n", exit_nr); BUG(); } out: /* * To avoid clobbering exit_reason, only check for signals if we * aren't already exiting to userspace for some other reason. */ if (!(r & RESUME_HOST)) { s = kvmppc_prepare_to_enter(vcpu); if (s <= 0) r = (s << 2) | RESUME_HOST | (r & RESUME_FLAG_NV); else { /* interrupts now hard-disabled */ kvmppc_fix_ee_before_entry(); kvmppc_load_guest_fp(vcpu); kvmppc_load_guest_altivec(vcpu); } } return r; } static void kvmppc_set_tsr(struct kvm_vcpu *vcpu, u32 new_tsr) { u32 old_tsr = vcpu->arch.tsr; vcpu->arch.tsr = new_tsr; if ((old_tsr ^ vcpu->arch.tsr) & (TSR_ENW | TSR_WIS)) arm_next_watchdog(vcpu); update_timer_ints(vcpu); } /* Initial guest state: 16MB mapping 0 -> 0, PC = 0, MSR = 0, R1 = 16MB */ int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) { int i; int r; vcpu->arch.pc = 0; vcpu->arch.shared->pir = vcpu->vcpu_id; kvmppc_set_gpr(vcpu, 1, (16<<20) - 8); /* -8 for the callee-save LR slot */ kvmppc_set_msr(vcpu, 0); #ifndef CONFIG_KVM_BOOKE_HV vcpu->arch.shadow_msr = MSR_USER | MSR_IS | MSR_DS; vcpu->arch.shadow_pid = 1; vcpu->arch.shared->msr = 0; #endif /* Eye-catching numbers so we know if the guest takes an interrupt * before it's programmed its own IVPR/IVORs. */ vcpu->arch.ivpr = 0x55550000; for (i = 0; i < BOOKE_IRQPRIO_MAX; i++) vcpu->arch.ivor[i] = 0x7700 | i * 4; kvmppc_init_timing_stats(vcpu); r = kvmppc_core_vcpu_setup(vcpu); kvmppc_sanity_check(vcpu); return r; } int kvmppc_subarch_vcpu_init(struct kvm_vcpu *vcpu) { /* setup watchdog timer once */ spin_lock_init(&vcpu->arch.wdt_lock); setup_timer(&vcpu->arch.wdt_timer, kvmppc_watchdog_func, (unsigned long)vcpu); return 0; } void kvmppc_subarch_vcpu_uninit(struct kvm_vcpu *vcpu) { del_timer_sync(&vcpu->arch.wdt_timer); } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { int i; regs->pc = vcpu->arch.pc; regs->cr = kvmppc_get_cr(vcpu); regs->ctr = vcpu->arch.ctr; regs->lr = vcpu->arch.lr; regs->xer = kvmppc_get_xer(vcpu); regs->msr = vcpu->arch.shared->msr; regs->srr0 = kvmppc_get_srr0(vcpu); regs->srr1 = kvmppc_get_srr1(vcpu); regs->pid = vcpu->arch.pid; regs->sprg0 = kvmppc_get_sprg0(vcpu); regs->sprg1 = kvmppc_get_sprg1(vcpu); regs->sprg2 = kvmppc_get_sprg2(vcpu); regs->sprg3 = kvmppc_get_sprg3(vcpu); regs->sprg4 = kvmppc_get_sprg4(vcpu); regs->sprg5 = kvmppc_get_sprg5(vcpu); regs->sprg6 = kvmppc_get_sprg6(vcpu); regs->sprg7 = kvmppc_get_sprg7(vcpu); for (i = 0; i < ARRAY_SIZE(regs->gpr); i++) regs->gpr[i] = kvmppc_get_gpr(vcpu, i); return 0; } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { int i; vcpu->arch.pc = regs->pc; kvmppc_set_cr(vcpu, regs->cr); vcpu->arch.ctr = regs->ctr; vcpu->arch.lr = regs->lr; kvmppc_set_xer(vcpu, regs->xer); kvmppc_set_msr(vcpu, regs->msr); kvmppc_set_srr0(vcpu, regs->srr0); kvmppc_set_srr1(vcpu, regs->srr1); kvmppc_set_pid(vcpu, regs->pid); kvmppc_set_sprg0(vcpu, regs->sprg0); kvmppc_set_sprg1(vcpu, regs->sprg1); kvmppc_set_sprg2(vcpu, regs->sprg2); kvmppc_set_sprg3(vcpu, regs->sprg3); kvmppc_set_sprg4(vcpu, regs->sprg4); kvmppc_set_sprg5(vcpu, regs->sprg5); kvmppc_set_sprg6(vcpu, regs->sprg6); kvmppc_set_sprg7(vcpu, regs->sprg7); for (i = 0; i < ARRAY_SIZE(regs->gpr); i++) kvmppc_set_gpr(vcpu, i, regs->gpr[i]); return 0; } static void get_sregs_base(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { u64 tb = get_tb(); sregs->u.e.features |= KVM_SREGS_E_BASE; sregs->u.e.csrr0 = vcpu->arch.csrr0; sregs->u.e.csrr1 = vcpu->arch.csrr1; sregs->u.e.mcsr = vcpu->arch.mcsr; sregs->u.e.esr = kvmppc_get_esr(vcpu); sregs->u.e.dear = kvmppc_get_dar(vcpu); sregs->u.e.tsr = vcpu->arch.tsr; sregs->u.e.tcr = vcpu->arch.tcr; sregs->u.e.dec = kvmppc_get_dec(vcpu, tb); sregs->u.e.tb = tb; sregs->u.e.vrsave = vcpu->arch.vrsave; } static int set_sregs_base(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { if (!