// SPDX-License-Identifier: GPL-2.0 /* * Bosch BME680 - Temperature, Pressure, Humidity & Gas Sensor * * Copyright (C) 2017 - 2018 Bosch Sensortec GmbH * Copyright (C) 2018 Himanshu Jha * * Datasheet: * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf */ #include #include #include #include #include #include #include #include #include "bme680.h" struct bme680_calib { u16 par_t1; s16 par_t2; s8 par_t3; u16 par_p1; s16 par_p2; s8 par_p3; s16 par_p4; s16 par_p5; s8 par_p6; s8 par_p7; s16 par_p8; s16 par_p9; u8 par_p10; u16 par_h1; u16 par_h2; s8 par_h3; s8 par_h4; s8 par_h5; s8 par_h6; s8 par_h7; s8 par_gh1; s16 par_gh2; s8 par_gh3; u8 res_heat_range; s8 res_heat_val; s8 range_sw_err; }; struct bme680_data { struct regmap *regmap; struct bme680_calib bme680; u8 oversampling_temp; u8 oversampling_press; u8 oversampling_humid; u16 heater_dur; u16 heater_temp; /* * Carryover value from temperature conversion, used in pressure * and humidity compensation calculations. */ s32 t_fine; }; const struct regmap_config bme680_regmap_config = { .reg_bits = 8, .val_bits = 8, }; EXPORT_SYMBOL(bme680_regmap_config); static const struct iio_chan_spec bme680_channels[] = { { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), }, { .type = IIO_PRESSURE, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), }, { .type = IIO_HUMIDITYRELATIVE, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), }, { .type = IIO_RESISTANCE, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), }, }; static const int bme680_oversampling_avail[] = { 1, 2, 4, 8, 16 }; static int bme680_read_calib(struct bme680_data *data, struct bme680_calib *calib) { struct device *dev = regmap_get_device(data->regmap); unsigned int tmp, tmp_msb, tmp_lsb; int ret; __le16 buf; /* Temperature related coefficients */ ret = regmap_bulk_read(data->regmap, BME680_T1_LSB_REG, (u8 *) &buf, 2); if (ret < 0) { dev_err(dev, "failed to read BME680_T1_LSB_REG\n"); return ret; } calib->par_t1 = le16_to_cpu(buf); ret = regmap_bulk_read(data->regmap, BME680_T2_LSB_REG, (u8 *) &buf, 2); if (ret < 0) { dev_err(dev, "failed to read BME680_T2_LSB_REG\n"); return ret; } calib->par_t2 = le16_to_cpu(buf); ret = regmap_read(data->regmap, BME680_T3_REG, &tmp); if (ret < 0) { dev_err(dev, "failed to read BME680_T3_REG\n"); return ret; } calib->par_t3 = tmp; /* Pressure related coefficients */ ret = regmap_bulk_read(data->regmap, BME680_P1_LSB_REG, (u8 *) &buf, 2); if (ret < 0) { dev_err(dev, "failed to read BME680_P1_LSB_REG\n"); return ret; } calib->par_p1 = le16_to_cpu(buf); ret = regmap_bulk_read(data->regmap, BME680_P2_LSB_REG, (u8 *) &buf, 2); if (ret < 0) { dev_err(dev, "failed to read BME680_P2_LSB_REG\n"); return ret; } calib->par_p2 = le16_to_cpu(buf); ret = regmap_read(data->regmap, BME680_P3_REG, &tmp); if (ret < 0) { dev_err(dev, "failed to read BME680_P3_REG\n"); return ret; } calib->par_p3 = tmp; ret = regmap_bulk_read(data->regmap, BME680_P4_LSB_REG, (u8 *) &buf, 2); if (ret < 0) { dev_err(dev, "failed to read BME680_P4_LSB_REG\n"); return ret; } calib->par_p4 = le16_to_cpu(buf); ret = regmap_bulk_read(data->regmap, BME680_P5_LSB_REG, (u8 *) &buf, 2); if (ret < 0) { dev_err(dev, "failed to read BME680_P5_LSB_REG\n"); return ret; } calib->par_p5 = le16_to_cpu(buf); ret = regmap_read(data->regmap, BME680_P6_REG, &tmp); if (ret < 0) { dev_err(dev, "failed to read BME680_P6_REG\n"); return ret; } calib->par_p6 = tmp; ret = regmap_read(data->regmap, BME680_P7_REG, &tmp); if (ret < 0) { dev_err(dev, "failed to read BME680_P7_REG\n"); return ret; } calib->par_p7 = tmp; ret = regmap_bulk_read(data->regmap, BME680_P8_LSB_REG, (u8 *) &buf, 2); if (ret < 0) { dev_err(dev, "failed to read BME680_P8_LSB_REG\n"); return ret; } calib->par_p8 = le16_to_cpu(buf); ret = regmap_bulk_read(data->regmap, BME680_P9_LSB_REG, (u8 *) &buf, 2); if (ret < 0) { dev_err(dev, "failed to read