/* * Copyright (c) 2014 MediaTek Inc. * Author: James Liao * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include "clk-mtk.h" #define REG_CON0 0 #define REG_CON1 4 #define CON0_BASE_EN BIT(0) #define CON0_PWR_ON BIT(0) #define CON0_ISO_EN BIT(1) #define CON0_PCW_CHG BIT(31) #define AUDPLL_TUNER_EN BIT(31) #define POSTDIV_MASK 0x7 #define INTEGER_BITS 7 /* * MediaTek PLLs are configured through their pcw value. The pcw value describes * a divider in the PLL feedback loop which consists of 7 bits for the integer * part and the remaining bits (if present) for the fractional part. Also they * have a 3 bit power-of-two post divider. */ struct mtk_clk_pll { struct clk_hw hw; void __iomem *base_addr; void __iomem *pd_addr; void __iomem *pwr_addr; void __iomem *tuner_addr; void __iomem *pcw_addr; const struct mtk_pll_data *data; }; static inline struct mtk_clk_pll *to_mtk_clk_pll(struct clk_hw *hw) { return container_of(hw, struct mtk_clk_pll, hw); } static int mtk_pll_is_prepared(struct clk_hw *hw) { struct mtk_clk_pll *pll = to_mtk_clk_pll(hw); return (readl(pll->base_addr + REG_CON0) & CON0_BASE_EN) != 0; } static unsigned long __mtk_pll_recalc_rate(struct mtk_clk_pll *pll, u32 fin, u32 pcw, int postdiv) { int pcwbits = pll->data->pcwbits; int pcwfbits; u64 vco; u8 c = 0; /* The fractional part of the PLL divider. */ pcwfbits = pcwbits > INTEGER_BITS ? pcwbits - INTEGER_BITS : 0; vco = (u64)fin * pcw; if (pcwfbits && (vco & GENMASK(pcwfbits - 1, 0))) c = 1; vco >>= pcwfbits; if (c) vco++; return ((unsigned long)vco + postdiv - 1) / postdiv; } static void mtk_pll_set_rate_regs(struct mtk_clk_pll *pll, u32 pcw, int postdiv) { u32 con1, pd, val; int pll_en; /* set postdiv */ pd = readl(pll->pd_addr); pd &= ~(POSTDIV_MASK << pll->data->pd_shift); pd |= (ffs(postdiv) - 1) << pll->data->pd_shift; writel(pd, pll->pd_addr); pll_en = readl(pll->base_addr + REG_CON0) & CON0_BASE_EN; /* set pcw */ val = readl(pll->pcw_addr); val &= ~GENMASK(pll->data->pcw_shift + pll->data->pcwbits - 1, pll->data->pcw_shift); val |= pcw << pll->data->pcw_shift; writel(val, pll->pcw_addr); con1 = readl(pll->base_addr + REG_CON1); if (pll_en) con1 |= CON0_PCW_CHG; writel(con1, pll->base_addr + REG_CON1); if (pll->tuner_addr) writel(con1 + 1, pll->tuner_addr); if (pll_en) udelay(20); } /* * mtk_pll_calc_values - calculate good values for a given input frequency. * @pll: The pll * @pcw: The pcw value (output) * @postdiv: The post divider (output) * @freq: The desired target frequency * @fin: The input frequency * */ static void mtk_pll_calc_values(struct mtk_clk_pll *pll, u32 *pcw, u32 *postdiv, u32 freq, u32 fin) { unsigned long fmin = 1000 * MHZ; u64 _pcw; u32 val; if (freq > pll->data->fmax) freq = pll->data->fmax; for (val = 0; val < 4; val++) { *postdiv = 1 << val; if (freq * *postdiv >= fmin) break; } /* _pcw = freq * postdiv / fin * 2^pcwfbits */ _pcw = ((u64)freq << val) << (pll->data->pcwbits - INTEGER_BITS); do_div(_pcw, fin); *pcw = (u32)_pcw; } static int mtk_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct mtk_clk_pll *pll = to_mtk_clk_pll(hw); u32 pcw = 0; u32 postdiv; mtk_pll_calc_values(pll, &pcw, &postdiv, rate, parent_rate); mtk_pll_set_rate_regs(pll, pcw, postdiv); return 0; } static unsigned long mtk_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct mtk_clk_pll *pll = to_mtk_clk_pll(hw); u32 postdiv; u32 pcw; postdiv = (readl(pll->pd_addr) >> pll->data->pd_shift) & POSTDIV_MASK; postdiv = 1 << postdiv; pcw = readl(pll->pcw_addr) >> pll->data->pcw_shift; pcw &= GENMASK(pll->data->pcwbits - 1, 0); return __mtk_pll_recalc_rate(pll, parent_rate, pcw, postdiv); } static long mtk_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct mtk_clk_pll *pll = to_mtk_clk_pll(hw); u32 pcw = 0; int postdiv; mtk_pll_calc_values(pll, &pcw, &postdiv, rate, *prate); return __mtk_pll_recalc_rate(pll, *prate, pcw, postdiv); } static int mtk_pll_prepare(struct clk_hw *hw) { struct mtk_clk_pll *pll = to_mtk_clk_pll(hw); u32 r; r = readl(pll->pwr_addr) | CON0_PWR_ON; writel(r, pll->pwr_addr); udelay(1); r = readl(pll->pwr_addr) & ~CON0_ISO_EN; writel(r, pll->pwr_addr); udelay(1); r = readl(pll->base_addr + REG_CON0); r |= pll->data->en_mask; writel(r, pll->base_addr + REG_CON0); if (pll->tuner_addr) { r = readl(pll->tuner_addr) | AUDPLL_TUNER_EN; writel(r, pll->tuner_addr); } udelay(20); if (pll->data->flags & HAVE_RST_BAR) { r = readl(pll->base_addr + REG_CON0); r |= pll->data->rst_bar_mask; writel(r, pll->base_addr + REG_CON0); } return 0; } static void mtk_pll_unprepare(struct clk_hw *hw) { struct mtk_clk_pll *pll = to_mtk_clk_pll(hw); u32 r; if (pll->data->flags & HAVE_RST_BAR) { r = readl(pll->base_addr + REG_CON0); r &= ~pll->data->rst_bar_mask; writel(r, pll->base_addr + REG_CON0); } if (pll->tuner_addr) { r = readl(pll->tuner_addr) & ~AUDPLL_TUNER_EN; writel(r, pll->tuner_addr); } r = readl(pll->base_addr + REG_CON0); r &= ~CON0_BASE_EN; writel(r, pll->base_addr + REG_CON0); r = readl(pll->pwr_addr) | CON0_ISO_EN; writel(r, pll->pwr_addr); r = readl(pll->pwr_addr) & ~CON0_PWR_ON; writel(r, pll->pwr_addr); } static const struct clk_ops mtk_pll_ops = { .is_prepared = mtk_pll_is_prepared, .prepare = mtk_pll_prepare, .unprepare = mtk_pll_unprepare, .recalc_rate = mtk_pll_recalc_rate, .round_rate = mtk_pll_round_rate, .set_rate = mtk_pll_set_rate, }; static struct clk *mtk_clk_register_pll(const struct mtk_pll_data *data, void __iomem *base) { struct mtk_clk_pll *pll; struct clk_init_data init; struct clk *clk; const char *parent_name = "clk26m"; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return ERR_PTR(-ENOMEM); pll->base_addr = base + data->reg; pll->pwr_addr = base + data->pwr_reg; pll->pd_addr = base + data->pd_reg; pll->pcw_addr = base + data->pcw_reg; if (data->tuner_reg) pll->tuner_addr = base + data->tuner_reg; pll->hw.init = &init; pll->data = data; init.name = data->name; init.ops = &mtk_pll_ops; init.parent_names = &parent_name; init.num_parents = 1; clk = clk_register(NULL, &pll->hw); if (IS_ERR(clk)) kfree(pll); return clk; } void __init mtk_clk_register_plls(struct device_node *node, const struct mtk_pll_data *plls, int num_plls, struct clk_onecell_data *clk_data) { void __iomem *base; int r, i; struct clk *clk; base = of_iomap(node, 0); if (!base) { pr_err("%s(): ioremap failed\n", __func__); return; } for (i = 0; i < num_plls; i++) { const struct mtk_pll_data *pll = &plls[i]; clk = mtk_clk_register_pll(pll, base); if (IS_ERR(clk)) { pr_err("Failed to register clk %s: %ld\n", pll->name, PTR_ERR(clk)); continue; } clk_data->clks[pll->id] = clk; } r = of_clk_add_provider(node, of_clk_src_onecell_get, clk_data); if (r) pr_err("%s(): could not register clock provider: %d\n", __func__, r); }