/* * intel_hdmi_audio.c - Intel HDMI audio driver * * Copyright (C) 2016 Intel Corp * Authors: Sailaja Bandarupalli * Ramesh Babu K V * Vaibhav Agarwal * Jerome Anand * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * ALSA driver for Intel HDMI audio */ #define pr_fmt(fmt) "had: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include "intel_hdmi_audio.h" static DEFINE_MUTEX(had_mutex); /*standard module options for ALSA. This module supports only one card*/ static int hdmi_card_index = SNDRV_DEFAULT_IDX1; static char *hdmi_card_id = SNDRV_DEFAULT_STR1; static struct snd_intelhad *had_data; static int underrun_count; module_param_named(index, hdmi_card_index, int, 0444); MODULE_PARM_DESC(index, "Index value for INTEL Intel HDMI Audio controller."); module_param_named(id, hdmi_card_id, charp, 0444); MODULE_PARM_DESC(id, "ID string for INTEL Intel HDMI Audio controller."); /* * ELD SA bits in the CEA Speaker Allocation data block */ static int eld_speaker_allocation_bits[] = { [0] = FL | FR, [1] = LFE, [2] = FC, [3] = RL | RR, [4] = RC, [5] = FLC | FRC, [6] = RLC | RRC, /* the following are not defined in ELD yet */ [7] = 0, }; /* * This is an ordered list! * * The preceding ones have better chances to be selected by * hdmi_channel_allocation(). */ static struct cea_channel_speaker_allocation channel_allocations[] = { /* channel: 7 6 5 4 3 2 1 0 */ { .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } }, /* 2.1 */ { .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } }, /* Dolby Surround */ { .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } }, /* surround40 */ { .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } }, /* surround41 */ { .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } }, /* surround50 */ { .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } }, /* surround51 */ { .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } }, /* 6.1 */ { .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } }, /* surround71 */ { .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } }, { .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } }, { .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } }, { .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } }, { .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } }, { .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } }, { .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } }, { .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } }, { .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } }, { .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } }, { .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } }, { .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } }, { .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } }, { .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } }, { .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } }, { .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } }, { .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } }, { .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } }, { .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } }, { .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } }, { .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } }, { .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } }, { .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } }, { .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } }, }; static struct channel_map_table map_tables[] = { { SNDRV_CHMAP_FL, 0x00, FL }, { SNDRV_CHMAP_FR, 0x01, FR }, { SNDRV_CHMAP_RL, 0x04, RL }, { SNDRV_CHMAP_RR, 0x05, RR }, { SNDRV_CHMAP_LFE, 0x02, LFE }, { SNDRV_CHMAP_FC, 0x03, FC }, { SNDRV_CHMAP_RLC, 0x06, RLC }, { SNDRV_CHMAP_RRC, 0x07, RRC }, {} /* terminator */ }; /* hardware capability structure */ static const struct snd_pcm_hardware snd_intel_hadstream = { .info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_DOUBLE | SNDRV_PCM_INFO_MMAP| SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH), .formats = (SNDRV_PCM_FMTBIT_S24 | SNDRV_PCM_FMTBIT_U24), .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000, .rate_min = HAD_MIN_RATE, .rate_max = HAD_MAX_RATE, .channels_min = HAD_MIN_CHANNEL, .channels_max = HAD_MAX_CHANNEL, .buffer_bytes_max = HAD_MAX_BUFFER, .period_bytes_min = HAD_MIN_PERIOD_BYTES, .period_bytes_max = HAD_MAX_PERIOD_BYTES, .periods_min = HAD_MIN_PERIODS, .periods_max = HAD_MAX_PERIODS, .fifo_size = HAD_FIFO_SIZE, }; /* Register access functions */ int had_get_hwstate(struct snd_intelhad *intelhaddata) { /* Check for device presence -SW state */ if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) { pr_debug("%s:Device not connected:%d\n", __func__, intelhaddata->drv_status); return -ENODEV; } return 0; } int had_get_caps(enum had_caps_list query, void *caps) { int retval; struct snd_intelhad *intelhaddata = had_data; retval = had_get_hwstate(intelhaddata); if (!retval) retval = intelhaddata->query_ops.hdmi_audio_get_caps(query, caps); return retval; } int had_set_caps(enum had_caps_list set_element, void *caps) { int retval; struct snd_intelhad *intelhaddata = had_data; retval = had_get_hwstate(intelhaddata); if (!retval) retval = intelhaddata->query_ops.hdmi_audio_set_caps( set_element, caps); return retval; } int had_read_register(u32 offset, u32 *data) { int retval; struct snd_intelhad *intelhaddata = had_data; retval = had_get_hwstate(intelhaddata); if (!retval) retval = intelhaddata->reg_ops.hdmi_audio_read_register( offset + intelhaddata->audio_cfg_offset, data); return retval; } int had_write_register(u32 offset, u32 data) { int retval; struct snd_intelhad *intelhaddata = had_data; retval = had_get_hwstate(intelhaddata); if (!retval) retval = intelhaddata->reg_ops.hdmi_audio_write_register( offset + intelhaddata->audio_cfg_offset, data); return retval; } int had_read_modify(u32 offset, u32 data, u32 mask) { int retval; struct snd_intelhad *intelhaddata = had_data; retval = had_get_hwstate(intelhaddata); if (!retval) retval = intelhaddata->reg_ops.hdmi_audio_read_modify( offset + intelhaddata->audio_cfg_offset, data, mask); return retval; } /** * function to read-modify * AUD_CONFIG register on VLV2.The had_read_modify() function should not * directly be used on VLV2 for updating AUD_CONFIG register. * This is because: * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the * register. This field should be 1xy binary for configuration with 6 or * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio) * causes the "channels" field to be updated as 0xy binary resulting in * bad audio. The fix is to always write the AUD_CONFIG[6:4] with * appropriate value when doing read-modify of AUD_CONFIG register. * * @substream: the current substream or NULL if no active substream * @data : data to be written * @mask : mask * */ static int had_read_modify_aud_config_v2(struct snd_pcm_substream *substream, u32 data, u32 mask) { union aud_cfg cfg_val = {.cfg_regval = 0}; u8 channels; /* * If substream is NULL, there is no active stream. * In this case just set channels to 2 */ if (substream) channels = substream->runtime->channels; else channels = 2; cfg_val.cfg_regx_v2.num_ch = channels - 2; data = data | cfg_val.cfg_regval; mask = mask | AUD_CONFIG_CH_MASK_V2; pr_debug("%s : data = %x, mask =%x\n", __func__, data, mask); return had_read_modify(AUD_CONFIG, data, mask); } static void snd_intelhad_enable_audio_v1(struct snd_pcm_substream *substream, u8 enable) { had_read_modify(AUD_CONFIG, enable, BIT(0)); } static void snd_intelhad_enable_audio_v2(struct snd_pcm_substream *substream, u8 enable) { had_read_modify_aud_config_v2(substream, enable, BIT(0)); } static void snd_intelhad_reset_audio_v1(u8 reset) { had_write_register(AUD_HDMI_STATUS, reset); } static void snd_intelhad_reset_audio_v2(u8 reset) { had_write_register(AUD_HDMI_STATUS_v2, reset); } /** * initialize audio channel status registers * This function is called in the prepare callback */ static int had_prog_status_reg(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { union aud_cfg cfg_val = {.cfg_regval = 0}; union aud_ch_status_0 ch_stat0 = {.status_0_regval = 0}; union aud_ch_status_1 ch_stat1 = {.status_1_regval = 0}; int format; pr_debug("Entry %s\n", __func__); ch_stat0.status_0_regx.lpcm_id = (intelhaddata->aes_bits & IEC958_AES0_NONAUDIO)>>1; ch_stat0.status_0_regx.clk_acc = (intelhaddata->aes_bits & IEC958_AES3_CON_CLOCK)>>4; cfg_val.cfg_regx.val_bit = ch_stat0.status_0_regx.lpcm_id; switch (substream->runtime->rate) { case AUD_SAMPLE_RATE_32: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_32KHZ; break; case AUD_SAMPLE_RATE_44_1: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_44KHZ; break; case AUD_SAMPLE_RATE_48: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_48KHZ; break; case AUD_SAMPLE_RATE_88_2: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_88KHZ; break; case AUD_SAMPLE_RATE_96: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_96KHZ; break; case AUD_SAMPLE_RATE_176_4: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_176KHZ; break; case AUD_SAMPLE_RATE_192: ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_192KHZ; break; default: /* control should never come here */ return -EINVAL; break; } had_write_register(AUD_CH_STATUS_0, ch_stat0.status_0_regval); format = substream->runtime->format; if (format == SNDRV_PCM_FORMAT_S16_LE) { ch_stat1.status_1_regx.max_wrd_len = MAX_SMPL_WIDTH_20; ch_stat1.status_1_regx.wrd_len = SMPL_WIDTH_16BITS; } else if (format == SNDRV_PCM_FORMAT_S24_LE) { ch_stat1.status_1_regx.max_wrd_len = MAX_SMPL_WIDTH_24; ch_stat1.status_1_regx.wrd_len = SMPL_WIDTH_24BITS; } else { ch_stat1.status_1_regx.max_wrd_len = 0; ch_stat1.status_1_regx.wrd_len = 0; } had_write_register(AUD_CH_STATUS_1, ch_stat1.status_1_regval); return 0; } /** * function to initialize audio * registers and buffer confgiuration registers * This function is called in the prepare callback */ static int snd_intelhad_prog_audio_ctrl_v2(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { union aud_cfg cfg_val = {.cfg_regval = 0}; union aud_buf_config buf_cfg = {.buf_cfgval = 0}; u8 channels; had_prog_status_reg(substream, intelhaddata); buf_cfg.buf_cfg_regx_v2.audio_fifo_watermark = FIFO_THRESHOLD; buf_cfg.buf_cfg_regx_v2.dma_fifo_watermark = DMA_FIFO_THRESHOLD; buf_cfg.buf_cfg_regx_v2.aud_delay = 0; had_write_register(AUD_BUF_CONFIG, buf_cfg.buf_cfgval); channels = substream->runtime->channels; cfg_val.cfg_regx_v2.num_ch = channels - 2; if (channels <= 2) cfg_val.cfg_regx_v2.layout = LAYOUT0; else cfg_val.cfg_regx_v2.layout = LAYOUT1; cfg_val.cfg_regx_v2.val_bit = 1; had_write_register(AUD_CONFIG, cfg_val.cfg_regval); return 0; } /** * function to initialize audio * registers and buffer confgiuration registers * This function is called in the prepare callback */ static int snd_intelhad_prog_audio_ctrl_v1(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { union aud_cfg cfg_val = {.cfg_regval = 0}; union aud_buf_config buf_cfg = {.buf_cfgval = 0}; u8 channels; had_prog_status_reg(substream, intelhaddata); buf_cfg.buf_cfg_regx.fifo_width = FIFO_THRESHOLD; buf_cfg.buf_cfg_regx.aud_delay = 0; had_write_register(AUD_BUF_CONFIG, buf_cfg.buf_cfgval); channels = substream->runtime->channels; switch (channels) { case 1: case 2: cfg_val.cfg_regx.num_ch = CH_STEREO; cfg_val.cfg_regx.layout = LAYOUT0; break; case 3: case 4: cfg_val.cfg_regx.num_ch = CH_THREE_FOUR; cfg_val.cfg_regx.layout = LAYOUT1; break; case 5: case 6: cfg_val.cfg_regx.num_ch = CH_FIVE_SIX; cfg_val.cfg_regx.layout = LAYOUT1; break; case 7: case 8: cfg_val.cfg_regx.num_ch = CH_SEVEN_EIGHT; cfg_val.cfg_regx.layout = LAYOUT1; break; } cfg_val.cfg_regx.val_bit = 1; had_write_register(AUD_CONFIG, cfg_val.cfg_regval); return 0; } /* * Compute derived values in channel_allocations[]. */ static void init_channel_allocations(void) { int i, j; struct cea_channel_speaker_allocation *p; pr_debug("%s: Enter\n", __func__); for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { p = channel_allocations + i; p->channels = 0; p->spk_mask = 0; for (j = 0; j < ARRAY_SIZE(p->speakers); j++) if (p->speakers[j]) { p->channels++; p->spk_mask |= p->speakers[j]; } } } /* * The transformation takes two steps: * * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask * spk_mask => (channel_allocations[]) => ai->CA * * TODO: it could select the wrong CA from multiple candidates. */ static int snd_intelhad_channel_allocation(struct snd_intelhad *intelhaddata, int channels) { int i; int ca = 0; int spk_mask = 0; /* * CA defaults to 0 for basic stereo audio */ if (channels <= 2) return 0; /* * expand ELD's speaker allocation mask * * ELD tells the speaker mask in a compact(paired) form, * expand ELD's notions to match the ones used by Audio InfoFrame. */ for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { if (intelhaddata->eeld.speaker_allocation_block & (1 << i)) spk_mask |= eld_speaker_allocation_bits[i]; } /* search for the first working match in the CA table */ for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { if (channels == channel_allocations[i].channels && (spk_mask & channel_allocations[i].spk_mask) == channel_allocations[i].spk_mask) { ca = channel_allocations[i].ca_index; break; } } pr_debug("HDMI: select CA 0x%x for %d\n", ca, channels); return ca; } /* from speaker bit mask to ALSA API channel position */ static int spk_to_chmap(int spk) { struct channel_map_table *t = map_tables; for (; t->map; t++) { if (t->spk_mask == spk) return t->map; } return 0; } void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata) { int i = 0, c = 0; int spk_mask = 0; struct snd_pcm_chmap_elem *chmap; u8 eld_high, eld_high_mask = 0xF0; u8 high_msb; chmap = kzalloc(sizeof(*chmap), GFP_KERNEL); if (chmap == NULL) { intelhaddata->chmap->chmap = NULL; return; } had_get_caps(HAD_GET_ELD, &intelhaddata->eeld); had_get_caps(HAD_GET_DP_OUTPUT, &intelhaddata->dp_output); pr_debug("eeld.speaker_allocation_block = %x\n", intelhaddata->eeld.speaker_allocation_block); /* WA: Fix the max channel supported to 8 */ /* * Sink may support more than 8 channels, if eld_high has more than * one bit set. SOC supports max 8 channels. * Refer eld_speaker_allocation_bits, for sink speaker allocation */ /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */ eld_high = intelhaddata->eeld.speaker_allocation_block & eld_high_mask; if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) { /* eld_high & (eld_high-1): if more than 1 bit set */ /* 0x1F: 7 channels */ for (i = 1; i < 4; i++) { high_msb = eld_high & (0x80 >> i); if (high_msb) { intelhaddata->eeld.speaker_allocation_block &= high_msb | 0xF; break; } } } for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { if (intelhaddata->eeld.speaker_allocation_block & (1 << i)) spk_mask |= eld_speaker_allocation_bits[i]; } for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { if (spk_mask == channel_allocations[i].spk_mask) { for (c = 0; c < channel_allocations[i].channels; c++) { chmap->map[c] = spk_to_chmap( channel_allocations[i].speakers[ (MAX_SPEAKERS - 1)-c]); } chmap->channels = channel_allocations[i].channels; intelhaddata->chmap->chmap = chmap; break; } } if (i >= ARRAY_SIZE(channel_allocations)) { intelhaddata->chmap->chmap = NULL; kfree(chmap); } } /* * ALSA API channel-map control callbacks */ static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); struct snd_intelhad *intelhaddata = info->private_data; if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) return -ENODEV; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = HAD_MAX_CHANNEL; uinfo->value.integer.min = 0; uinfo->value.integer.max = SNDRV_CHMAP_LAST; return 0; } static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); struct snd_intelhad *intelhaddata = info->private_data; int i = 0; const struct snd_pcm_chmap_elem *chmap; if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) return -ENODEV; if (intelhaddata->chmap->chmap == NULL) return -ENODATA; chmap = intelhaddata->chmap->chmap; for (i = 0; i < chmap->channels; i++) { ucontrol->value.integer.value[i] = chmap->map[i]; pr_debug("chmap->map[%d] = %d\n", i, chmap->map[i]); } return 0; } static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata, struct snd_pcm *pcm) { int err = 0; err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, NULL, 0, (unsigned long)intelhaddata, &intelhaddata->chmap); if (err < 0) return err; intelhaddata->chmap->private_data = intelhaddata; intelhaddata->kctl = intelhaddata->chmap->kctl; intelhaddata->kctl->info = had_chmap_ctl_info; intelhaddata->kctl->get = had_chmap_ctl_get; intelhaddata->chmap->chmap = NULL; return 0; } /** * snd_intelhad_prog_dip_v1 - to initialize Data Island Packets registers * * @substream:substream for which the prepare function is called * @intelhaddata:substream private data * * This function is called in the prepare callback */ static void snd_intelhad_prog_dip_v1(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { int i; union aud_ctrl_st ctrl_state = {.ctrl_val = 0}; union aud_info_frame2 frame2 = {.fr2_val = 0}; union aud_info_frame3 frame3 = {.fr3_val = 0}; u8 checksum = 0; int channels; channels = substream->runtime->channels; had_write_register(AUD_CNTL_ST, ctrl_state.ctrl_val); frame2.fr2_regx.chnl_cnt = substream->runtime->channels - 1; frame3.fr3_regx.chnl_alloc = snd_intelhad_channel_allocation( intelhaddata, channels); /*Calculte the byte wide checksum for all valid DIP words*/ for (i = 0; i < BYTES_PER_WORD; i++) checksum += (HDMI_INFO_FRAME_WORD1 >> i*BITS_PER_BYTE) & MASK_BYTE0; for (i = 0; i < BYTES_PER_WORD; i++) checksum += (frame2.fr2_val >> i*BITS_PER_BYTE) & MASK_BYTE0; for (i = 0; i < BYTES_PER_WORD; i++) checksum += (frame3.fr3_val >> i*BITS_PER_BYTE) & MASK_BYTE0; frame2.fr2_regx.chksum = -(checksum); had_write_register(AUD_HDMIW_INFOFR, HDMI_INFO_FRAME_WORD1); had_write_register(AUD_HDMIW_INFOFR, frame2.fr2_val); had_write_register(AUD_HDMIW_INFOFR, frame3.fr3_val); /* program remaining DIP words with zero */ for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++) had_write_register(AUD_HDMIW_INFOFR, 0x0); ctrl_state.ctrl_regx.dip_freq = 1; ctrl_state.ctrl_regx.dip_en_sta = 1; had_write_register(AUD_CNTL_ST, ctrl_state.ctrl_val); } /** * snd_intelhad_prog_dip_v2 - to initialize Data Island Packets registers * * @substream:substream for which the prepare function is called * @intelhaddata:substream private data * * This function is called in the prepare callback */ static void snd_intelhad_prog_dip_v2(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { int i; union aud_ctrl_st ctrl_state = {.ctrl_val = 0}; union aud_info_frame2 frame2 = {.fr2_val = 0}; union aud_info_frame3 frame3 = {.fr3_val = 0}; u8 checksum = 0; u32 info_frame; int channels; channels = substream->runtime->channels; had_write_register(AUD_CNTL_ST, ctrl_state.ctrl_val); if (intelhaddata->dp_output) { info_frame = DP_INFO_FRAME_WORD1; frame2.fr2_val = 1; } else { info_frame = HDMI_INFO_FRAME_WORD1; frame2.fr2_regx.chnl_cnt = substream->runtime->channels - 1; frame3.fr3_regx.chnl_alloc = snd_intelhad_channel_allocation( intelhaddata, channels); /*Calculte the byte wide checksum for all valid DIP words*/ for (i = 0; i < BYTES_PER_WORD; i++) checksum += (info_frame >> i*BITS_PER_BYTE) & MASK_BYTE0; for (i = 0; i < BYTES_PER_WORD; i++) checksum += (frame2.fr2_val >> i*BITS_PER_BYTE) & MASK_BYTE0; for (i = 0; i < BYTES_PER_WORD; i++) checksum += (frame3.fr3_val >> i*BITS_PER_BYTE) & MASK_BYTE0; frame2.fr2_regx.chksum = -(checksum); } had_write_register(AUD_HDMIW_INFOFR_v2, info_frame); had_write_register(AUD_HDMIW_INFOFR_v2, frame2.fr2_val); had_write_register(AUD_HDMIW_INFOFR_v2, frame3.fr3_val); /* program remaining DIP words with zero */ for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++) had_write_register(AUD_HDMIW_INFOFR_v2, 0x0); ctrl_state.ctrl_regx.dip_freq = 1; ctrl_state.ctrl_regx.dip_en_sta = 1; had_write_register(AUD_CNTL_ST, ctrl_state.ctrl_val); } /** * snd_intelhad_prog_buffer - programs buffer * address and length registers * * @substream:substream for which the prepare function is called * @intelhaddata:substream private data * * This function programs ring buffer address and length into registers. */ int snd_intelhad_prog_buffer(struct snd_intelhad *intelhaddata, int start, int end) { u32 ring_buf_addr, ring_buf_size, period_bytes; u8 i, num_periods; struct snd_pcm_substream *substream; substream = intelhaddata->stream_info.had_substream; if (!substream) { pr_err("substream is NULL\n"); dump_stack(); return 0; } ring_buf_addr = substream->runtime->dma_addr; ring_buf_size = snd_pcm_lib_buffer_bytes(substream); intelhaddata->stream_info.ring_buf_size = ring_buf_size; period_bytes = frames_to_bytes(substream->runtime, substream->runtime->period_size); num_periods = substream->runtime->periods; /* * buffer addr should be 64 byte aligned, period bytes * will be used to calculate addr offset */ period_bytes &= ~0x3F; /* Hardware supports MAX_PERIODS buffers */ if (end >= HAD_MAX_PERIODS) return -EINVAL; for (i = start; i <= end; i++) { /* Program the buf registers with addr and len */ intelhaddata->buf_info[i].buf_addr = ring_buf_addr + (i * period_bytes); if (i < num_periods-1) intelhaddata->buf_info[i].buf_size = period_bytes; else intelhaddata->buf_info[i].buf_size = ring_buf_size - (period_bytes*i); had_write_register(AUD_BUF_A_ADDR + (i * HAD_REG_WIDTH), intelhaddata->buf_info[i].buf_addr | BIT(0) | BIT(1)); had_write_register(AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH), period_bytes); intelhaddata->buf_info[i].is_valid = true; } pr_debug("%s:buf[%d-%d] addr=%#x and size=%d\n", __func__, start, end, intelhaddata->buf_info[start].buf_addr, intelhaddata->buf_info[start].buf_size); intelhaddata->valid_buf_cnt = num_periods; return 0; } int snd_intelhad_read_len(struct snd_intelhad *intelhaddata) { int i, retval = 0; u32 len[4]; for (i = 0; i < 4 ; i++) { had_read_register(AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH), &len[i]); if (!len[i]) retval++; } if (retval != 1) { for (i = 0; i < 4 ; i++) pr_debug("buf[%d] size=%d\n", i, len[i]); } return retval; } static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate) { u32 maud_val; /* Select maud according to DP 1.2 spec*/ if (link_rate == DP_2_7_GHZ) { switch (aud_samp_freq) { case AUD_SAMPLE_RATE_32: maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_44_1: maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_48: maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_88_2: maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_96: maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_176_4: maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL; break; case HAD_MAX_RATE: maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL; break; default: maud_val = -EINVAL; break; } } else if (link_rate == DP_1_62_GHZ) { switch (aud_samp_freq) { case AUD_SAMPLE_RATE_32: maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_44_1: maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_48: maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_88_2: maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_96: maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_176_4: maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL; break; case HAD_MAX_RATE: maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL; break; default: maud_val = -EINVAL; break; } } else maud_val = -EINVAL; return maud_val; } /** * snd_intelhad_prog_cts_v1 - Program HDMI audio CTS value * * @aud_samp_freq: sampling frequency of audio data * @tmds: sampling frequency of the display data * @n_param: N value, depends on aud_samp_freq * @intelhaddata:substream private data * * Program CTS register based on the audio and display sampling frequency */ static void snd_intelhad_prog_cts_v1(u32 aud_samp_freq, u32 tmds, u32 link_rate, u32 n_param, struct snd_intelhad *intelhaddata) { u32 cts_val; u64 dividend, divisor; /* Calculate CTS according to HDMI 1.3a spec*/ dividend = (u64)tmds * n_param*1000; divisor = 128 * aud_samp_freq; cts_val = div64_u64(dividend, divisor); pr_debug("TMDS value=%d, N value=%d, CTS Value=%d\n", tmds, n_param, cts_val); had_write_register(AUD_HDMI_CTS, (BIT(20) | cts_val)); } /** * snd_intelhad_prog_cts_v2 - Program HDMI audio CTS value * * @aud_samp_freq: sampling frequency of audio data * @tmds: sampling frequency of the display data * @n_param: N value, depends on aud_samp_freq * @intelhaddata:substream private data * * Program CTS register based on the audio and display sampling frequency */ static void snd_intelhad_prog_cts_v2(u32 aud_samp_freq, u32 tmds, u32 link_rate, u32 n_param, struct snd_intelhad *intelhaddata) { u32 cts_val; u64 dividend, divisor; if (intelhaddata->dp_output) { /* Substitute cts_val with Maud according to DP 1.2 spec*/ cts_val = had_calculate_maud_value(aud_samp_freq, link_rate); } else { /* Calculate CTS according to HDMI 1.3a spec*/ dividend = (u64)tmds * n_param*1000; divisor = 128 * aud_samp_freq; cts_val = div64_u64(dividend, divisor); } pr_debug("TMDS value=%d, N value=%d, CTS Value=%d\n", tmds, n_param, cts_val); had_write_register(AUD_HDMI_CTS, (BIT(24) | cts_val)); } static int had_calculate_n_value(u32 aud_samp_freq) { s32 n_val; /* Select N according to HDMI 1.3a spec*/ switch (aud_samp_freq) { case AUD_SAMPLE_RATE_32: n_val = 4096; break; case AUD_SAMPLE_RATE_44_1: n_val = 6272; break; case AUD_SAMPLE_RATE_48: n_val = 6144; break; case AUD_SAMPLE_RATE_88_2: n_val = 12544; break; case AUD_SAMPLE_RATE_96: n_val = 12288; break; case AUD_SAMPLE_RATE_176_4: n_val = 25088; break; case HAD_MAX_RATE: n_val = 24576; break; default: n_val = -EINVAL; break; } return n_val; } /** * snd_intelhad_prog_n_v1 - Program HDMI audio N value * * @aud_samp_freq: sampling frequency of audio data * @n_param: N value, depends on aud_samp_freq * @intelhaddata:substream private data * * This function is called in the prepare callback. * It programs based on the audio and display sampling frequency */ static int snd_intelhad_prog_n_v1(u32 aud_samp_freq, u32 *n_param, struct snd_intelhad *intelhaddata) { s32 n_val; n_val = had_calculate_n_value(aud_samp_freq); if (n_val < 0) return n_val; had_write_register(AUD_N_ENABLE, (BIT(20) | n_val)); *n_param = n_val; return 0; } /** * snd_intelhad_prog_n_v2 - Program HDMI audio N value * * @aud_samp_freq: sampling frequency of audio data * @n_param: N value, depends on aud_samp_freq * @intelhaddata:substream private data * * This function is called in the prepare callback. * It programs based on the audio and display sampling frequency */ static int snd_intelhad_prog_n_v2(u32 aud_samp_freq, u32 *n_param, struct snd_intelhad *intelhaddata) { s32 n_val; if (intelhaddata->dp_output) { /* * According to DP specs, Maud and Naud values hold * a relationship, which is stated as: * Maud/Naud = 512 * fs / f_LS_Clk * where, fs is the sampling frequency of the audio stream * and Naud is 32768 for Async clock. */ n_val = DP_NAUD_VAL; } else n_val = had_calculate_n_value(aud_samp_freq); if (n_val < 0) return n_val; had_write_register(AUD_N_ENABLE, (BIT(24) | n_val)); *n_param = n_val; return 0; } static void had_clear_underrun_intr_v1(struct snd_intelhad *intelhaddata) { u32 hdmi_status, i = 0; /* Handle Underrun interrupt within Audio Unit */ had_write_register(AUD_CONFIG, 0); /* Reset buffer pointers */ had_write_register(AUD_HDMI_STATUS, 1); had_write_register(AUD_HDMI_STATUS, 0); /** * The interrupt status 'sticky' bits might not be cleared by * setting '1' to that bit once... */ do { /* clear bit30, 31 AUD_HDMI_STATUS */ had_read_register(AUD_HDMI_STATUS, &hdmi_status); pr_debug("HDMI status =0x%x\n", hdmi_status); if (hdmi_status & AUD_CONFIG_MASK_UNDERRUN) { i++; hdmi_status &= (AUD_CONFIG_MASK_SRDBG | AUD_CONFIG_MASK_FUNCRST); hdmi_status |= ~AUD_CONFIG_MASK_UNDERRUN; had_write_register(AUD_HDMI_STATUS, hdmi_status); } else break; } while (i < MAX_CNT); if (i >= MAX_CNT) pr_err("Unable to clear UNDERRUN bits\n"); } static void had_clear_underrun_intr_v2(struct snd_intelhad *intelhaddata) { u32 hdmi_status, i = 0; /* Handle Underrun interrupt within Audio Unit */ had_write_register(AUD_CONFIG, 0); /* Reset buffer pointers */ had_write_register(AUD_HDMI_STATUS_v2, 1); had_write_register(AUD_HDMI_STATUS_v2, 0); /** * The interrupt status 'sticky' bits might not be cleared by * setting '1' to that bit once... */ do { /* clear bit30, 31 AUD_HDMI_STATUS */ had_read_register(AUD_HDMI_STATUS_v2, &hdmi_status); pr_debug("HDMI status =0x%x\n", hdmi_status); if (hdmi_status & AUD_CONFIG_MASK_UNDERRUN) { i++; had_write_register(AUD_HDMI_STATUS_v2, hdmi_status); } else break; } while (i < MAX_CNT); if (i >= MAX_CNT) pr_err("Unable to clear UNDERRUN bits\n"); } /** * snd_intelhad_open - stream initializations are done here * @substream:substream for which the stream function is called * * This function is called whenever a PCM stream is opened */ static int snd_intelhad_open(struct snd_pcm_substream *substream) { struct snd_intelhad *intelhaddata; struct snd_pcm_runtime *runtime; struct had_stream_pvt *stream; struct had_pvt_data *had_stream; int retval; pr_debug("snd_intelhad_open called\n"); intelhaddata = snd_pcm_substream_chip(substream); had_stream = intelhaddata->private_data; runtime = substream->runtime; underrun_count = 0; pm_runtime_get(intelhaddata->dev); if (had_get_hwstate(intelhaddata)) { pr_err("%s: HDMI cable plugged-out\n", __func__); retval = -ENODEV; goto exit_put_handle; } /* Check, if device already in use */ if (runtime->private_data) { pr_err("Device already in use\n"); retval = -EBUSY; goto exit_put_handle; } /* set the runtime hw parameter with local snd_pcm_hardware struct */ runtime->hw = snd_intel_hadstream; stream = kzalloc(sizeof(*stream), GFP_KERNEL); if (!stream) { retval = -ENOMEM; goto exit_put_handle; } stream->stream_status = STREAM_INIT; runtime->private_data = stream; retval = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (retval < 0) goto exit_err; /* Make sure, that the period size is always aligned * 64byte boundary */ retval = snd_pcm_hw_constraint_step(substream->runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64); if (retval < 0) { pr_err("%s:step_size=64 failed,err=%d\n", __func__, retval); goto exit_err; } return retval; exit_err: kfree(stream); exit_put_handle: pm_runtime_put(intelhaddata->dev); runtime->private_data = NULL; return retval; } /** * had_period_elapsed - updates the hardware pointer status * @had_substream:substream for which the stream function is called * */ static void had_period_elapsed(void *had_substream) { struct snd_pcm_substream *substream = had_substream; struct had_stream_pvt *stream; /* pr_debug("had_period_elapsed called\n"); */ if (!substream || !substream->runtime) return; stream = substream->runtime->private_data; if (!stream) return; if (stream->stream_status != STREAM_RUNNING) return; snd_pcm_period_elapsed(substream); } /** * snd_intelhad_init_stream - internal function to initialize stream info * @substream:substream for which the stream function is called * */ static int snd_intelhad_init_stream(struct snd_pcm_substream *substream) { struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream); pr_debug("snd_intelhad_init_stream called\n"); pr_debug("setting buffer ptr param\n"); intelhaddata->stream_info.period_elapsed = had_period_elapsed; intelhaddata->stream_info.had_substream = substream; intelhaddata->stream_info.buffer_ptr = 0; intelhaddata->stream_info.buffer_rendered = 0; intelhaddata->stream_info.sfreq = substream->runtime->rate; return 0; } /** * snd_intelhad_close- to free parameteres when stream is stopped * * @substream: substream for which the function is called * * This function is called by ALSA framework when stream is stopped */ static int snd_intelhad_close(struct snd_pcm_substream *substream) { struct snd_intelhad *intelhaddata; struct snd_pcm_runtime *runtime; pr_debug("snd_intelhad_close called\n"); intelhaddata = snd_pcm_substream_chip(substream); runtime = substream->runtime; if (!runtime->private_data) { pr_debug("close() might have called after failed open"); return 0; } intelhaddata->stream_info.buffer_rendered = 0; intelhaddata->stream_info.buffer_ptr = 0; intelhaddata->stream_info.str_id = 0; intelhaddata->stream_info.had_substream = NULL; /* Check if following drv_status modification is required - VA */ if (intelhaddata->drv_status != HAD_DRV_DISCONNECTED) { intelhaddata->drv_status = HAD_DRV_CONNECTED; pr_debug("%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n", __func__, __LINE__); } kfree(runtime->private_data); runtime->private_data = NULL; pm_runtime_put(intelhaddata->dev); return 0; } /** * snd_intelhad_hw_params- to setup the hardware parameters * like allocating the buffers * * @substream: substream for which the function is called * @hw_params: hardware parameters * * This function is called by ALSA framework when hardware params are set */ static int snd_intelhad_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { unsigned long addr; int pages, buf_size, retval; pr_debug("snd_intelhad_hw_params called\n"); if (!hw_params) return -EINVAL; buf_size = params_buffer_bytes(hw_params); retval = snd_pcm_lib_malloc_pages(substream, buf_size); if (retval < 0) return retval; pr_debug("%s:allocated memory = %d\n", __func__, buf_size); /* mark the pages as uncached region */ addr = (unsigned long) substream->runtime->dma_area; pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE; retval = set_memory_uc(addr, pages); if (retval) { pr_err("set_memory_uc failed.Error:%d\n", retval); return retval; } memset(substream->runtime->dma_area, 0, buf_size); return retval; } /** * snd_intelhad_hw_free- to release the resources allocated during * hardware params setup * * @substream: substream for which the function is called * * This function is called by ALSA framework before close callback. * */ static int snd_intelhad_hw_free(struct snd_pcm_substream *substream) { unsigned long addr; u32 pages; pr_debug("snd_intelhad_hw_free called\n"); /* mark back the pages as cached/writeback region before the free */ if (substream->runtime->dma_area != NULL) { addr = (unsigned long) substream->runtime->dma_area; pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE; set_memory_wb(addr, pages); return snd_pcm_lib_free_pages(substream); } return 0; } /** * snd_intelhad_pcm_trigger - stream activities are handled here * @substream:substream for which the stream function is called * @cmd:the stream commamd thats requested from upper layer * This function is called whenever an a stream activity is invoked */ static int snd_intelhad_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { int caps, retval = 0; unsigned long flag_irq; struct snd_intelhad *intelhaddata; struct had_stream_pvt *stream; struct had_pvt_data *had_stream; pr_debug("snd_intelhad_pcm_trigger called\n"); intelhaddata = snd_pcm_substream_chip(substream); stream = substream->runtime->private_data; had_stream = intelhaddata->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: pr_debug("Trigger Start\n"); /* Disable local INTRs till register prgmng is done */ if (had_get_hwstate(intelhaddata)) { pr_err("_START: HDMI cable plugged-out\n"); retval = -ENODEV; break; } stream->stream_status = STREAM_RUNNING; had_stream->stream_type = HAD_RUNNING_STREAM; /* Enable Audio */ /* * ToDo: Need to enable UNDERRUN interrupts as well * caps = HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE; */ caps = HDMI_AUDIO_BUFFER_DONE; retval = had_set_caps(HAD_SET_ENABLE_AUDIO_INT, &caps); retval = had_set_caps(HAD_SET_ENABLE_AUDIO, NULL); intelhaddata->ops->enable_audio(substream, 1); pr_debug("Processed _Start\n"); break; case SNDRV_PCM_TRIGGER_STOP: pr_debug("Trigger Stop\n"); spin_lock_irqsave(&intelhaddata->had_spinlock, flag_irq); intelhaddata->stream_info.str_id = 0; intelhaddata->curr_buf = 0; /* Stop reporting BUFFER_DONE/UNDERRUN to above layers*/ had_stream->stream_type = HAD_INIT; spin_unlock_irqrestore(&intelhaddata->had_spinlock, flag_irq); /* Disable Audio */ /* * ToDo: Need to disable UNDERRUN interrupts as well * caps = HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE; */ caps = HDMI_AUDIO_BUFFER_DONE; had_set_caps(HAD_SET_DISABLE_AUDIO_INT, &caps); intelhaddata->ops->enable_audio(substream, 0); /* Reset buffer pointers */ intelhaddata->ops->reset_audio(1); intelhaddata->ops->reset_audio(0); stream->stream_status = STREAM_DROPPED; had_set_caps(HAD_SET_DISABLE_AUDIO, NULL); break; default: retval = -EINVAL; } return retval; } /** * snd_intelhad_pcm_prepare- internal preparation before starting a stream * * @substream: substream for which the function is called * * This function is called when a stream is started for internal preparation. */ static int snd_intelhad_pcm_prepare(struct snd_pcm_substream *substream) { int retval; u32 disp_samp_freq, n_param; u32 link_rate = 0; struct snd_intelhad *intelhaddata; struct snd_pcm_runtime *runtime; struct had_pvt_data *had_stream; pr_debug("snd_intelhad_pcm_prepare called\n"); intelhaddata = snd_pcm_substream_chip(substream); runtime = substream->runtime; had_stream = intelhaddata->private_data; if (had_get_hwstate(intelhaddata)) { pr_err("%s: HDMI cable plugged-out\n", __func__); retval = -ENODEV; goto prep_end; } pr_debug("period_size=%d\n", (int)frames_to_bytes(runtime, runtime->period_size)); pr_debug("periods=%d\n", runtime->periods); pr_debug("buffer_size=%d\n", (int)snd_pcm_lib_buffer_bytes(substream)); pr_debug("rate=%d\n", runtime->rate); pr_debug("channels=%d\n", runtime->channels); if (intelhaddata->stream_info.str_id) { pr_debug("_prepare is called for existing str_id#%d\n", intelhaddata->stream_info.str_id); retval = snd_intelhad_pcm_trigger(substream, SNDRV_PCM_TRIGGER_STOP); return retval; } retval = snd_intelhad_init_stream(substream); if (retval) goto prep_end; /* Get N value in KHz */ retval = had_get_caps(HAD_GET_DISPLAY_RATE, &disp_samp_freq); if (retval) { pr_err("querying display sampling freq failed %#x\n", retval); goto prep_end; } had_get_caps(HAD_GET_ELD, &intelhaddata->eeld); had_get_caps(HAD_GET_DP_OUTPUT, &intelhaddata->dp_output); retval = intelhaddata->ops->prog_n(substream->runtime->rate, &n_param, intelhaddata); if (retval) { pr_err("programming N value failed %#x\n", retval); goto prep_end; } if (intelhaddata->dp_output) had_get_caps(HAD_GET_LINK_RATE, &link_rate); intelhaddata->ops->prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, n_param, intelhaddata); intelhaddata->ops->prog_dip(substream, intelhaddata); retval = intelhaddata->ops->audio_ctrl(substream, intelhaddata); /* Prog buffer address */ retval = snd_intelhad_prog_buffer(intelhaddata, HAD_BUF_TYPE_A, HAD_BUF_TYPE_D); /* * Program channel mapping in following order: * FL, FR, C, LFE, RL, RR */ had_write_register(AUD_BUF_CH_SWAP, SWAP_LFE_CENTER); prep_end: return retval; } /** * snd_intelhad_pcm_pointer- to send the current buffer pointerprocessed by hw * * @substream: substream for which the function is called * * This function is called by ALSA framework to get the current hw buffer ptr * when a period is elapsed */ static snd_pcm_uframes_t snd_intelhad_pcm_pointer( struct snd_pcm_substream *substream) { struct snd_intelhad *intelhaddata; u32 bytes_rendered = 0; u32 t; int buf_id; /* pr_debug("snd_intelhad_pcm_pointer called\n"); */ intelhaddata = snd_pcm_substream_chip(substream); if (intelhaddata->flag_underrun) { intelhaddata->flag_underrun = 0; return SNDRV_PCM_POS_XRUN; } /* Use a hw register to calculate sub-period position reports. * This makes PulseAudio happier. */ buf_id = intelhaddata->curr_buf % 4; had_read_register(AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH), &t); if ((t == 0) || (t == ((u32)-1L))) { underrun_count++; pr_debug("discovered buffer done for buf %d, count = %d\n", buf_id, underrun_count); if (underrun_count > (HAD_MIN_PERIODS/2)) { pr_debug("assume audio_codec_reset, underrun = %d - do xrun\n", underrun_count); underrun_count = 0; return SNDRV_PCM_POS_XRUN; } } else { /* Reset Counter */ underrun_count = 0; } t = intelhaddata->buf_info[buf_id].buf_size - t; if (intelhaddata->stream_info.buffer_rendered) div_u64_rem(intelhaddata->stream_info.buffer_rendered, intelhaddata->stream_info.ring_buf_size, &(bytes_rendered)); intelhaddata->stream_info.buffer_ptr = bytes_to_frames( substream->runtime, bytes_rendered + t); return intelhaddata->stream_info.buffer_ptr; } /** * snd_intelhad_pcm_mmap- mmaps a kernel buffer to user space for copying data * * @substream: substream for which the function is called * @vma: struct instance of memory VMM memory area * * This function is called by OS when a user space component * tries to get mmap memory from driver */ static int snd_intelhad_pcm_mmap(struct snd_pcm_substream *substream, struct vm_area_struct *vma) { pr_debug("snd_intelhad_pcm_mmap called\n"); pr_debug("entry with prot:%s\n", __func__); vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); return remap_pfn_range(vma, vma->vm_start, substream->dma_buffer.addr >> PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot); } int hdmi_audio_mode_change(struct snd_pcm_substream *substream) { int retval = 0; u32 disp_samp_freq, n_param; u32 link_rate = 0; struct snd_intelhad *intelhaddata; intelhaddata = snd_pcm_substream_chip(substream); /* Disable Audio */ intelhaddata->ops->enable_audio(substream, 0); /* Update CTS value */ retval = had_get_caps(HAD_GET_DISPLAY_RATE, &disp_samp_freq); if (retval) { pr_err("querying display sampling freq failed %#x\n", retval); goto out; } retval = intelhaddata->ops->prog_n(substream->runtime->rate, &n_param, intelhaddata); if (retval) { pr_err("programming N value failed %#x\n", retval); goto out; } if (intelhaddata->dp_output) had_get_caps(HAD_GET_LINK_RATE, &link_rate); intelhaddata->ops->prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, n_param, intelhaddata); /* Enable Audio */ intelhaddata->ops->enable_audio(substream, 1); out: return retval; } /*PCM operations structure and the calls back for the same */ struct snd_pcm_ops snd_intelhad_playback_ops = { .open = snd_intelhad_open, .close = snd_intelhad_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_intelhad_hw_params, .hw_free = snd_intelhad_hw_free, .prepare = snd_intelhad_pcm_prepare, .trigger = snd_intelhad_pcm_trigger, .pointer = snd_intelhad_pcm_pointer, .mmap = snd_intelhad_pcm_mmap, }; /** * snd_intelhad_create - to crete alsa card instance * * @intelhaddata: pointer to internal context * @card: pointer to card * * This function is called when the hdmi cable is plugged in */ static int snd_intelhad_create( struct snd_intelhad *intelhaddata, struct snd_card *card) { int retval; static struct snd_device_ops ops = { }; pr_debug("snd_intelhad_create called\n"); if (!intelhaddata) return -EINVAL; /* ALSA api to register the device */ retval = snd_device_new(card, SNDRV_DEV_LOWLEVEL, intelhaddata, &ops); return retval; } /** * snd_intelhad_pcm_free - to free the memory allocated * * @pcm: pointer to pcm instance * This function is called when the device is removed */ static void snd_intelhad_pcm_free(struct snd_pcm *pcm) { pr_debug("Freeing PCM preallocated pages\n"); snd_pcm_lib_preallocate_free_for_all(pcm); } static int had_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int had_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff; ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff; ucontrol->value.iec958.status[2] = (intelhaddata->aes_bits >> 16) & 0xff; ucontrol->value.iec958.status[3] = (intelhaddata->aes_bits >> 24) & 0xff; return 0; } static int had_iec958_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = 0xff; ucontrol->value.iec958.status[1] = 0xff; ucontrol->value.iec958.status[2] = 0xff; ucontrol->value.iec958.status[3] = 0xff; return 0; } static int had_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { unsigned int val; struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); pr_debug("entered had_iec958_put\n"); val = (ucontrol->value.iec958.status[0] << 0) | (ucontrol->value.iec958.status[1] << 8) | (ucontrol->value.iec958.status[2] << 16) | (ucontrol->value.iec958.status[3] << 24); if (intelhaddata->aes_bits != val) { intelhaddata->aes_bits = val; return 1; } return 1; } static struct snd_kcontrol_new had_control_iec958_mask = { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK), .info = had_iec958_info, /* shared */ .get = had_iec958_mask_get, }; static struct snd_kcontrol_new had_control_iec958 = { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), .info = had_iec958_info, .get = had_iec958_get, .put = had_iec958_put }; static struct snd_intel_had_interface had_interface = { .name = "hdmi-audio", .query = hdmi_audio_query, .suspend = hdmi_audio_suspend, .resume = hdmi_audio_resume, }; static struct had_ops had_ops_v1 = { .enable_audio = snd_intelhad_enable_audio_v1, .reset_audio = snd_intelhad_reset_audio_v1, .prog_n = snd_intelhad_prog_n_v1, .prog_cts = snd_intelhad_prog_cts_v1, .audio_ctrl = snd_intelhad_prog_audio_ctrl_v1, .prog_dip = snd_intelhad_prog_dip_v1, .handle_underrun = had_clear_underrun_intr_v1, }; static struct had_ops had_ops_v2 = { .enable_audio = snd_intelhad_enable_audio_v2, .reset_audio = snd_intelhad_reset_audio_v2, .prog_n = snd_intelhad_prog_n_v2, .prog_cts = snd_intelhad_prog_cts_v2, .audio_ctrl = snd_intelhad_prog_audio_ctrl_v2, .prog_dip = snd_intelhad_prog_dip_v2, .handle_underrun = had_clear_underrun_intr_v2, }; /** * hdmi_audio_probe - to create sound card instance for HDMI audio playabck * *@haddata: pointer to HAD private data *@card_id: card for which probe is called * * This function is called when the hdmi cable is plugged in. This function * creates and registers the sound card with ALSA */ int hdmi_audio_probe(void *deviceptr) { int retval; struct snd_pcm *pcm; struct snd_card *card; struct had_callback_ops ops_cb; struct snd_intelhad *intelhaddata; struct had_pvt_data *had_stream; struct platform_device *devptr = deviceptr; pr_debug("Enter %s\n", __func__); pr_debug("hdmi_audio_probe dma_mask: %p\n", devptr->dev.dma_mask); /* allocate memory for saving internal context and working */ intelhaddata = kzalloc(sizeof(*intelhaddata), GFP_KERNEL); if (!intelhaddata) return -ENOMEM; had_stream = kzalloc(sizeof(*had_stream), GFP_KERNEL); if (!had_stream) { retval = -ENOMEM; goto free_haddata; } had_data = intelhaddata; ops_cb.intel_had_event_call_back = had_event_handler; /* registering with display driver to get access to display APIs */ retval = mid_hdmi_audio_setup( ops_cb.intel_had_event_call_back, &(intelhaddata->reg_ops), &(intelhaddata->query_ops)); if (retval) { pr_err("querying display driver APIs failed %#x\n", retval); goto free_hadstream; } mutex_lock(&had_mutex); spin_lock_init(&intelhaddata->had_spinlock); intelhaddata->drv_status = HAD_DRV_DISCONNECTED; pr_debug("%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n", __func__, __LINE__); /* create a card instance with ALSA framework */ retval = snd_card_new(&devptr->dev, hdmi_card_index, hdmi_card_id, THIS_MODULE, 0, &card); if (retval) goto unlock_mutex; intelhaddata->card = card; intelhaddata->card_id = hdmi_card_id; intelhaddata->card_index = card->number; intelhaddata->private_data = had_stream; intelhaddata->flag_underrun = 0; intelhaddata->aes_bits = SNDRV_PCM_DEFAULT_CON_SPDIF; strncpy(card->driver, INTEL_HAD, strlen(INTEL_HAD)); strncpy(card->shortname, INTEL_HAD, strlen(INTEL_HAD)); retval = snd_pcm_new(card, INTEL_HAD, PCM_INDEX, MAX_PB_STREAMS, MAX_CAP_STREAMS, &pcm); if (retval) goto err; /* setup private data which can be retrieved when required */ pcm->private_data = intelhaddata; pcm->private_free = snd_intelhad_pcm_free; pcm->info_flags = 0; strncpy(pcm->name, card->shortname, strlen(card->shortname)); /* setup the ops for palyabck */ snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_intelhad_playback_ops); /* allocate dma pages for ALSA stream operations * memory allocated is based on size, not max value * thus using same argument for max & size */ retval = snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, NULL, HAD_MAX_BUFFER, HAD_MAX_BUFFER); if (card->dev == NULL) pr_debug("card->dev is NULL!!!!! Should not be this case\n"); else if (card->dev->dma_mask == NULL) pr_debug("hdmi_audio_probe dma_mask is NULL!!!!!\n"); else pr_debug("hdmi_audio_probe dma_mask is : %p\n", card->dev->dma_mask); if (retval) goto err; /* internal function call to register device with ALSA */ retval = snd_intelhad_create(intelhaddata, card); if (retval) goto err; card->private_data = &intelhaddata; retval = snd_card_register(card); if (retval) goto err; /* IEC958 controls */ retval = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958_mask, intelhaddata)); if (retval < 0) goto err; retval = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958, intelhaddata)); if (retval < 0) goto err; init_channel_allocations(); /* Register channel map controls */ retval = had_register_chmap_ctls(intelhaddata, pcm); if (retval < 0) goto err; intelhaddata->dev = &devptr->dev; pm_runtime_set_active(intelhaddata->dev); pm_runtime_enable(intelhaddata->dev); mutex_unlock(&had_mutex); retval = mid_hdmi_audio_register(&had_interface, intelhaddata); if (retval) { pr_err("registering with display driver failed %#x\n", retval); snd_card_free(card); goto free_hadstream; } intelhaddata->hw_silence = 1; had_ops_v1 = had_ops_v1; /* unused */ intelhaddata->ops = &had_ops_v2; return retval; err: snd_card_free(card); unlock_mutex: mutex_unlock(&had_mutex); free_hadstream: kfree(had_stream); pm_runtime_disable(intelhaddata->dev); intelhaddata->dev = NULL; free_haddata: kfree(intelhaddata); intelhaddata = NULL; pr_err("Error returned from %s api %#x\n", __func__, retval); return retval; } /** * hdmi_audio_remove - removes the alsa card * *@haddata: pointer to HAD private data * * This function is called when the hdmi cable is un-plugged. This function * free the sound card. */ int hdmi_audio_remove(void *pdevptr) { struct snd_intelhad *intelhaddata = had_data; int caps; pr_debug("Enter %s\n", __func__); if (!intelhaddata) return 0; if (intelhaddata->drv_status != HAD_DRV_DISCONNECTED) { caps = HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE; had_set_caps(HAD_SET_DISABLE_AUDIO_INT, &caps); had_set_caps(HAD_SET_DISABLE_AUDIO, NULL); } snd_card_free(intelhaddata->card); kfree(intelhaddata->private_data); kfree(intelhaddata); return 0; } MODULE_AUTHOR("Sailaja Bandarupalli "); MODULE_AUTHOR("Ramesh Babu K V "); MODULE_AUTHOR("Vaibhav Agarwal "); MODULE_AUTHOR("Jerome Anand "); MODULE_DESCRIPTION("Intel HDMI Audio driver"); MODULE_LICENSE("GPL v2"); MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");