BME680_P9_LSB_REG\n"); return ret; } calib->par_p9 = le16_to_cpu(buf); ret = regmap_read(data->regmap, BME680_P10_REG, &tmp); if (ret < 0) { dev_err(dev, "failed to read BME680_P10_REG\n"); return ret; } calib->par_p10 = tmp; /* Humidity related coefficients */ ret = regmap_read(data->regmap, BME680_H1_MSB_REG, &tmp_msb); if (ret < 0) { dev_err(dev, "failed to read BME680_H1_MSB_REG\n"); return ret; } ret = regmap_read(data->regmap, BME680_H1_LSB_REG, &tmp_lsb); if (ret < 0) { dev_err(dev, "failed to read BME680_H1_LSB_REG\n"); return ret; } calib->par_h1 = (tmp_msb << BME680_HUM_REG_SHIFT_VAL) | (tmp_lsb & BME680_BIT_H1_DATA_MASK); ret = regmap_read(data->regmap, BME680_H2_MSB_REG, &tmp_msb); if (ret < 0) { dev_err(dev, "failed to read BME680_H2_MSB_REG\n"); return ret; } ret = regmap_read(data->regmap, BME680_H2_LSB_REG, &tmp_lsb); if (ret < 0) { dev_err(dev, "failed to read BME680_H2_LSB_REG\n"); return ret; } calib->par_h2 = (tmp_msb << BME680_HUM_REG_SHIFT_VAL) | (tmp_lsb >> BME680_HUM_REG_SHIFT_VAL); ret = regmap_read(data->regmap, BME680_H3_REG, &tmp); if (ret < 0) { dev_err(dev, "failed to read BME680_H3_REG\n"); return ret; } calib->par_h3 = tmp; ret = regmap_read(data->regmap, BME680_H4_REG, &tmp); if (ret < 0) { dev_err(dev, "failed to read BME680_H4_REG\n"); return ret; } calib->par_h4 = tmp; ret = regmap_read(data->regmap, BME680_H5_REG, &tmp); if (ret < 0) { dev_err(dev, "failed to read BME680_H5_REG\n"); return ret; } calib->par_h5 = tmp; ret = regmap_read(data->regmap, BME680_H6_REG, &tmp); if (ret < 0) { dev_err(dev, "failed to read BME680_H6_REG\n"); return ret; } calib->par_h6 = tmp; ret = regmap_read(data->regmap, BME680_H7_REG, &tmp); if (ret < 0) { dev_err(dev, "failed to read BME680_H7_REG\n"); return ret; } calib->par_h7 = tmp; /* Gas heater related coefficients */ ret = regmap_read(data->regmap, BME680_GH1_REG, &tmp); if (ret < 0) { dev_err(dev, "failed to read BME680_GH1_REG\n"); return ret; } calib->par_gh1 = tmp; ret = regmap_bulk_read(data->regmap, BME680_GH2_LSB_REG, (u8 *) &buf, 2); if (ret < 0) { dev_err(dev, "failed to read BME680_GH2_LSB_REG\n"); return ret; } calib->par_gh2 = le16_to_cpu(buf); ret = regmap_read(data->regmap, BME680_GH3_REG, &tmp); if (ret < 0) { dev_err(dev, "failed to read BME680_GH3_REG\n"); return ret; } calib->par_gh3 = tmp; /* Other coefficients */ ret = regmap_read(data->regmap, BME680_REG_RES_HEAT_RANGE, &tmp); if (ret < 0) { dev_err(dev, "failed to read resistance heat range\n"); return ret; } calib->res_heat_range = (tmp & BME680_RHRANGE_MASK) / 16; ret = regmap_read(data->regmap, BME680_REG_RES_HEAT_VAL, &tmp); if (ret < 0) { dev_err(dev, "failed to read resistance heat value\n"); return ret; } calib->res_heat_val = tmp; ret = regmap_read(data->regmap, BME680_REG_RANGE_SW_ERR, &tmp); if (ret < 0) { dev_err(dev, "failed to read range software error\n"); return ret; } calib->range_sw_err = (tmp & BME680_RSERROR_MASK) / 16; return 0; } /* * Taken from Bosch BME680 API: * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L876 * * Returns temperature measurement in DegC, resolutions is 0.01 DegC. Therefore, * output value of "3233" represents 32.33 DegC. */ static s16 bme680_compensate_temp(struct bme680_data *data, s32 adc_temp) { struct bme680_calib *calib = &data->bme680; s64 var1, var2, var3; s16 calc_temp; var1 = (adc_temp >> 3) - (calib->par_t1 << 1); var2 = (var1 * calib->par_t2) >> 11; var3 = ((var1 >> 1) * (var1 >> 1)) >> 12; var3 = (var3 * (calib->par_t3 << 4)) >> 14; data->t_fine = var2 + var3; calc_temp = (data->t_fine * 5 + 128) >> 8; return calc_temp; } /* * Taken from Bosch BME680 API: * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L896 * * Returns pressure measurement in Pa. Output value of "97356" represents * 97356 Pa = 973.56 hPa. */ static u32 bme680_compensate_press(struct bme680_data *data, u32 adc_press) { struct bme680_calib *calib = &data->bme680; s32 var1, var2, var3, press_comp; var1 = (data->t_fine >> 1) - 64000; var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * calib->par_p6) >> 2; var2 = var2 + (var1 * calib->par_p5 << 1); var2 = (var2 >> 2) + (calib->par_p4 << 16); var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) * (calib->par_p3 << 5)) >> 3) + ((calib->par_p2 * var1) >> 1); var1 = var1 >> 18; var1 = ((32768 + var1) * calib->par_p1) >> 15; press_comp = 1048576 - adc_press; press_comp = ((press_comp - (var2 >> 12)) * 3125); if (press_comp >= BME680_MAX_OVERFLOW_VAL) press_comp = ((press_comp / (u32)var1) << 1); else press_comp = ((press_comp << 1) / (u32)var1); var1 = (calib->par_p9 * (((press_comp >> 3) * (press_comp >> 3)) >> 13)) >> 12; var2 = ((press_comp >> 2) * calib->par_p8) >> 13; var3 = ((press_comp >> 8) * (press_comp >> 8) * (press_comp >> 8) * calib->par_p10) >> 17; press_comp += (var1 + var2 + var3 + (calib->par_p7 << 7)) >> 4; return press_comp; } /* * Taken from Bosch BME680 API: * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L937 * * Returns humidity measurement in percent, resolution is 0.001 percent. Output * value of "43215" represents 43.215 %rH. */ static u32 bme680_compensate_humid(struct bme680_data *data, u16 adc_humid) { struct bme680_calib *calib = &data->bme680; s32 var1, var2, var3, var4, var5, var6, temp_scaled, calc_hum; temp_scaled = (data->t_fine * 5 + 128) >> 8; var1 = (adc_humid - ((s32) ((s32) calib->par_h1 * 16))) - (((temp_scaled * (s32) calib->par_h3) / 100) >> 1); var2 = ((s32) calib->par_h2 * (((temp_scaled * calib->par_h4) / 100) + (((temp_scaled * ((temp_scaled * calib->par_h5) / 100)) >> 6) / 100) + (1 << 14))) >> 10; var3 = var1 * var2; var4 = calib->par_h6 << 7; var4 = (var4 + ((temp_scaled * calib->par_h7) / 100)) >> 4; var5 = ((var3 >> 14) * (var3 >> 14)) >> 10; var6 = (var4 * var5) >> 1; calc_hum = (((var3 + var6) >> 10) * 1000) >> 12; calc_hum = clamp(calc_hum, 0, 100000); /* clamp between 0-100 %rH */ return calc_hum; } /* * Taken from Bosch BME680 API: * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L973 * * Returns gas measurement in Ohm. Output value of "82986" represent 82986 ohms. */ static u32 bme680_compensate_gas(struct bme680_data *data, u16 gas_res_adc, u8 gas_range) { struct bme680_calib *calib = &data->bme680; s64 var1; u64 var2; s64 var3; u32 calc_gas_res; /* Look up table for the possible gas range values */ const u32 lookupTable[16] = {2147483647u, 2147483647u, 2147483647u, 2147483647u, 2147483647u, 2126008810u, 2147483647u, 2130303777u, 2147483647u, 2147483647u, 2143188679u, 2136746228u, 2147483647u, 2126008810u, 2147483647u, 2147483647u}; var1 = ((1340 + (5 * (s64) calib->range_sw_err)) * ((s64) lookupTable[gas_range])) >> 16; var2 = ((gas_res_adc << 15) - 16777216) + var1; var3 = ((125000 << (15 - gas_range)) * var1) >> 9; var3 += (var2 >> 1); calc_gas_res = div64_s64(var3, (s64) var2); return calc_gas_res; } /* * Taken from Bosch BME680 API: * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L1002 */ static u8 bme680_calc_heater_res(struct bme680_data *data, u16 temp) { struct bme680_calib *calib = &data->bme680; s32 var1, var2, var3, var4, var5, heatr_res_x100; u8 heatr_res; if (temp > 400) /* Cap temperature */ temp = 400; var1 = (((s32) BME680_AMB_TEMP * calib->par_gh3) / 1000) * 256; var2 = (calib->par_gh1 + 784) * (((((calib->par_gh2 + 154009) * temp * 5) / 100) + 3276800) / 10); var3 = var1 + (var2 / 2); var4 = (var3 / (calib->res_heat_range + 4)); var5 = 131 * calib->res_heat_val + 65536; heatr_res_x100 = ((var4 / var5) - 250) * 34; heatr_res = (heatr_res_x100 + 50) / 100; return heatr_res; } /* * Taken from Bosch BME680 API: * https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L1188 */ static u8 bme680_calc_heater_dur(u16 dur) { u8 durval, factor = 0; if (dur >= 0xfc0) { durval = 0xff; /* