// SPDX-License-Identifier: GPL-2.0 /* * NVIDIA Tegra xHCI host controller driver * * Copyright (c) 2014-2020, NVIDIA CORPORATION. All rights reserved. * Copyright (C) 2014 Google, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xhci.h" #define TEGRA_XHCI_SS_HIGH_SPEED 120000000 #define TEGRA_XHCI_SS_LOW_SPEED 12000000 /* FPCI CFG registers */ #define XUSB_CFG_1 0x004 #define XUSB_IO_SPACE_EN BIT(0) #define XUSB_MEM_SPACE_EN BIT(1) #define XUSB_BUS_MASTER_EN BIT(2) #define XUSB_CFG_4 0x010 #define XUSB_BASE_ADDR_SHIFT 15 #define XUSB_BASE_ADDR_MASK 0x1ffff #define XUSB_CFG_16 0x040 #define XUSB_CFG_24 0x060 #define XUSB_CFG_AXI_CFG 0x0f8 #define XUSB_CFG_ARU_C11_CSBRANGE 0x41c #define XUSB_CFG_ARU_CONTEXT 0x43c #define XUSB_CFG_ARU_CONTEXT_HS_PLS 0x478 #define XUSB_CFG_ARU_CONTEXT_FS_PLS 0x47c #define XUSB_CFG_ARU_CONTEXT_HSFS_SPEED 0x480 #define XUSB_CFG_ARU_CONTEXT_HSFS_PP 0x484 #define XUSB_CFG_CSB_BASE_ADDR 0x800 /* FPCI mailbox registers */ /* XUSB_CFG_ARU_MBOX_CMD */ #define MBOX_DEST_FALC BIT(27) #define MBOX_DEST_PME BIT(28) #define MBOX_DEST_SMI BIT(29) #define MBOX_DEST_XHCI BIT(30) #define MBOX_INT_EN BIT(31) /* XUSB_CFG_ARU_MBOX_DATA_IN and XUSB_CFG_ARU_MBOX_DATA_OUT */ #define CMD_DATA_SHIFT 0 #define CMD_DATA_MASK 0xffffff #define CMD_TYPE_SHIFT 24 #define CMD_TYPE_MASK 0xff /* XUSB_CFG_ARU_MBOX_OWNER */ #define MBOX_OWNER_NONE 0 #define MBOX_OWNER_FW 1 #define MBOX_OWNER_SW 2 #define XUSB_CFG_ARU_SMI_INTR 0x428 #define MBOX_SMI_INTR_FW_HANG BIT(1) #define MBOX_SMI_INTR_EN BIT(3) /* IPFS registers */ #define IPFS_XUSB_HOST_MSI_BAR_SZ_0 0x0c0 #define IPFS_XUSB_HOST_MSI_AXI_BAR_ST_0 0x0c4 #define IPFS_XUSB_HOST_MSI_FPCI_BAR_ST_0 0x0c8 #define IPFS_XUSB_HOST_MSI_VEC0_0 0x100 #define IPFS_XUSB_HOST_MSI_EN_VEC0_0 0x140 #define IPFS_XUSB_HOST_CONFIGURATION_0 0x180 #define IPFS_EN_FPCI BIT(0) #define IPFS_XUSB_HOST_FPCI_ERROR_MASKS_0 0x184 #define IPFS_XUSB_HOST_INTR_MASK_0 0x188 #define IPFS_IP_INT_MASK BIT(16) #define IPFS_XUSB_HOST_INTR_ENABLE_0 0x198 #define IPFS_XUSB_HOST_UFPCI_CONFIG_0 0x19c #define IPFS_XUSB_HOST_CLKGATE_HYSTERESIS_0 0x1bc #define IPFS_XUSB_HOST_MCCIF_FIFOCTRL_0 0x1dc #define CSB_PAGE_SELECT_MASK 0x7fffff #define CSB_PAGE_SELECT_SHIFT 9 #define CSB_PAGE_OFFSET_MASK 0x1ff #define CSB_PAGE_SELECT(addr) ((addr) >> (CSB_PAGE_SELECT_SHIFT) & \ CSB_PAGE_SELECT_MASK) #define CSB_PAGE_OFFSET(addr) ((addr) & CSB_PAGE_OFFSET_MASK) /* Falcon CSB registers */ #define XUSB_FALC_CPUCTL 0x100 #define CPUCTL_STARTCPU BIT(1) #define CPUCTL_STATE_HALTED BIT(4) #define CPUCTL_STATE_STOPPED BIT(5) #define XUSB_FALC_BOOTVEC 0x104 #define XUSB_FALC_DMACTL 0x10c #define XUSB_FALC_IMFILLRNG1 0x154 #define IMFILLRNG1_TAG_MASK 0xffff #define IMFILLRNG1_TAG_LO_SHIFT 0 #define IMFILLRNG1_TAG_HI_SHIFT 16 #define XUSB_FALC_IMFILLCTL 0x158 /* MP CSB registers */ #define XUSB_CSB_MP_ILOAD_ATTR 0x101a00 #define XUSB_CSB_MP_ILOAD_BASE_LO 0x101a04 #define XUSB_CSB_MP_ILOAD_BASE_HI 0x101a08 #define XUSB_CSB_MP_L2IMEMOP_SIZE 0x101a10 #define L2IMEMOP_SIZE_SRC_OFFSET_SHIFT 8 #define L2IMEMOP_SIZE_SRC_OFFSET_MASK 0x3ff #define L2IMEMOP_SIZE_SRC_COUNT_SHIFT 24 #define L2IMEMOP_SIZE_SRC_COUNT_MASK 0xff #define XUSB_CSB_MP_L2IMEMOP_TRIG 0x101a14 #define L2IMEMOP_ACTION_SHIFT 24 #define L2IMEMOP_INVALIDATE_ALL (0x40 << L2IMEMOP_ACTION_SHIFT) #define L2IMEMOP_LOAD_LOCKED_RESULT (0x11 << L2IMEMOP_ACTION_SHIFT) #define XUSB_CSB_MEMPOOL_L2IMEMOP_RESULT 0x101a18 #define L2IMEMOP_RESULT_VLD BIT(31) #define XUSB_CSB_MP_APMAP 0x10181c #define APMAP_BOOTPATH BIT(31) #define IMEM_BLOCK_SIZE 256 struct tegra_xusb_fw_header { __le32 boot_loadaddr_in_imem; __le32 boot_codedfi_offset; __le32 boot_codetag; __le32 boot_codesize; __le32 phys_memaddr; __le16 reqphys_memsize; __le16 alloc_phys_memsize; __le32 rodata_img_offset; __le32 rodata_section_start; __le32 rodata_section_end; __le32 main_fnaddr; __le32 fwimg_cksum; __le32 fwimg_created_time; __le32 imem_resident_start; __le32 imem_resident_end; __le32 idirect_start; __le32 idirect_end; __le32 l2_imem_start; __le32 l2_imem_end; __le32 version_id; u8 init_ddirect; u8 reserved[3]; __le32 phys_addr_log_buffer; __le32 total_log_entries; __le32 dequeue_ptr; __le32 dummy_var[2]; __le32 fwimg_len; u8 magic[8]; __le32 ss_low_power_entry_timeout; u8 num_hsic_port; u8 padding[139]; /* Pad to 256 bytes */ }; struct tegra_xusb_phy_type { const char *name; unsigned int num; }; struct tegra_xusb_mbox_regs { u16 cmd; u16 data_in; u16 data_out; u16 owner; }; struct tegra_xusb_context_soc { struct { const unsigned int *offsets; unsigned int num_offsets; } ipfs; struct { const unsigned int *offsets; unsigned int num_offsets; } fpci; }; struct tegra_xusb_soc { const char *firmware; const char * const *supply_names; unsigned int num_supplies; const struct tegra_xusb_phy_type *phy_types; unsigned int num_types; const struct tegra_xusb_context_soc *context; struct { struct { unsigned int offset; unsigned int count; } usb2, ulpi, hsic, usb3; } ports; struct tegra_xusb_mbox_regs mbox; bool scale_ss_clock; bool has_ipfs; bool lpm_support; bool otg_reset_sspi; }; struct tegra_xusb_context { u32 *ipfs; u32 *fpci; }; struct tegra_xusb { struct device *dev; void __iomem *regs; struct usb_hcd *hcd; struct mutex lock; int xhci_irq; int mbox_irq; int padctl_irq; void __iomem *ipfs_base; void __iomem *fpci_base; const struct tegra_xusb_soc *soc; struct regulator_bulk_data *supplies; struct tegra_xusb_padctl *padctl; struct clk *host_clk; struct clk *falcon_clk; struct clk *ss_clk; struct clk *ss_src_clk; struct clk *hs_src_clk; struct clk *fs_src_clk; struct clk *pll_u_480m; struct clk *clk_m; struct clk *pll_e; struct reset_control *host_rst; struct reset_control *ss_rst; struct device *genpd_dev_host; struct device *genpd_dev_ss; bool use_genpd; struct phy **phys; unsigned int num_phys; struct usb_phy **usbphy; unsigned int num_usb_phys; int otg_usb2_port; int otg_usb3_port; bool host_mode; struct notifier_block id_nb; struct work_struct id_work; /* Firmware loading related */ struct { size_t size; void *virt; dma_addr_t phys; } fw; bool suspended; struct tegra_xusb_context context; }; static struct hc_driver __read_mostly tegra_xhci_hc_driver; static inline u32 fpci_readl(struct tegra_xusb *tegra, unsigned int offset) { return readl(tegra->fpci_base + offset); } static inline void fpci_writel(struct tegra_xusb *tegra, u32 value, unsigned int offset) { writel(value, tegra->fpci_base + offset); } static inline u32 ipfs_readl(struct tegra_xusb *tegra, unsigned int offset) { return readl(tegra->ipfs_base + offset); } static inline void ipfs_writel(struct tegra_xusb *tegra, u32 value, unsigned int offset) { writel(value, tegra->ipfs_base + offset); } static u32 csb_readl(struct tegra_xusb *tegra, unsigned int offset) { u32 page = CSB_PAGE_SELECT(offset); u32 ofs = CSB_PAGE_OFFSET(offset); fpci_writel(tegra, page, XUSB_CFG_ARU_C11_CSBRANGE); return fpci_readl(tegra, XUSB_CFG_CSB_BASE_ADDR + ofs); } static void csb_writel(struct tegra_xusb *tegra, u32 value, unsigned int offset) { u32 page = CSB_PAGE_SELECT(offset); u32 ofs = CSB_PAGE_OFFSET(offset); fpci_writel(tegra, page, XUSB_CFG_ARU_C11_CSBRANGE); fpci_writel(tegra, value, XUSB_CFG_CSB_BASE_ADDR + ofs); } static int tegra_xusb_set_ss_clk(struct tegra_xusb *tegra, unsigned long rate) { unsigned long new_parent_rate, old_parent_rate; struct clk *clk = tegra->ss_src_clk; unsigned int div; int err; if (clk_get_rate(clk) == rate) return 0; switch (rate) { case TEGRA_XHCI_SS_HIGH_SPEED: /* * Reparent to PLLU_480M. Set divider first to avoid * overclocking. */ old_parent_rate = clk_get_rate(clk_get_parent(clk)); new_parent_rate = clk_get_rate(tegra->pll_u_480m); div = new_parent_rate / rate; err = clk_set_rate(clk, old_parent_rate / div); if (err) return err; err = clk_set_parent(clk, tegra->pll_u_480m); if (err) return err; /* * The rate should already be correct, but set it again just * to be sure. */ err = clk_set_rate(clk, rate); if (err) return err; break; case TEGRA_XHCI_SS_LOW_SPEED: /* Reparent to CLK_M */ err = clk_set_parent(clk, tegra->clk_m); if (err) return err; err = clk_set_rate(clk, rate); if (err) return err; break; default: dev_err(tegra->dev, "Invalid SS rate: %lu Hz\n", rate); return -EINVAL; } if (clk_get_rate(clk) != rate) { dev_err(tegra->dev, "SS clock doesn't match requested rate\n"); return -EINVAL; } return 0; } static unsigned long extract_field(u32 value, unsigned int start, unsigned int count) { return (value >> start) & ((1 << count) - 1); } /* Command requests from the firmware */ enum tegra_xusb_mbox_cmd { MBOX_CMD_MSG_ENABLED = 1, MBOX_CMD_INC_FALC_CLOCK, MBOX_CMD_DEC_FALC_CLOCK, MBOX_CMD_INC_SSPI_CLOCK, MBOX_CMD_DEC_SSPI_CLOCK, MBOX_CMD_SET_BW, /* no ACK/NAK required */ MBOX_CMD_SET_SS_PWR_GATING, MBOX_CMD_SET_SS_PWR_UNGATING, MBOX_CMD_SAVE_DFE_CTLE_CTX, MBOX_CMD_AIRPLANE_MODE_ENABLED, /* unused */ MBOX_CMD_AIRPLANE_MODE_DISABLED, /* unused */ MBOX_CMD_START_HSIC_IDLE, MBOX_CMD_STOP_HSIC_IDLE, MBOX_CMD_DBC_WAKE_STACK, /* unused */ MBOX_CMD_HSIC_PRETEND_CONNECT, MBOX_CMD_RESET_SSPI, MBOX_CMD_DISABLE_SS_LFPS_DETECTION, MBOX_CMD_ENABLE_SS_LFPS_DETECTION, MBOX_CMD_MAX, /* Response message to above commands */ MBOX_CMD_ACK = 128, MBOX_CMD_NAK }; struct tegra_xusb_mbox_msg { u32 cmd; u32 data; }; static inline u32 tegra_xusb_mbox_pack(const struct tegra_xusb_mbox_msg *msg) { return (msg->cmd & CMD_TYPE_MASK) << CMD_TYPE_SHIFT | (msg->data & CMD_DATA_MASK) << CMD_DATA_SHIFT; } static inline void tegra_xusb_mbox_unpack(struct tegra_xusb_mbox_msg *msg, u32 value) { msg->cmd = (value >> CMD_TYPE_SHIFT) & CMD_TYPE_MASK; msg->data = (value >> CMD_DATA_SHIFT) & CMD_DATA_MASK; } static bool tegra_xusb_mbox_cmd_requires_ack(enum tegra_xusb_mbox_cmd cmd) { switch (cmd) { case MBOX_CMD_SET_BW: case MBOX_CMD_ACK: case MBOX_CMD_NAK: return false; default: return true; } } static int tegra_xusb_mbox_send(struct tegra_xusb *tegra, const struct tegra_xusb_mbox_msg *msg) { bool wait_for_idle = false; u32 value; /* * Acquire the mailbox. The firmware still owns the mailbox for * ACK/NAK messages. */ if (!(msg->cmd == MBOX_CMD_ACK || msg->cmd == MBOX_CMD_NAK)) { value = fpci_readl(tegra, tegra->soc->mbox.owner); if (value != MBOX_OWNER_NONE) { dev_err(tegra->dev, "mailbox is busy\n"); return -EBUSY; } fpci_writel(tegra, MBOX_OWNER_SW, tegra->soc->mbox.owner); value = fpci_readl(tegra, tegra->soc->mbox.owner); if (value != MBOX_OWNER_SW) { dev_err(tegra->dev, "failed to acquire mailbox\n"); return -EBUSY; } wait_for_idle = true; } value = tegra_xusb_mbox_pack(msg); fpci_writel(tegra, value, tegra->soc->mbox.data_in); value = fpci_readl(tegra, tegra->soc->mbox.cmd); value |= MBOX_INT_EN | MBOX_DEST_FALC; fpci_writel(tegra, value, tegra->soc->mbox.cmd); if (wait_for_idle) { unsigned long timeout = jiffies + msecs_to_jiffies(250); while (time_before(jiffies, timeout)) { value = fpci_readl(tegra, tegra->soc->mbox.owner); if (value == MBOX_OWNER_NONE) break; usleep_range(10, 20); } if (time_after(jiffies, timeout)) value = fpci_readl(tegra, tegra->soc->mbox.owner); if (value != MBOX_OWNER_NONE) return -ETIMEDOUT; } return 0; } static irqreturn_t tegra_xusb_mbox_irq(int irq, void *data) { struct tegra_xusb *tegra = data; u32 value; /* clear mailbox interrupts */ value = fpci_readl(tegra, XUSB_CFG_ARU_SMI_INTR); fpci_writel(tegra, value, XUSB_CFG_ARU_SMI_INTR); if (value & MBOX_SMI_INTR_FW_HANG) dev_err(tegra->dev, "controller firmware hang\n"); return IRQ_WAKE_THREAD; } static void tegra_xusb_mbox_handle(struct tegra_xusb *tegra, const struct tegra_xusb_mbox_msg *msg) { struct tegra_xusb_padctl *padctl = tegra->padctl; const struct tegra_xusb_soc *soc = tegra->soc; struct device *dev = tegra->dev; struct tegra_xusb_mbox_msg rsp; unsigned long mask; unsigned int port; bool idle, enable; int err = 0; memset(&rsp, 0, sizeof(rsp)); switch (msg->cmd) { case MBOX_CMD_INC_FALC_CLOCK: case MBOX_CMD_DEC_FALC_CLOCK: rsp.data = clk_get_rate(tegra->falcon_clk) / 1000; if (rsp.data != msg->data) rsp.cmd = MBOX_CMD_NAK; else rsp.cmd = MBOX_CMD_ACK; break; case MBOX_CMD_INC_SSPI_CLOCK: case MBOX_CMD_DEC_SSPI_CLOCK: if (tegra->soc->scale_ss_clock) { err = tegra_xusb_set_ss_clk(tegra, msg->data * 1000); if (err < 0) rsp.cmd = MBOX_CMD_NAK; else rsp.cmd = MBOX_CMD_ACK; rsp.data = clk_get_rate(tegra->ss_src_clk) / 1000; } else { rsp.cmd = MBOX_CMD_ACK; rsp.data = msg->data; } break; case MBOX_CMD_SET_BW: /* * TODO: Request bandwidth once EMC scaling is supported. * Ignore for now since ACK/NAK is not required for SET_BW * messages. */ break; case MBOX_CMD_SAVE_DFE_CTLE_CTX: err = tegra_xusb_padctl_usb3_save_context(padctl, msg->data); if (err < 0) { dev_err(dev, "failed to save context for USB3#%u: %d\n", msg->data, err); rsp.cmd = MBOX_CMD_NAK; } else { rsp.cmd = MBOX_CMD_ACK; } rsp.data = msg->data; break; case MBOX_CMD_START_HSIC_IDLE: case MBOX_CMD_STOP_HSIC_IDLE: if (msg->cmd == MBOX_CMD_STOP_HSIC_IDLE) idle = false; else idle = true; mask = extract_field(msg->data, 1 + soc->ports.hsic.offset, soc->ports.hsic.count); for_each_set_bit(port, &mask, 32) { err = tegra_xusb_padctl_hsic_set_idle(padctl, port, idle); if (err < 0) break; } if (err < 0) { dev_err(dev, "failed to set HSIC#%u %s: %d\n", port, idle ? "idle" : "busy", err); rsp.cmd = MBOX_CMD_NAK; } else { rsp.cmd = MBOX_CMD_ACK; } rsp.data = msg->data; break; case MBOX_CMD_DISABLE_SS_LFPS_DETECTION: case MBOX_CMD_ENABLE_SS_LFPS_DETECTION: if (msg->cmd == MBOX_CMD_DISABLE_SS_LFPS_DETECTION) enable = false; else enable = true; mask = extract_field(msg->data, 1 + soc->ports.usb3.offset, soc->ports.usb3.count); for_each_set_bit(port, &mask, soc->ports.usb3.count) { err = tegra_xusb_padctl_usb3_set_lfps_detect(padctl, port, enable); if (err < 0) break; /* * wait 500us for LFPS detector to be disabled before * sending ACK */ if (!enable) usleep_range(500, 1000); } if (err < 0) { dev_err(dev, "failed to %s LFPS detection on USB3#%u: %d\n", enable ? "enable" : "disable", port, err); rsp.cmd = MBOX_CMD_NAK; } else { rsp.cmd = MBOX_CMD_ACK; } rsp.data = msg->data; break; default: dev_warn(dev, "unknown message: %#x\n", msg->cmd); break; } if (rsp.cmd) { const char *cmd = (rsp.cmd == MBOX_CMD_ACK) ? "ACK" : "NAK"; err = tegra_xusb_mbox_send(tegra, &rsp); if (err < 0) dev_err(dev, "failed to send %s: %d\n", cmd, err); } } static irqreturn_t tegra_xusb_mbox_thread(int irq, void *data) { struct tegra_xusb *tegra = data; struct tegra_xusb_mbox_msg msg; u32 value; mutex_lock(&tegra->lock); if (pm_runtime_suspended(tegra->dev) || tegra->suspended) goto out; value = fpci_readl(tegra, tegra->soc->mbox.data_out); tegra_xusb_mbox_unpack(&msg, value); value = fpci_readl(tegra, tegra->soc->mbox.cmd); value &= ~MBOX_DEST_SMI; fpci_writel(tegra, value, tegra->soc->mbox.cmd); /* clear mailbox owner if no ACK/NAK is required */ if (!tegra_xusb_mbox_cmd_requires_ack(msg.cmd)) fpci_writel(tegra, MBOX_OWNER_NONE, tegra->soc->mbox.owner); tegra_xusb_mbox_handle(tegra, &msg); out: mutex_unlock(&tegra->lock); return IRQ_HANDLED; } static void tegra_xusb_config(struct tegra_xusb *tegra) { u32 regs = tegra->hcd->rsrc_start; u32 value; if (tegra->soc->has_ipfs) { value = ipfs_readl(tegra, IPFS_XUSB_HOST_CONFIGURATION_0); value |= IPFS_EN_FPCI; ipfs_writel(tegra, value, IPFS_XUSB_HOST_CONFIGURATION_0); usleep_range(10, 20); } /* Program BAR0 space */ value = fpci_readl(tegra, XUSB_CFG_4); value &= ~(XUSB_BASE_ADDR_MASK << XUSB_BASE_ADDR_SHIFT); value |= regs & (XUSB_BASE_ADDR_MASK << XUSB_BASE_ADDR_SHIFT); fpci_writel(tegra, value, XUSB_CFG_4); usleep_range(100, 200); /* Enable bus master */ value = fpci_readl(tegra, XUSB_CFG_1); value |= XUSB_IO_SPACE_EN | XUSB_MEM_SPACE_EN | XUSB_BUS_MASTER_EN; fpci_writel(tegra, value, XUSB_CFG_1); if (tegra->soc->has_ipfs) { /* Enable interrupt assertion */ value = ipfs_readl(tegra, IPFS_XUSB_HOST_INTR_MASK_0); value |= IPFS_IP_INT_MASK; ipfs_writel(tegra, value, IPFS_XUSB_HOST_INTR_MASK_0); /* Set hysteresis */ ipfs_writel(tegra, 0x80, IPFS_XUSB_HOST_CLKGATE_HYSTERESIS_0); } } static int tegra_xusb_clk_enable(struct tegra_xusb *tegra) { int err; err = clk_prepare_enable(tegra->pll_e); if (err < 0) return err; err = clk_prepare_enable(tegra->host_clk); if (err < 0) goto disable_plle; err = clk_prepare_enable(tegra->ss_clk); if (err < 0) goto disable_host; err = clk_prepare_enable(tegra->falcon_clk); if (err < 0) goto disable_ss; err = clk_prepare_enable(tegra->fs_src_clk); if (err < 0) goto disable_falc; err = clk_prepare_enable(tegra->hs_src_clk); if (err < 0) goto disable_fs_src; if (tegra->soc->scale_ss_clock) { err = tegra_xusb_set_ss_clk(tegra, TEGRA_XHCI_SS_HIGH_SPEED); if (err < 0) goto disable_hs_src; } return 0; disable_hs_src: clk_disable_unprepare(tegra->hs_src_clk); disable_fs_src: clk_disable_unprepare(tegra->fs_src_clk); disable_falc: clk_disable_unprepare(tegra->falcon_clk); disable_ss: clk_disable_unprepare(tegra->ss_clk); disable_host: clk_disable_unprepare(tegra->host_clk); disable_plle: clk_disable_unprepare(tegra->pll_e); return err; } static void tegra_xusb_clk_disable(struct tegra_xusb *tegra) { clk_disable_unprepare(tegra->pll_e); clk_disable_unprepare(tegra->host_clk); clk_disable_unprepare(tegra->ss_clk); clk_disable_unprepare(tegra->falcon_clk); clk_disable_unprepare(tegra->fs_src_clk); clk_disable_unprepare(tegra->hs_src_clk); } static int tegra_xusb_phy_enable(struct tegra_xusb *tegra) { unsigned int i; int err; for (i = 0; i < tegra->num_phys; i++) { err = phy_init(tegra->phys[i]); if (err) goto disable_phy; err = phy_power_on(tegra->phys[i]); if (err) { phy_exit(tegra->phys[i]); goto disable_phy; } } return 0; disable_phy: while (i--) { phy_power_off(tegra->phys[i]); phy_exit(tegra->phys[i]); } return err; } static void tegra_xusb_phy_disable(struct tegra_xusb *tegra) { unsigned int i; for (i = 0; i < tegra->num_phys; i++) { phy_power_off(tegra->phys[i]); phy_exit(tegra->phys[i]); } } #ifdef CONFIG_PM_SLEEP static int tegra_xusb_init_context(struct tegra_xusb *tegra) { const struct tegra_xusb_context_soc *soc = tegra->soc->context; tegra->context.ipfs = devm_kcalloc(tegra->dev, soc->ipfs.num_offsets, sizeof(u32), GFP_KERNEL); if (!tegra->context.ipfs) return -ENOMEM; tegra->context.fpci = devm_kcalloc(tegra->dev, soc->fpci.num_offsets, sizeof(u32), GFP_KERNEL); if (!tegra->context.fpci) return -ENOMEM; return 0; } #else static inline int tegra_xusb_init_context(struct tegra_xusb *tegra) { return 0; } #endif static int tegra_xusb_request_firmware(struct tegra_xusb *tegra) { struct tegra_xusb_fw_header *header; const struct firmware *fw; int err; err = request_firmware(&fw, tegra->soc->firmware, tegra->dev); if (err < 0) { dev_err(tegra->dev, "failed to request firmware: %d\n", err); return err; } /* Load Falcon controller with its firmware. */ header = (struct tegra_xusb_fw_header *)fw->data; tegra->fw.size = le32_to_cpu(header->fwimg_len); tegra->fw.virt = dma_alloc_coherent(tegra->dev, tegra->fw.size, &tegra->fw.phys, GFP_KERNEL); if (!tegra->fw.virt) { dev_err(tegra->dev, "failed to allocate memory for firmware\n"); release_firmware(fw); return -ENOMEM; } header = (struct tegra_xusb_fw_header *)tegra->fw.virt; memcpy(tegra->fw.virt, fw->data, tegra->fw.size); release_firmware(fw); return 0; } static int tegra_xusb_load_firmware(struct tegra_xusb *tegra) { unsigned int code_tag_blocks, code_size_blocks, code_blocks; struct xhci_cap_regs __iomem *cap = tegra->regs; struct tegra_xusb_fw_header *header; struct device *dev = tegra->dev; struct xhci_op_regs __iomem *op; unsigned long timeout; time64_t timestamp; struct tm time; u64 address; u32 value; int err; header = (struct tegra_xusb_fw_header *)tegra->fw.virt; op = tegra->regs + HC_LENGTH(readl(&cap->hc_capbase)); if (csb_readl(tegra, XUSB_CSB_MP_ILOAD_BASE_LO) != 0) { dev_info(dev, "Firmware already loaded, Falcon state %#x\n", csb_readl(tegra, XUSB_FALC_CPUCTL)); return 0; } /* Program the size of DFI into ILOAD_ATTR. */ csb_writel(tegra, tegra->fw.size, XUSB_CSB_MP_ILOAD_ATTR); /* * Boot code of the firmware reads the ILOAD_BASE registers * to get to the start of the DFI in system memory. */ address = tegra->fw.phys + sizeof(*header); csb_writel(tegra, address >> 32, XUSB_CSB_MP_ILOAD_BASE_HI); csb_writel(tegra, address, XUSB_CSB_MP_ILOAD_BASE_LO); /* Set BOOTPATH to 1 in APMAP. */ csb_writel(tegra, APMAP_BOOTPATH, XUSB_CSB_MP_APMAP); /* Invalidate L2IMEM. */ csb_writel(tegra, L2IMEMOP_INVALIDATE_ALL, XUSB_CSB_MP_L2IMEMOP_TRIG); /* * Initiate fetch of bootcode from system memory into L2IMEM. * Program bootcode location and size in system memory. */ code_tag_blocks = DIV_ROUND_UP(le32_to_cpu(header->boot_codetag), IMEM_BLOCK_SIZE); code_size_blocks = DIV_ROUND_UP(le32_to_cpu(header->boot_codesize), IMEM_BLOCK_SIZE); code_blocks = code_tag_blocks + code_size_blocks; value = ((code_tag_blocks & L2IMEMOP_SIZE_SRC_OFFSET_MASK) << L2IMEMOP_SIZE_SRC_OFFSET_SHIFT) | ((code_size_blocks & L2IMEMOP_SIZE_SRC_COUNT_MASK) << L2IMEMOP_SIZE_SRC_COUNT_SHIFT); csb_writel(tegra, value, XUSB_CSB_MP_L2IMEMOP_SIZE); /* Trigger L2IMEM load operation. */ csb_writel(tegra, L2IMEMOP_LOAD_LOCKED_RESULT, XUSB_CSB_MP_L2IMEMOP_TRIG); /* Setup Falcon auto-fill. */ csb_writel(tegra, code_size_blocks, XUSB_FALC_IMFILLCTL); value = ((code_tag_blocks & IMFILLRNG1_TAG_MASK) << IMFILLRNG1_TAG_LO_SHIFT) | ((code_blocks & IMFILLRNG1_TAG_MASK) << IMFILLRNG1_TAG_HI_SHIFT); csb_writel(tegra, value, XUSB_FALC_IMFILLRNG1); csb_writel(tegra, 0, XUSB_FALC_DMACTL); /* wait for RESULT_VLD to get set */ #define tegra_csb_readl(offset) csb_readl(tegra, offset) err = readx_poll_timeout(tegra_csb_readl, XUSB_CSB_MEMPOOL_L2IMEMOP_RESULT, value, value & L2IMEMOP_RESULT_VLD, 100, 10000); if (err < 0) { dev_err(dev, "DMA controller not ready %#010x\n", value); return err; } #undef tegra_csb_readl csb_writel(tegra, le32_to_cpu(header->boot_codetag), XUSB_FALC_BOOTVEC); /* Boot Falcon CPU and wait for USBSTS_CNR to get cleared. */ csb_writel(tegra, CPUCTL_STARTCPU, XUSB_FALC_CPUCTL); timeout = jiffies + msecs_to_jiffies(200); do { value = readl(&op->status); if ((value & STS_CNR) == 0) break; usleep_range(1000, 2000); } while (time_is_after_jiffies(timeout)); value = readl(&op->status); if (value & STS_CNR) { value = csb_readl(tegra, XUSB_FALC_CPUCTL); dev_err(dev, "XHCI controller not read: %#010x\n", value); return -EIO; } timestamp = le32_to_cpu(header->fwimg_created_time); time64_to_tm(timestamp, 0, &time); dev_info(dev, "Firmware timestamp: %ld-%02d-%02d %02d:%02d:%02d UTC\n", time.tm_year + 1900, time.tm_mon + 1, time.tm_mday, time.tm_hour, time.tm_min, time.tm_sec); return 0; } static void tegra_xusb_powerdomain_remove(struct device *dev, struct tegra_xusb *tegra) { if (!tegra->use_genpd) return; if (!IS_ERR_OR_NULL(tegra->genpd_dev_ss)) dev_pm_domain_detach(tegra->genpd_dev_ss, true); if (!IS_ERR_OR_NULL(tegra->genpd_dev_host)) dev_pm_domain_detach(tegra->genpd_dev_host, true); } static int tegra_xusb_powerdomain_init(struct device *dev, struct tegra_xusb *tegra) { int err; tegra->genpd_dev_host = dev_pm_domain_attach_by_name(dev, "xusb_host"); if (IS_ERR(tegra->genpd_dev_host)) { err = PTR_ERR(tegra->genpd_dev_host); dev_err(dev, "failed to get host pm-domain: %d\n", err); return err; } tegra->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "xusb_ss"); if (IS_ERR(tegra->genpd_dev_ss)) { err = PTR_ERR(tegra->genpd_dev_ss); dev_err(dev, "failed to get superspeed pm-domain: %d\n", err); return err; } tegra->use_genpd = true; return 0; } static int tegra_xusb_unpowergate_partitions(struct tegra_xusb *tegra) { struct device *dev = tegra->dev; int rc; if (tegra->use_genpd) { rc = pm_runtime_get_sync(tegra->genpd_dev_ss); if (rc < 0) { dev_err(dev, "failed to enable XUSB SS partition\n"); return rc; } rc = pm_runtime_get_sync(tegra->genpd_dev_host); if (rc < 0) { dev_err(dev, "failed to enable XUSB Host partition\n"); pm_runtime_put_sync(tegra->genpd_dev_ss); return rc; } } else { rc = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_XUSBA, tegra->ss_clk, tegra->ss_rst); if (rc < 0) { dev_err(dev, "failed to enable XUSB SS partition\n"); return rc; } rc = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_XUSBC, tegra->host_clk, tegra->host_rst); if (rc < 0) { dev_err(dev, "failed to enable XUSB Host partition\n"); tegra_powergate_power_off(TEGRA_POWERGATE_XUSBA); return rc; } } return 0; } static int tegra_xusb_powergate_partitions(struct tegra_xusb *tegra) { struct device *dev = tegra->dev; int rc; if (tegra->use_genpd) { rc = pm_runtime_put_sync(tegra->genpd_dev_host); if (rc < 0) { dev_err(dev, "failed to disable XUSB Host partition\n"); return rc; } rc = pm_runtime_put_sync(tegra->genpd_dev_ss); if (rc < 0) { dev_err(dev, "failed to disable XUSB SS partition\n"); pm_runtime_get_sync(tegra->genpd_dev_host); return rc; } } else { rc = tegra_powergate_power_off(TEGRA_POWERGATE_XUSBC); if (rc < 0) { dev_err(dev, "failed to disable XUSB Host partition\n"); return rc; } rc = tegra_powergate_power_off(TEGRA_POWERGATE_XUSBA); if (rc < 0) { dev_err(dev, "failed to disable XUSB SS partition\n"); tegra_powergate_sequence_power_up(TEGRA_POWERGATE_XUSBC, tegra->host_clk, tegra->host_rst); return rc; } } return 0; } static int __tegra_xusb_enable_firmware_messages(struct tegra_xusb *tegra) { struct tegra_xusb_mbox_msg msg; int err; /* Enable firmware messages from controller. */ msg.cmd = MBOX_CMD_MSG_ENABLED; msg.data = 0; err = tegra_xusb_mbox_send(tegra, &msg); if (err < 0) dev_err(tegra->dev, "failed to enable messages: %d\n", err); return err; } static irqreturn_t tegra_xusb_padctl_irq(int irq, void *data) { struct tegra_xusb *tegra = data; mutex_lock(&tegra->lock); if (tegra->suspended) { mutex_unlock(&tegra->lock); return IRQ_HANDLED; } mutex_unlock(&tegra->lock); pm_runtime_resume(tegra->dev); return IRQ_HANDLED; } static int tegra_xusb_enable_firmware_messages(struct tegra_xusb *tegra) { int err; mutex_lock(&tegra->lock); err = __tegra_xusb_enable_firmware_messages(tegra); mutex_unlock(&tegra->lock); return err; } static void tegra_xhci_set_port_power(struct tegra_xusb *tegra, bool main, bool set) { struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd); struct usb_hcd *hcd = main ? xhci->main_hcd : xhci->shared_hcd; unsigned int wait = (!main && !set) ? 1000 : 10; u16 typeReq = set ? SetPortFeature : ClearPortFeature; u16 wIndex = main ? tegra->otg_usb2_port + 1 : tegra->otg_usb3_port + 1; u32 status; u32 stat_power = main ? USB_PORT_STAT_POWER : USB_SS_PORT_STAT_POWER; u32 status_val = set ? stat_power : 0; dev_dbg(tegra->dev, "%s():%s %s port power\n", __func__, set ? "set" : "clear", main ? "HS" : "SS"); hcd->driver->hub_control(hcd, typeReq, USB_PORT_FEAT_POWER, wIndex, NULL, 0); do { tegra_xhci_hc_driver.hub_control(hcd, GetPortStatus, 0, wIndex, (char *) &status, sizeof(status)); if (status_val == (status & stat_power)) break; if (!main && !set) usleep_range(600, 700); else usleep_range(10, 20); } while (--wait > 0); if (status_val != (status & stat_power)) dev_info(tegra->dev, "failed to %s %s PP %d\n", set ? "set" : "clear", main ? "HS" : "SS", status); } static struct phy *tegra_xusb_get_phy(struct tegra_xusb *tegra, char *name, int port) { unsigned int i, phy_count = 0; for (i = 0; i < tegra->soc->num_types; i++) { if (!strncmp(tegra->soc->phy_types[i].name, name, strlen(name))) return tegra->phys[phy_count+port]; phy_count += tegra->soc->phy_types[i].num; } return NULL; } static void tegra_xhci_id_work(struct work_struct *work) { struct tegra_xusb *tegra = container_of(work, struct tegra_xusb, id_work); struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd); struct tegra_xusb_mbox_msg msg; struct phy *phy = tegra_xusb_get_phy(tegra, "usb2", tegra->otg_usb2_port); u32 status; int ret; dev_dbg(tegra->dev, "host mode %s\n", tegra->host_mode ? "on" : "off"); mutex_lock(&tegra->lock); if (tegra->host_mode) phy_set_mode_ext(phy, PHY_MODE_USB_OTG, USB_ROLE_HOST); else phy_set_mode_ext(phy, PHY_MODE_USB_OTG, USB_ROLE_NONE); mutex_unlock(&tegra->lock); if (tegra->host_mode) { /* switch to host mode */ if (tegra->otg_usb3_port >= 0) { if (tegra->soc->otg_reset_sspi) { /* set PP=0 */ tegra_xhci_hc_driver.hub_control( xhci->shared_hcd, GetPortStatus, 0, tegra->otg_usb3_port+1, (char *) &status, sizeof(status)); if (status & USB_SS_PORT_STAT_POWER) tegra_xhci_set_port_power(tegra, false, false); /* reset OTG port SSPI */ msg.cmd = MBOX_CMD_RESET_SSPI; msg.data = tegra->otg_usb3_port+1; ret = tegra_xusb_mbox_send(tegra, &msg); if (ret < 0) { dev_info(tegra->dev, "failed to RESET_SSPI %d\n", ret); } } tegra_xhci_set_port_power(tegra, false, true); } tegra_xhci_set_port_power(tegra, true, true); } else { if (tegra->otg_usb3_port >= 0) tegra_xhci_set_port_power(tegra, false, false); tegra_xhci_set_port_power(tegra, true, false); } } #if IS_ENABLED(CONFIG_PM) || IS_ENABLED(CONFIG_PM_SLEEP) static bool is_usb2_otg_phy(struct tegra_xusb *tegra, unsigned int index) { return (tegra->usbphy[index] != NULL); } static bool is_usb3_otg_phy(struct tegra_xusb *tegra, unsigned int index) { struct tegra_xusb_padctl *padctl = tegra->padctl; unsigned int i; int port; for (i = 0; i < tegra->num_usb_phys; i++) { if (is_usb2_otg_phy(tegra, i)) { port = tegra_xusb_padctl_get_usb3_companion(padctl, i); if ((port >= 0) && (index == (unsigned int)port)) return true; } } return false; } static bool is_host_mode_phy(struct tegra_xusb *tegra, unsigned int phy_type, unsigned int index) { if (strcmp(tegra->soc->phy_types[phy_type].name, "hsic") == 0) return true; if (strcmp(tegra->soc->phy_types[phy_type].name, "usb2") == 0) { if (is_usb2_otg_phy(tegra, index)) return ((index == tegra->otg_usb2_port) && tegra->host_mode); else return true; } if (strcmp(tegra->soc->phy_types[phy_type].name, "usb3") == 0) { if (is_usb3_otg_phy(tegra, index)) return ((index == tegra->otg_usb3_port) && tegra->host_mode); else return true; } return false; } #endif static int tegra_xusb_get_usb2_port(struct tegra_xusb *tegra, struct usb_phy *usbphy) { unsigned int i; for (i = 0; i < tegra->num_usb_phys; i++) { if (tegra->usbphy[i] && usbphy == tegra->usbphy[i]) return i; } return -1; } static int tegra_xhci_id_notify(struct notifier_block *nb, unsigned long action, void *data) { struct tegra_xusb *tegra = container_of(nb, struct tegra_xusb, id_nb); struct usb_phy *usbphy = (struct usb_phy *)data; dev_dbg(tegra->dev, "%s(): action is %d", __func__, usbphy->last_event); if ((tegra->host_mode && usbphy->last_event == USB_EVENT_ID) || (!tegra->host_mode && usbphy->last_event != USB_EVENT_ID)) { dev_dbg(tegra->dev, "Same role(%d) received. Ignore", tegra->host_mode); return NOTIFY_OK; } tegra->otg_usb2_port = tegra_xusb_get_usb2_port(tegra, usbphy); tegra->otg_usb3_port = tegra_xusb_padctl_get_usb3_companion( tegra->padctl, tegra->otg_usb2_port); tegra->host_mode = (usbphy->last_event == USB_EVENT_ID) ? true : false; schedule_work(&tegra->id_work); return NOTIFY_OK; } static int tegra_xusb_init_usb_phy(struct tegra_xusb *tegra) { unsigned int i; tegra->usbphy = devm_kcalloc(tegra->dev, tegra->num_usb_phys, sizeof(*tegra->usbphy), GFP_KERNEL); if (!tegra->usbphy) return -ENOMEM; INIT_WORK(&tegra->id_work, tegra_xhci_id_work); tegra->id_nb.notifier_call = tegra_xhci_id_notify; tegra->otg_usb2_port = -EINVAL; tegra->otg_usb3_port = -EINVAL; for (i = 0; i < tegra->num_usb_phys; i++) { struct phy *phy = tegra_xusb_get_phy(tegra, "usb2", i); if (!phy) continue; tegra->usbphy[i] = devm_usb_get_phy_by_node(tegra->dev, phy->dev.of_node, &tegra->id_nb); if (!IS_ERR(tegra->usbphy[i])) { dev_dbg(tegra->dev, "usbphy-%d registered", i); otg_set_host(tegra->usbphy[i]->otg, &tegra->hcd->self); } else { /* * usb-phy is optional, continue if its not available. */ tegra->usbphy[i] = NULL; } } return 0; } static void tegra_xusb_deinit_usb_phy(struct tegra_xusb *tegra) { unsigned int i; cancel_work_sync(&tegra->id_work); for (i = 0; i < tegra->num_usb_phys; i++) if (tegra->usbphy[i]) otg_set_host(tegra->usbphy[i]->otg, NULL); } static int tegra_xusb_probe(struct platform_device *pdev) { struct tegra_xusb *tegra; struct device_node *np; struct resource *regs; struct xhci_hcd *xhci; unsigned int i, j, k; struct phy *phy; int err; BUILD_BUG_ON(sizeof(struct tegra_xusb_fw_header) != 256); tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL); if (!tegra) return -ENOMEM; tegra->soc = of_device_get_match_data(&pdev->dev); mutex_init(&tegra->lock); tegra->dev = &pdev->dev; err = tegra_xusb_init_context(tegra); if (err < 0) return err; regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); tegra->regs = devm_ioremap_resource(&pdev->dev, regs); if (IS_ERR(tegra->regs)) return PTR_ERR(tegra->regs); tegra->fpci_base = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(tegra->fpci_base)) return PTR_ERR(tegra->fpci_base); if (tegra->soc->has_ipfs) { tegra->ipfs_base = devm_platform_ioremap_resource(pdev, 2); if (IS_ERR(tegra->ipfs_base)) return PTR_ERR(tegra->ipfs_base); } tegra->xhci_irq = platform_get_irq(pdev, 0); if (tegra->xhci_irq < 0) return tegra->xhci_irq; tegra->mbox_irq = platform_get_irq(pdev, 1); if (tegra->mbox_irq < 0) return tegra->mbox_irq; tegra->padctl = tegra_xusb_padctl_get(&pdev->dev); if (IS_ERR(tegra->padctl)) return PTR_ERR(tegra->padctl); np = of_parse_phandle(pdev->dev.of_node, "nvidia,xusb-padctl", 0); if (!np) return -ENODEV; tegra->padctl_irq = of_irq_get(np, 0); if (tegra->padctl_irq <= 0) return (tegra->padctl_irq == 0) ? -ENODEV : tegra->padctl_irq; tegra->host_clk = devm_clk_get(&pdev->dev, "xusb_host"); if (IS_ERR(tegra->host_clk)) { err = PTR_ERR(tegra->host_clk); dev_err(&pdev->dev, "failed to get xusb_host: %d\n", err); goto put_padctl; } tegra->falcon_clk = devm_clk_get(&pdev->dev, "xusb_falcon_src"); if (IS_ERR(tegra->falcon_clk)) { err = PTR_ERR(tegra->falcon_clk); dev_err(&pdev->dev, "failed to get xusb_falcon_src: %d\n", err); goto put_padctl; } tegra->ss_clk = devm_clk_get(&pdev->dev, "xusb_ss"); if (IS_ERR(tegra->ss_clk)) { err = PTR_ERR(tegra->ss_clk); dev_err(&pdev->dev, "failed to get xusb_ss: %d\n", err); goto put_padctl; } tegra->ss_src_clk = devm_clk_get(&pdev->dev, "xusb_ss_src"); if (IS_ERR(tegra->ss_src_clk)) { err = PTR_ERR(tegra->ss_src_clk); dev_err(&pdev->dev, "failed to get xusb_ss_src: %d\n", err); goto put_padctl; } tegra->hs_src_clk = devm_clk_get(&pdev->dev, "xusb_hs_src"); if (IS_ERR(tegra->hs_src_clk)) { err = PTR_ERR(tegra->hs_src_clk); dev_err(&pdev->dev, "failed to get xusb_hs_src: %d\n", err); goto put_padctl; } tegra->fs_src_clk = devm_clk_get(&pdev->dev, "xusb_fs_src"); if (IS_ERR(tegra->fs_src_clk)) { err = PTR_ERR(tegra->fs_src_clk); dev_err(&pdev->dev, "failed to get xusb_fs_src: %d\n", err); goto put_padctl; } tegra->pll_u_480m = devm_clk_get(&pdev->dev, "pll_u_480m"); if (IS_ERR(tegra->pll_u_480m)) { err = PTR_ERR(tegra->pll_u_480m); dev_err(&pdev->dev, "failed to get pll_u_480m: %d\n", err); goto put_padctl; } tegra->clk_m = devm_clk_get(&pdev->dev, "clk_m"); if (IS_ERR(tegra->clk_m)) { err = PTR_ERR(tegra->clk_m); dev_err(&pdev->dev, "failed to get clk_m: %d\n", err); goto put_padctl; } tegra->pll_e = devm_clk_get(&pdev->dev, "pll_e"); if (IS_ERR(tegra->pll_e)) { err = PTR_ERR(tegra->pll_e); dev_err(&pdev->dev, "failed to get pll_e: %d\n", err); goto put_padctl; } if (!of_property_read_bool(pdev->dev.of_node, "power-domains")) { tegra->host_rst = devm_reset_control_get(&pdev->dev, "xusb_host"); if (IS_ERR(tegra->host_rst)) { err = PTR_ERR(tegra->host_rst); dev_err(&pdev->dev, "failed to get xusb_host reset: %d\n", err); goto put_padctl; } tegra->ss_rst = devm_reset_control_get(&pdev->dev, "xusb_ss"); if (IS_ERR(tegra->ss_rst)) { err = PTR_ERR(tegra->ss_rst); dev_err(&pdev->dev, "failed to get xusb_ss reset: %d\n", err); goto put_padctl; } } else { err = tegra_xusb_powerdomain_init(&pdev->dev, tegra); if (err) goto put_powerdomains; } tegra->supplies = devm_kcalloc(&pdev->dev, tegra->soc->num_supplies, sizeof(*tegra->supplies), GFP_KERNEL); if (!tegra->supplies) { err = -ENOMEM; goto put_powerdomains; } regulator_bulk_set_supply_names(tegra->supplies, tegra->soc->supply_names, tegra->soc->num_supplies); err = devm_regulator_bulk_get(&pdev->dev, tegra->soc->num_supplies, tegra->supplies); if (err) { dev_err(&pdev->dev, "failed to get regulators: %d\n", err); goto put_powerdomains; } for (i = 0; i < tegra->soc->num_types; i++) { if (!strncmp(tegra->soc->phy_types[i].name, "usb2", 4)) tegra->num_usb_phys = tegra->soc->phy_types[i].num; tegra->num_phys += tegra->soc->phy_types[i].num; } tegra->phys = devm_kcalloc(&pdev->dev, tegra->num_phys, sizeof(*tegra->phys), GFP_KERNEL); if (!tegra->phys) { err = -ENOMEM; goto put_powerdomains; } for (i = 0, k = 0; i < tegra->soc->num_types; i++) { char prop[8]; for (j = 0; j < tegra->soc->phy_types[i].num; j++) { snprintf(prop, sizeof(prop), "%s-%d", tegra->soc->phy_types[i].name, j); phy = devm_phy_optional_get(&pdev->dev, prop); if (IS_ERR(phy)) { dev_err(&pdev->dev, "failed to get PHY %s: %ld\n", prop, PTR_ERR(phy)); err = PTR_ERR(phy); goto put_powerdomains; } tegra->phys[k++] = phy; } } tegra->hcd = usb_create_hcd(&tegra_xhci_hc_driver, &pdev->dev, dev_name(&pdev->dev)); if (!tegra->hcd) { err = -ENOMEM; goto put_powerdomains; } tegra->hcd->skip_phy_initialization = 1; tegra->hcd->regs = tegra->regs; tegra->hcd->rsrc_start = regs->start; tegra->hcd->rsrc_len = resource_size(regs); /* * This must happen after usb_create_hcd(), because usb_create_hcd() * will overwrite the drvdata of the device with the hcd it creates. */ platform_set_drvdata(pdev, tegra); err = tegra_xusb_clk_enable(tegra); if (err) { dev_err(tegra->dev, "failed to enable clocks: %d\n", err); goto put_hcd; } err = regulator_bulk_enable(tegra->soc->num_supplies, tegra->supplies); if (err) { dev_err(tegra->dev, "failed to enable regulators: %d\n", err); goto disable_clk; } err = tegra_xusb_phy_enable(tegra); if (err < 0) { dev_err(&pdev->dev, "failed to enable PHYs: %d\n", err); goto disable_regulator; } /* * The XUSB Falcon microcontroller can only address 40 bits, so set * the DMA mask accordingly. */ err = dma_set_mask_and_coherent(tegra->dev, DMA_BIT_MASK(40)); if (err < 0) { dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err); goto disable_phy; } err = tegra_xusb_request_firmware(tegra); if (err < 0) { dev_err(&pdev->dev, "failed to request firmware: %d\n", err); goto disable_phy; } err = tegra_xusb_unpowergate_partitions(tegra); if (err) goto free_firmware; tegra_xusb_config(tegra); err = tegra_xusb_load_firmware(tegra); if (err < 0) { dev_err(&pdev->dev, "failed to load firmware: %d\n", err); goto powergate; } err = usb_add_hcd(tegra->hcd, tegra->xhci_irq, IRQF_SHARED); if (err < 0) { dev_err(&pdev->dev, "failed to add USB HCD: %d\n", err); goto powergate; } device_wakeup_enable(tegra->hcd->self.controller); xhci = hcd_to_xhci(tegra->hcd); xhci->shared_hcd = usb_create_shared_hcd(&tegra_xhci_hc_driver, &pdev->dev, dev_name(&pdev->dev), tegra->hcd); if (!xhci->shared_hcd) { dev_err(&pdev->dev, "failed to create shared HCD\n"); err = -ENOMEM; goto remove_usb2; } err = usb_add_hcd(xhci->shared_hcd, tegra->xhci_irq, IRQF_SHARED); if (err < 0) { dev_err(&pdev->dev, "failed to add shared HCD: %d\n", err); goto put_usb3; } err = devm_request_threaded_irq(&pdev->dev, tegra->mbox_irq, tegra_xusb_mbox_irq, tegra_xusb_mbox_thread, 0, dev_name(&pdev->dev), tegra); if (err < 0) { dev_err(&pdev->dev, "failed to request IRQ: %d\n", err); goto remove_usb3; } err = devm_request_threaded_irq(&pdev->dev, tegra->padctl_irq, NULL, tegra_xusb_padctl_irq, IRQF_ONESHOT, dev_name(&pdev->dev), tegra); if (err < 0) { dev_err(&pdev->dev, "failed to request padctl IRQ: %d\n", err); goto remove_usb3; } err = tegra_xusb_enable_firmware_messages(tegra); if (err < 0) { dev_err(&pdev->dev, "failed to enable messages: %d\n", err); goto remove_usb3; } err = tegra_xusb_init_usb_phy(tegra); if (err < 0) { dev_err(&pdev->dev, "failed to init USB PHY: %d\n", err); goto remove_usb3; } /* Enable wake for both USB 2.0 and USB 3.0 roothubs */ device_init_wakeup(&tegra->hcd->self.root_hub->dev, true); device_init_wakeup(&xhci->shared_hcd->self.root_hub->dev, true); device_init_wakeup(tegra->dev, true); pm_runtime_use_autosuspend(tegra->dev); pm_runtime_set_autosuspend_delay(tegra->dev, 2000); pm_runtime_mark_last_busy(tegra->dev); pm_runtime_set_active(tegra->dev); pm_runtime_enable(tegra->dev); return 0; remove_usb3: usb_remove_hcd(xhci->shared_hcd); put_usb3: usb_put_hcd(xhci->shared_hcd); remove_usb2: usb_remove_hcd(tegra->hcd); powergate: tegra_xusb_powergate_partitions(tegra); free_firmware: dma_free_coherent(&pdev->dev, tegra->fw.size, tegra->fw.virt, tegra->fw.phys); disable_phy: tegra_xusb_phy_disable(tegra); disable_regulator: regulator_bulk_disable(tegra->soc->num_supplies, tegra->supplies); disable_clk: tegra_xusb_clk_disable(tegra); put_hcd: usb_put_hcd(tegra->hcd); put_powerdomains: tegra_xusb_powerdomain_remove(&pdev->dev, tegra); put_padctl: tegra_xusb_padctl_put(tegra->padctl); return err; } static int tegra_xusb_remove(struct platform_device *pdev) { struct tegra_xusb *tegra = platform_get_drvdata(pdev); struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd); tegra_xusb_deinit_usb_phy(tegra); pm_runtime_get_sync(&pdev->dev); usb_remove_hcd(xhci->shared_hcd); usb_put_hcd(xhci->shared_hcd); xhci->shared_hcd = NULL; usb_remove_hcd(tegra->hcd); usb_put_hcd(tegra->hcd); dma_free_coherent(&pdev->dev, tegra->fw.size, tegra->fw.virt, tegra->fw.phys); pm_runtime_disable(&pdev->dev); pm_runtime_put(&pdev->dev); tegra_xusb_powergate_partitions(tegra); tegra_xusb_powerdomain_remove(&pdev->dev, tegra); tegra_xusb_phy_disable(tegra); tegra_xusb_clk_disable(tegra); regulator_bulk_disable(tegra->soc->num_supplies, tegra->supplies); tegra_xusb_padctl_put(tegra->padctl); return 0; } #if IS_ENABLED(CONFIG_PM) || IS_ENABLED(CONFIG_PM_SLEEP) static bool xhci_hub_ports_suspended(struct xhci_hub *hub) { struct device *dev = hub->hcd->self.controller; bool status = true; unsigned int i; u32 value; for (i = 0; i < hub->num_ports; i++) { value = readl(hub->ports[i]->addr); if ((value & PORT_PE) == 0) continue; if ((value & PORT_PLS_MASK) != XDEV_U3) { dev_info(dev, "%u-%u isn't suspended: %#010x\n", hub->hcd->self.busnum, i + 1, value); status = false; } } return status; } static int tegra_xusb_check_ports(struct tegra_xusb *tegra) { struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd); struct xhci_bus_state *bus_state = &xhci->usb2_rhub.bus_state; unsigned long flags; int err = 0; if (bus_state->bus_suspended) { /* xusb_hub_suspend() has just directed one or more USB2 port(s) * to U3 state, it takes 3ms to enter U3. */ usleep_range(3000, 4000); } spin_lock_irqsave(&xhci->lock, flags); if (!xhci_hub_ports_suspended(&xhci->usb2_rhub) || !xhci_hub_ports_suspended(&xhci->usb3_rhub)) err = -EBUSY; spin_unlock_irqrestore(&xhci->lock, flags); return err; } static void tegra_xusb_save_context(struct tegra_xusb *tegra) { const struct tegra_xusb_context_soc *soc = tegra->soc->context; struct tegra_xusb_context *ctx = &tegra->context; unsigned int i; if (soc->ipfs.num_offsets > 0) { for (i = 0; i < soc->ipfs.num_offsets; i++) ctx->ipfs[i] = ipfs_readl(tegra, soc->ipfs.offsets[i]); } if (soc->fpci.num_offsets > 0) { for (i = 0; i < soc->fpci.num_offsets; i++) ctx->fpci[i] = fpci_readl(tegra, soc->fpci.offsets[i]); } } static void tegra_xusb_restore_context(struct tegra_xusb *tegra) { const struct tegra_xusb_context_soc *soc = tegra->soc->context; struct tegra_xusb_context *ctx = &tegra->context; unsigned int i; if (soc->fpci.num_offsets > 0) { for (i = 0; i < soc->fpci.num_offsets; i++) fpci_writel(tegra, ctx->fpci[i], soc->fpci.offsets[i]); } if (soc->ipfs.num_offsets > 0) { for (i = 0; i < soc->ipfs.num_offsets; i++) ipfs_writel(tegra, ctx->ipfs[i], soc->ipfs.offsets[i]); } } static enum usb_device_speed tegra_xhci_portsc_to_speed(struct tegra_xusb *tegra, u32 portsc) { if (DEV_LOWSPEED(portsc)) return USB_SPEED_LOW; if (DEV_HIGHSPEED(portsc)) return USB_SPEED_HIGH; if (DEV_FULLSPEED(portsc)) return USB_SPEED_FULL; if (DEV_SUPERSPEED_ANY(portsc)) return USB_SPEED_SUPER; return USB_SPEED_UNKNOWN; } static void tegra_xhci_enable_phy_sleepwalk_wake(struct tegra_xusb *tegra) { struct tegra_xusb_padctl *padctl = tegra->padctl; struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd); enum usb_device_speed speed; struct phy *phy; unsigned int index, offset; unsigned int i, j, k; struct xhci_hub *rhub; u32 portsc; for (i = 0, k = 0; i < tegra->soc->num_types; i++) { if (strcmp(tegra->soc->phy_types[i].name, "usb3") == 0) rhub = &xhci->usb3_rhub; else rhub = &xhci->usb2_rhub; if (strcmp(tegra->soc->phy_types[i].name, "hsic") == 0) offset = tegra->soc->ports.usb2.count; else offset = 0; for (j = 0; j < tegra->soc->phy_types[i].num; j++) { phy = tegra->phys[k++]; if (!phy) continue; index = j + offset; if (index >= rhub->num_ports) continue; if (!is_host_mode_phy(tegra, i, j)) continue; portsc = readl(rhub->ports[index]->addr); speed = tegra_xhci_portsc_to_speed(tegra, portsc); tegra_xusb_padctl_enable_phy_sleepwalk(padctl, phy, speed); tegra_xusb_padctl_enable_phy_wake(padctl, phy); } } } static void tegra_xhci_disable_phy_wake(struct tegra_xusb *tegra) { struct tegra_xusb_padctl *padctl = tegra->padctl; unsigned int i; for (i = 0; i < tegra->num_phys; i++) { if (!tegra->phys[i]) continue; tegra_xusb_padctl_disable_phy_wake(padctl, tegra->phys[i]); } } static void tegra_xhci_disable_phy_sleepwalk(struct tegra_xusb *tegra) { struct tegra_xusb_padctl *padctl = tegra->padctl; unsigned int i; for (i = 0; i < tegra->num_phys; i++) { if (!tegra->phys[i]) continue; tegra_xusb_padctl_disable_phy_sleepwalk(padctl, tegra->phys[i]); } } static int tegra_xusb_enter_elpg(struct tegra_xusb *tegra, bool runtime) { struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd); struct device *dev = tegra->dev; bool wakeup = runtime ? true : device_may_wakeup(dev); unsigned int i; int err; u32 usbcmd; dev_dbg(dev, "entering ELPG\n"); usbcmd = readl(&xhci->op_regs->command); usbcmd &= ~CMD_EIE; writel(usbcmd, &xhci->op_regs->command); err = tegra_xusb_check_ports(tegra); if (err < 0) { dev_err(tegra->dev, "not all ports suspended: %d\n", err); goto out; } err = xhci_suspend(xhci, wakeup); if (err < 0) { dev_err(tegra->dev, "failed to suspend XHCI: %d\n", err); goto out; } tegra_xusb_save_context(tegra); if (wakeup) tegra_xhci_enable_phy_sleepwalk_wake(tegra); tegra_xusb_powergate_partitions(tegra); for (i = 0; i < tegra->num_phys; i++) { if (!tegra->phys[i]) continue; phy_power_off(tegra->phys[i]); if (!wakeup) phy_exit(tegra->phys[i]); } tegra_xusb_clk_disable(tegra); out: if (!err) dev_dbg(tegra->dev, "entering ELPG done\n"); else { usbcmd = readl(&xhci->op_regs->command); usbcmd |= CMD_EIE; writel(usbcmd, &xhci->op_regs->command); dev_dbg(tegra->dev, "entering ELPG failed\n"); pm_runtime_mark_last_busy(tegra->dev); } return err; } static int tegra_xusb_exit_elpg(struct tegra_xusb *tegra, bool runtime) { struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd); struct device *dev = tegra->dev; bool wakeup = runtime ? true : device_may_wakeup(dev); unsigned int i; u32 usbcmd; int err; dev_dbg(dev, "exiting ELPG\n"); pm_runtime_mark_last_busy(tegra->dev); err = tegra_xusb_clk_enable(tegra); if (err < 0) { dev_err(tegra->dev, "failed to enable clocks: %d\n", err); goto out; } err = tegra_xusb_unpowergate_partitions(tegra); if (err) goto disable_clks; if (wakeup) tegra_xhci_disable_phy_wake(tegra); for (i = 0; i < tegra->num_phys; i++) { if (!tegra->phys[i]) continue; if (!wakeup) phy_init(tegra->phys[i]); phy_power_on(tegra->phys[i]); } tegra_xusb_config(tegra); tegra_xusb_restore_context(tegra); err = tegra_xusb_load_firmware(tegra); if (err < 0) { dev_err(tegra->dev, "failed to load firmware: %d\n", err); goto disable_phy; } err = __tegra_xusb_enable_firmware_messages(tegra); if (err < 0) { dev_err(tegra->dev, "failed to enable messages: %d\n", err); goto disable_phy; } if (wakeup) tegra_xhci_disable_phy_sleepwalk(tegra); err = xhci_resume(xhci, 0); if (err < 0) { dev_err(tegra->dev, "failed to resume XHCI: %d\n", err); goto disable_phy; } usbcmd = readl(&xhci->op_regs->command); usbcmd |= CMD_EIE; writel(usbcmd, &xhci->op_regs->command); goto out; disable_phy: for (i = 0; i < tegra->num_phys; i++) { if (!tegra->phys[i]) continue; phy_power_off(tegra->phys[i]); if (!wakeup) phy_exit(tegra->phys[i]); } tegra_xusb_powergate_partitions(tegra); disable_clks: tegra_xusb_clk_disable(tegra); out: if (!err) dev_dbg(dev, "exiting ELPG done\n"); else dev_dbg(dev, "exiting ELPG failed\n"); return err; } static int tegra_xusb_suspend(struct device *dev) { struct tegra_xusb *tegra = dev_get_drvdata(dev); int err; synchronize_irq(tegra->mbox_irq); mutex_lock(&tegra->lock); if (pm_runtime_suspended(dev)) { err = tegra_xusb_exit_elpg(tegra, true); if (err < 0) goto out; } err = tegra_xusb_enter_elpg(tegra, false); if (err < 0) { if (pm_runtime_suspended(dev)) { pm_runtime_disable(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); } goto out; } out: if (!err) { tegra->suspended = true; pm_runtime_disable(dev); if (device_may_wakeup(dev)) { if (enable_irq_wake(tegra->padctl_irq)) dev_err(dev, "failed to enable padctl wakes\n"); } } mutex_unlock(&tegra->lock); return err; } static int tegra_xusb_resume(struct device *dev) { struct tegra_xusb *tegra = dev_get_drvdata(dev); int err; mutex_lock(&tegra->lock); if (!tegra->suspended) { mutex_unlock(&tegra->lock); return 0; } err = tegra_xusb_exit_elpg(tegra, false); if (err < 0) { mutex_unlock(&tegra->lock); return err; } if (device_may_wakeup(dev)) { if (disable_irq_wake(tegra->padctl_irq)) dev_err(dev, "failed to disable padctl wakes\n"); } tegra->suspended = false; mutex_unlock(&tegra->lock); pm_runtime_set_active(dev); pm_runtime_enable(dev); return 0; } #endif #ifdef CONFIG_PM static int tegra_xusb_runtime_suspend(struct device *dev) { struct tegra_xusb *tegra = dev_get_drvdata(dev); int ret; synchronize_irq(tegra->mbox_irq); mutex_lock(&tegra->lock); ret = tegra_xusb_enter_elpg(tegra, true); mutex_unlock(&tegra->lock); return ret; } static int tegra_xusb_runtime_resume(struct device *dev) { struct tegra_xusb *tegra = dev_get_drvdata(dev); int err; mutex_lock(&tegra->lock); err = tegra_xusb_exit_elpg(tegra, true); mutex_unlock(&tegra->lock); return err; } #endif static const struct dev_pm_ops tegra_xusb_pm_ops = { SET_RUNTIME_PM_OPS(tegra_xusb_runtime_suspend, tegra_xusb_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(tegra_xusb_suspend, tegra_xusb_resume) }; static const char * const tegra124_supply_names[] = { "avddio-pex", "dvddio-pex", "avdd-usb", "hvdd-usb-ss", }; static const struct tegra_xusb_phy_type tegra124_phy_types[] = { { .name = "usb3", .num = 2, }, { .name = "usb2", .num = 3, }, { .name = "hsic", .num = 2, }, }; static const unsigned int tegra124_xusb_context_ipfs[] = { IPFS_XUSB_HOST_MSI_BAR_SZ_0, IPFS_XUSB_HOST_MSI_AXI_BAR_ST_0, IPFS_XUSB_HOST_MSI_FPCI_BAR_ST_0, IPFS_XUSB_HOST_MSI_VEC0_0, IPFS_XUSB_HOST_MSI_EN_VEC0_0, IPFS_XUSB_HOST_FPCI_ERROR_MASKS_0, IPFS_XUSB_HOST_INTR_MASK_0, IPFS_XUSB_HOST_INTR_ENABLE_0, IPFS_XUSB_HOST_UFPCI_CONFIG_0, IPFS_XUSB_HOST_CLKGATE_HYSTERESIS_0, IPFS_XUSB_HOST_MCCIF_FIFOCTRL_0, }; static const unsigned int tegra124_xusb_context_fpci[] = { XUSB_CFG_ARU_CONTEXT_HS_PLS, XUSB_CFG_ARU_CONTEXT_FS_PLS, XUSB_CFG_ARU_CONTEXT_HSFS_SPEED, XUSB_CFG_ARU_CONTEXT_HSFS_PP, XUSB_CFG_ARU_CONTEXT, XUSB_CFG_AXI_CFG, XUSB_CFG_24, XUSB_CFG_16, }; static const struct tegra_xusb_context_soc tegra124_xusb_context = { .ipfs = { .num_offsets = ARRAY_SIZE(tegra124_xusb_context_ipfs), .offsets = tegra124_xusb_context_ipfs, }, .fpci = { .num_offsets = ARRAY_SIZE(tegra124_xusb_context_fpci), .offsets = tegra124_xusb_context_fpci, }, }; static const struct tegra_xusb_soc tegra124_soc = { .firmware = "nvidia/tegra124/xusb.bin", .supply_names = tegra124_supply_names, .num_supplies = ARRAY_SIZE(tegra124_supply_names), .phy_types = tegra124_phy_types, .num_types = ARRAY_SIZE(tegra124_phy_types), .context = &tegra124_xusb_context, .ports = { .usb2 = { .offset = 4, .count = 4, }, .hsic = { .offset = 6, .count = 2, }, .usb3 = { .offset = 0, .count = 2, }, }, .scale_ss_clock = true, .has_ipfs = true, .otg_reset_sspi = false, .mbox = { .cmd = 0xe4, .data_in = 0xe8, .data_out = 0xec, .owner = 0xf0, }, }; MODULE_FIRMWARE("nvidia/tegra124/xusb.bin"); static const char * const tegra210_supply_names[] = { "dvddio-pex", "hvddio-pex", "avdd-usb", }; static const struct tegra_xusb_phy_type tegra210_phy_types[] = { { .name = "usb3", .num = 4, }, { .name = "usb2", .num = 4, }, { .name = "hsic", .num = 1, }, }; static const struct tegra_xusb_soc tegra210_soc = { .firmware = "nvidia/tegra210/xusb.bin", .supply_names = tegra210_supply_names, .num_supplies = ARRAY_SIZE(tegra210_supply_names), .phy_types = tegra210_phy_types, .num_types = ARRAY_SIZE(tegra210_phy_types), .context = &tegra124_xusb_context, .ports = { .usb2 = { .offset = 4, .count = 4, }, .hsic = { .offset = 8, .count = 1, }, .usb3 = { .offset = 0, .count = 4, }, }, .scale_ss_clock = false, .has_ipfs = true, .otg_reset_sspi = true, .mbox = { .cmd = 0xe4, .data_in = 0xe8, .data_out = 0xec, .owner = 0xf0, }, }; MODULE_FIRMWARE("nvidia/tegra210/xusb.bin"); static const char * const tegra186_supply_names[] = { }; MODULE_FIRMWARE("nvidia/tegra186/xusb.bin"); static const struct tegra_xusb_phy_type tegra186_phy_types[] = { { .name = "usb3", .num = 3, }, { .name = "usb2", .num = 3, }, { .name = "hsic", .num = 1, }, }; static const struct tegra_xusb_context_soc tegra186_xusb_context = { .fpci = { .num_offsets = ARRAY_SIZE(tegra124_xusb_context_fpci), .offsets = tegra124_xusb_context_fpci, }, }; static const struct tegra_xusb_soc tegra186_soc = { .firmware = "nvidia/tegra186/xusb.bin", .supply_names = tegra186_supply_names, .num_supplies = ARRAY_SIZE(tegra186_supply_names), .phy_types = tegra186_phy_types, .num_types = ARRAY_SIZE(tegra186_phy_types), .context = &tegra186_xusb_context, .ports = { .usb3 = { .offset = 0, .count = 3, }, .usb2 = { .offset = 3, .count = 3, }, .hsic = { .offset = 6, .count = 1, }, }, .scale_ss_clock = false, .has_ipfs = false, .otg_reset_sspi = false, .mbox = { .cmd = 0xe4, .data_in = 0xe8, .data_out = 0xec, .owner = 0xf0, }, .lpm_support = true, }; static const char * const tegra194_supply_names[] = { }; static const struct tegra_xusb_phy_type tegra194_phy_types[] = { { .name = "usb3", .num = 4, }, { .name = "usb2", .num = 4, }, }; static const struct tegra_xusb_soc tegra194_soc = { .firmware = "nvidia/tegra194/xusb.bin", .supply_names = tegra194_supply_names, .num_supplies = ARRAY_SIZE(tegra194_supply_names), .phy_types = tegra194_phy_types, .num_types = ARRAY_SIZE(tegra194_phy_types), .context = &tegra186_xusb_context, .ports = { .usb3 = { .offset = 0, .count = 4, }, .usb2 = { .offset = 4, .count = 4, }, }, .scale_ss_clock = false, .has_ipfs = false, .otg_reset_sspi = false, .mbox = { .cmd = 0x68, .data_in = 0x6c, .data_out = 0x70, .owner = 0x74, }, .lpm_support = true, }; MODULE_FIRMWARE("nvidia/tegra194/xusb.bin"); static const struct of_device_id tegra_xusb_of_match[] = { { .compatible = "nvidia,tegra124-xusb", .data = &tegra124_soc }, { .compatible = "nvidia,tegra210-xusb", .data = &tegra210_soc }, { .compatible = "nvidia,tegra186-xusb", .data = &tegra186_soc }, { .compatible = "nvidia,tegra194-xusb", .data = &tegra194_soc }, { }, }; MODULE_DEVICE_TABLE(of, tegra_xusb_of_match); static struct platform_driver tegra_xusb_driver = { .probe = tegra_xusb_probe, .remove = tegra_xusb_remove, .driver = { .name = "tegra-xusb", .pm = &tegra_xusb_pm_ops, .of_match_table = tegra_xusb_of_match, }, }; static void tegra_xhci_quirks(struct device *dev, struct xhci_hcd *xhci) { struct tegra_xusb *tegra = dev_get_drvdata(dev); xhci->quirks |= XHCI_PLAT; if (tegra && tegra->soc->lpm_support) xhci->quirks |= XHCI_LPM_SUPPORT; } static int tegra_xhci_setup(struct usb_hcd *hcd) { return xhci_gen_setup(hcd, tegra_xhci_quirks); } static const struct xhci_driver_overrides tegra_xhci_overrides __initconst = { .reset = tegra_xhci_setup, }; static int __init tegra_xusb_init(void) { xhci_init_driver(&tegra_xhci_hc_driver, &tegra_xhci_overrides); return platform_driver_register(&tegra_xusb_driver); } module_init(tegra_xusb_init); static void __exit tegra_xusb_exit(void) { platform_driver_unregister(&tegra_xusb_driver); } module_exit(tegra_xusb_exit); MODULE_AUTHOR("Andrew Bresticker "); MODULE_DESCRIPTION("NVIDIA Tegra XUSB xHCI host-controller driver"); MODULE_LICENSE("GPL v2");