(sregs->u.e.features & KVM_SREGS_E_BASE)) return 0; vcpu->arch.csrr0 = sregs->u.e.csrr0; vcpu->arch.csrr1 = sregs->u.e.csrr1; vcpu->arch.mcsr = sregs->u.e.mcsr; kvmppc_set_esr(vcpu, sregs->u.e.esr); kvmppc_set_dar(vcpu, sregs->u.e.dear); vcpu->arch.vrsave = sregs->u.e.vrsave; kvmppc_set_tcr(vcpu, sregs->u.e.tcr); if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_DEC) { vcpu->arch.dec = sregs->u.e.dec; kvmppc_emulate_dec(vcpu); } if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_TSR) kvmppc_set_tsr(vcpu, sregs->u.e.tsr); return 0; } static void get_sregs_arch206(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { sregs->u.e.features |= KVM_SREGS_E_ARCH206; sregs->u.e.pir = vcpu->vcpu_id; sregs->u.e.mcsrr0 = vcpu->arch.mcsrr0; sregs->u.e.mcsrr1 = vcpu->arch.mcsrr1; sregs->u.e.decar = vcpu->arch.decar; sregs->u.e.ivpr = vcpu->arch.ivpr; } static int set_sregs_arch206(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { if (!(sregs->u.e.features & KVM_SREGS_E_ARCH206)) return 0; if (sregs->u.e.pir != vcpu->vcpu_id) return -EINVAL; vcpu->arch.mcsrr0 = sregs->u.e.mcsrr0; vcpu->arch.mcsrr1 = sregs->u.e.mcsrr1; vcpu->arch.decar = sregs->u.e.decar; vcpu->arch.ivpr = sregs->u.e.ivpr; return 0; } int kvmppc_get_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { sregs->u.e.features |= KVM_SREGS_E_IVOR; sregs->u.e.ivor_low[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL]; sregs->u.e.ivor_low[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK]; sregs->u.e.ivor_low[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE]; sregs->u.e.ivor_low[3] = vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE]; sregs->u.e.ivor_low[4] = vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL]; sregs->u.e.ivor_low[5] = vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT]; sregs->u.e.ivor_low[6] = vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM]; sregs->u.e.ivor_low[7] = vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL]; sregs->u.e.ivor_low[8] = vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL]; sregs->u.e.ivor_low[9] = vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL]; sregs->u.e.ivor_low[10] = vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER]; sregs->u.e.ivor_low[11] = vcpu->arch.ivor[BOOKE_IRQPRIO_FIT]; sregs->u.e.ivor_low[12] = vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG]; sregs->u.e.ivor_low[13] = vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS]; sregs->u.e.ivor_low[14] = vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS]; sregs->u.e.ivor_low[15] = vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG]; return 0; } int kvmppc_set_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { if (!(sregs->u.e.features & KVM_SREGS_E_IVOR)) return 0; vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL] = sregs->u.e.ivor_low[0]; vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK] = sregs->u.e.ivor_low[1]; vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE] = sregs->u.e.ivor_low[2]; vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE] = sregs->u.e.ivor_low[3]; vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL] = sregs->u.e.ivor_low[4]; vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT] = sregs->u.e.ivor_low[5]; vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM] = sregs->u.e.ivor_low[6]; vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL] = sregs->u.e.ivor_low[7]; vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL] = sregs->u.e.ivor_low[8]; vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL] = sregs->u.e.ivor_low[9]; vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER] = sregs->u.e.ivor_low[10]; vcpu->arch.ivor[BOOKE_IRQPRIO_FIT] = sregs->u.e.ivor_low[11]; vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG] = sregs->u.e.ivor_low[12]; vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS] = sregs->u.e.ivor_low[13]; vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS] = sregs->u.e.ivor_low[14]; vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG] = sregs->u.e.ivor_low[15]; return 0; } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { sregs->pvr = vcpu->arch.pvr; get_sregs_base(vcpu, sregs); get_sregs_arch206(vcpu, sregs); return vcpu->kvm->arch.kvm_ops->get_sregs(vcpu, sregs); } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int ret; if (vcpu->arch.pvr != sregs->pvr) return -EINVAL; ret = set_sregs_base(vcpu, sregs); if (ret < 0) return ret; ret = set_sregs_arch206(vcpu, sregs); if (ret < 0) return ret; return vcpu->kvm->arch.kvm_ops->set_sregs(vcpu, sregs); } int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) { int r = 0; union kvmppc_one_reg val; int size; size = one_reg_size(reg->id); if (size > sizeof(val)) return -EINVAL; switch (reg->id) { case KVM_REG_PPC_IAC1: val = get_reg_val(reg->id, vcpu->arch.dbg_reg.iac1); break; case KVM_REG_PPC_IAC2: val = get_reg_val(reg->id, vcpu->arch.dbg_reg.iac2); break; #if CONFIG_PPC_ADV_DEBUG_IACS > 2 case KVM_REG_PPC_IAC3: val = get_reg_val(reg->id, vcpu->arch.dbg_reg.iac3); break; case KVM_REG_PPC_IAC4: val = get_reg_val(reg->id, vcpu->arch.dbg_reg.iac4); break; #endif case KVM_REG_PPC_DAC1: val = get_reg_val(reg->id, vcpu->arch.dbg_reg.dac1); break; case KVM_REG_PPC_DAC2: val = get_reg_val(reg->id, vcpu->arch.dbg_reg.dac2); break; case KVM_REG_PPC_DBSR: val = get_reg_val(reg->id, vcpu->arch.dbsr); break; case KVM_REG_PPC_EPR: { u32 epr = kvmppc_get_epr(vcpu); val = get_reg_val(reg->id, epr); break; } #if defined(CONFIG_64BIT) case KVM_REG_PPC_EPCR: val = get_reg_val(reg->id, vcpu->arch.epcr); break; #endif case KVM_REG_PPC_TCR: val = get_reg_val(reg->id, vcpu->arch.tcr); break; case KVM_REG_PPC_TSR: val = get_reg_val(reg->id, vcpu->arch.tsr); break; case KVM_REG_PPC_DEBUG_INST: val = get_reg_val(reg->id, KVMPPC_INST_EHPRIV_DEBUG); break; case KVM_REG_PPC_VRSAVE: val = get_reg_val(reg->id, vcpu->arch.vrsave); break; default: r = vcpu->kvm->arch.kvm_ops->get_one_reg(vcpu, reg->id, &val); break; } if (r) return r; if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) r = -EFAULT; return r; } int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) { int r = 0; union kvmppc_one_reg val; int size; size = one_reg_size(reg->id); if (size > sizeof(val)) return -EINVAL; if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) return -EFAULT; switch (reg->id) { case KVM_REG_PPC_IAC1: vcpu->arch.dbg_reg.iac1 = set_reg_val(reg->id, val); break; case KVM_REG_PPC_IAC2: vcpu->arch.dbg_reg.iac2 = set_reg_val(reg->id, val); break; #if CONFIG_PPC_ADV_DEBUG_IACS > 2 case KVM_REG_PPC_IAC3: vcpu->arch.dbg_reg.iac3 = set_reg_val(reg->id, val); break; case KVM_REG_PPC_IAC4: vcpu->arch.dbg_reg.iac4 = set_reg_val(reg->id, val); break; #endif case KVM_REG_PPC_DAC1: vcpu->arch.dbg_reg.dac1 = set_reg_val(reg->id, val); break; case KVM_REG_PPC_DAC2: vcpu->arch.dbg_reg.dac2 = set_reg_val(reg->id, val); break; case KVM_REG_PPC_DBSR: vcpu->arch.dbsr = set_reg_val(reg->id, val); break; case KVM_REG_PPC_EPR: { u32 new_epr = set_reg_val(reg->id, val); kvmppc_set_epr(vcpu, new_epr); break; } #if defined(CONFIG_64BIT) case KVM_REG_PPC_EPCR: { u32 new_epcr = set_reg_val(reg->id, val); kvmppc_set_epcr(vcpu, new_epcr); break; } #endif case KVM_REG_PPC_OR_TSR: { u32 tsr_bits = set_reg_val(reg->id, val); kvmppc_set_tsr_bits(vcpu, tsr_bits); break; } case KVM_REG_PPC_CLEAR_TSR: { u32 tsr_bits = set_reg_val(reg->id, val); kvmppc_clr_tsr_bits(vcpu, tsr_bits); break; } case KVM_REG_PPC_TSR: { u32 tsr = set_reg_val(reg->id, val); kvmppc_set_tsr(vcpu, tsr); break; } case KVM_REG_PPC_TCR: { u32 tcr = set_reg_val(reg->id, val); kvmppc_set_tcr(vcpu, tcr); break; } case KVM_REG_PPC_VRSAVE: vcpu->arch.vrsave = set_reg_val(reg->id, val); break; default: r = vcpu->kvm->arch.kvm_ops->set_one_reg(vcpu, reg->id, &val); break; } return r; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -ENOTSUPP; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -ENOTSUPP; } int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { int r; r = kvmppc_core_vcpu_translate(vcpu, tr); return r; } int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { return -ENOTSUPP; } void kvmppc_core_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { } int kvmppc_core_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, unsigned long npages) { return 0; } int kvmppc_core_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, struct kvm_userspace_memory_region *mem) { return 0; } void kvmppc_core_commit_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old) { } void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot) { } void kvmppc_set_epcr(struct kvm_vcpu *vcpu, u32 new_epcr) { #if defined(CONFIG_64BIT) vcpu->arch.epcr = new_epcr; #ifdef CONFIG_KVM_BOOKE_HV vcpu->arch.shadow_epcr &= ~SPRN_EPCR_GICM; if (vcpu->arch.epcr & SPRN_EPCR_ICM) vcpu->arch.shadow_epcr |= SPRN_EPCR_GICM; #endif #endif } void kvmppc_set_tcr(struct kvm_vcpu *vcpu, u32 new_tcr) { vcpu->arch.tcr = new_tcr; arm_next_watchdog(vcpu); update_timer_ints(vcpu); } void kvmppc_set_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits) { set_bits(tsr_bits, &vcpu->arch.tsr); smp_wmb(); kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); kvm_vcpu_kick(vcpu); } void kvmppc_clr_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits) { clear_bits(tsr_bits, &vcpu->arch.tsr); /* * We may have stopped the watchdog due to * being stuck on final expiration. */ if (tsr_bits & (TSR_ENW | TSR_WIS)) arm_next_watchdog(vcpu); update_timer_ints(vcpu); } void kvmppc_decrementer_func(unsigned long data) { struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data; if (vcpu->arch.tcr & TCR_ARE) { vcpu->arch.dec = vcpu->arch.decar; kvmppc_emulate_dec(vcpu); } kvmppc_set_tsr_bits(vcpu, TSR_DIS); } static int kvmppc_booke_add_breakpoint(struct debug_reg *dbg_reg, uint64_t addr, int index) { switch (index) { case 0: dbg_reg->dbcr0 |= DBCR0_IAC1; dbg_reg->iac1 = addr; break; case 1: dbg_reg->dbcr0 |= DBCR0_IAC2; dbg_reg->iac2 = addr; break; #if CONFIG_PPC_ADV_DEBUG_IACS > 2 case 2: dbg_reg->dbcr0 |= DBCR0_IAC3; dbg_reg->iac3 = addr; break; case 3: dbg_reg->dbcr0 |= DBCR0_IAC4; dbg_reg->iac4 = addr; break; #endif default: return -EINVAL; } dbg_reg->dbcr0 |= DBCR0_IDM; return 0; } static int kvmppc_booke_add_watchpoint(struct debug_reg *dbg_reg, uint64_t addr, int type, int index) { switch (index) { case 0: if (type & KVMPPC_DEBUG_WATCH_READ) dbg_reg->dbcr0 |= DBCR0_DAC1R; if (type & KVMPPC_DEBUG_WATCH_WRITE) dbg_reg->dbcr0 |= DBCR0_DAC1W; dbg_reg->dac1 = addr; break; case 1: if (type & KVMPPC_DEBUG_WATCH_READ) dbg_reg->dbcr0 |= DBCR0_DAC2R; if (type & KVMPPC_DEBUG_WATCH_WRITE) dbg_reg->dbcr0 |= DBCR0_DAC2W; dbg_reg->dac2 = addr; break; default: return -EINVAL; } dbg_reg->dbcr0 |= DBCR0_IDM; return 0; } void kvm_guest_protect_msr(struct kvm_vcpu *vcpu, ulong prot_bitmap, bool set) { /* XXX: Add similar MSR protection for BookE-PR */ #ifdef CONFIG_KVM_BOOKE_HV BUG_ON(prot_bitmap & ~(MSRP_UCLEP | MSRP_DEP | MSRP_PMMP)); if (set) { if (prot_bitmap & MSR_UCLE) vcpu->arch.shadow_msrp |= MSRP_UCLEP; if (prot_bitmap & MSR_DE) vcpu->arch.shadow_msrp |= MSRP_DEP; if (prot_bitmap & MSR_PMM) vcpu->arch.shadow_msrp |= MSRP_PMMP; } else { if (prot_bitmap & MSR_UCLE) vcpu->arch.shadow_msrp &= ~MSRP_UCLEP; if (prot_bitmap & MSR_DE) vcpu->arch.shadow_msrp &= ~MSRP_DEP; if (prot_bitmap & MSR_PMM) vcpu->arch.shadow_msrp &= ~MSRP_PMMP; } #endif } int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, enum xlate_instdata xlid, enum xlate_readwrite xlrw, struct kvmppc_pte *pte) { int gtlb_index; gpa_t gpaddr; #ifdef CONFIG_KVM_E500V2 if (!(vcpu->arch.shared->msr & MSR_PR) && (eaddr & PAGE_MASK) == vcpu->arch.magic_page_ea) { pte->eaddr = eaddr; pte->raddr = (vcpu->arch.magic_page_pa & PAGE_MASK) | (eaddr & ~PAGE_MASK); pte->vpage = eaddr >> PAGE_SHIFT; pte->may_read = true; pte->may_write = true; pte->may_execute = true; return 0; } #endif /* Check the guest TLB. */ switch (xlid) { case XLATE_INST: gtlb_index = kvmppc_mmu_itlb_index(vcpu, eaddr); break; case XLATE_DATA: gtlb_index = kvmppc_mmu_dtlb_index(vcpu, eaddr); break; default: BUG(); } /* Do we have a TLB entry at all? */ if (gtlb_index < 0) return -ENOENT; gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr); pte->eaddr = eaddr; pte->raddr = (gpaddr & PAGE_MASK) | (eaddr & ~PAGE_MASK); pte->vpage = eaddr >> PAGE_SHIFT; /* XXX read permissions from the guest TLB */ pte->may_read = true; pte->may_write = true; pte->may_execute = true; return 0; } int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { struct debug_reg *dbg_reg; int n, b = 0, w = 0; if (!(dbg->control & KVM_GUESTDBG_ENABLE)) { vcpu->arch.dbg_reg.dbcr0 = 0; vcpu->guest_debug = 0; kvm_guest_protect_msr(vcpu, MSR_DE, false); return 0; } kvm_guest_protect_msr(vcpu, MSR_DE, true); vcpu->guest_debug = dbg->control; vcpu->arch.dbg_reg.dbcr0 = 0; if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) vcpu->arch.dbg_reg.dbcr0 |= DBCR0_IDM | DBCR0_IC; /* Code below handles only HW breakpoints */ dbg_reg = &(vcpu->arch.dbg_reg); #ifdef CONFIG_KVM_BOOKE_HV /* * On BookE-HV (e500mc) the guest is always executed with MSR.GS=1 * DBCR1 and DBCR2 are set to trigger debug events when MSR.PR is 0 */ dbg_reg->dbcr1 = 0; dbg_reg->dbcr2 = 0; #else /* * On BookE-PR (e500v2) the guest is always executed with MSR.PR=1 * We set DBCR1 and DBCR2 to only trigger debug events when MSR.PR * is set. */ dbg_reg->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | DBCR1_IAC3US | DBCR1_IAC4US; dbg_reg->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; #endif if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) return 0; for (n = 0; n < (KVMPPC_BOOKE_IAC_NUM + KVMPPC_BOOKE_DAC_NUM); n++) { uint64_t addr = dbg->arch.bp[n].addr; uint32_t type = dbg->arch.bp[n].type; if (type == KVMPPC_DEBUG_NONE) continue; if (type & !(KVMPPC_DEBUG_WATCH_READ | KVMPPC_DEBUG_WATCH_WRITE | KVMPPC_DEBUG_BREAKPOINT)) return -EINVAL; if (type & KVMPPC_DEBUG_BREAKPOINT) { /* Setting H/W breakpoint */ if (kvmppc_booke_add_breakpoint(dbg_reg, addr, b++)) return -EINVAL; } else { /* Setting H/W watchpoint */ if (kvmppc_booke_add_watchpoint(dbg_reg, addr, type, w++)) return -EINVAL; } } return 0; } void kvmppc_booke_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { vcpu->cpu = smp_processor_id(); current->thread.kvm_vcpu = vcpu; } void kvmppc_booke_vcpu_put(struct kvm_vcpu *vcpu) { current->thread.kvm_vcpu = NULL; vcpu->cpu = -1; /* Clear pending debug event in DBSR */ kvmppc_clear_dbsr(); } void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) { vcpu->kvm->arch.kvm_ops->mmu_destroy(vcpu); } int kvmppc_core_init_vm(struct kvm *kvm) { return kvm->arch.kvm_ops->init_vm(kvm); } struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) { return kvm->arch.kvm_ops->vcpu_create(kvm, id); } void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) { vcpu->kvm->arch.kvm_ops->vcpu_free(vcpu); } void kvmppc_core_destroy_vm(struct kvm *kvm) { kvm->arch.kvm_ops->destroy_vm(kvm); } void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { vcpu->kvm->arch.kvm_ops->vcpu_load(vcpu, cpu); } void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) { vcpu->kvm->arch.kvm_ops->vcpu_put(vcpu); } int __init kvmppc_booke_init(void) { #ifndef CONFIG_KVM_BOOKE_HV unsigned long ivor[16]; unsigned long *handler = kvmppc_booke_handler_addr; unsigned long max_ivor = 0; unsigned long handler_len; int i; /* We install our own exception handlers by hijacking IVPR. IVPR must * be 16-bit aligned, so we need a 64KB allocation. */ kvmppc_booke_handlers = __get_free_pages(GFP_KERNEL | __GFP_ZERO, VCPU_SIZE_ORDER); if (!kvmppc_booke_handlers) return -ENOMEM; /* XXX make sure our handlers are smaller than Linux's */ /* Copy our interrupt handlers to match host IVORs. That way we don't * have to swap the IVORs on every guest/host transition. */ ivor[0] = mfspr(SPRN_IVOR0); ivor[1] = mfspr(SPRN_IVOR1); ivor[2] = mfspr(SPRN_IVOR2); ivor[3] = mfspr(SPRN_IVOR3); ivor[4] = mfspr(SPRN_IVOR4); ivor[5] = mfspr(SPRN_IVOR5); ivor[6] = mfspr(SPRN_IVOR6); ivor[7] = mfspr(SPRN_IVOR7); ivor[8] = mfspr(SPRN_IVOR8); ivor[9] = mfspr(SPRN_IVOR9); ivor[10] = mfspr(SPRN_IVOR10); ivor[11] = mfspr(SPRN_IVOR11); ivor[12] = mfspr(SPRN_IVOR12); ivor[13] = mfspr(SPRN_IVOR13); ivor[14] = mfspr(SPRN_IVOR14); ivor[15] = mfspr(SPRN_IVOR15); for (i = 0; i < 16; i++) { if (ivor[i] > max_ivor) max_ivor = i; handler_len = handler[i + 1] - handler[i]; memcpy((void *)kvmppc_booke_handlers + ivor[i], (void *)handler[i], handler_len); } handler_len = handler[max_ivor + 1] - handler[max_ivor]; flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers + ivor[max_ivor] + handler_len); #endif /* !BOOKE_HV */ return 0; } void __exit kvmppc_booke_exit(void) { free_pages(kvmppc_booke_handlers, VCPU_SIZE_ORDER); kvm_exit(); }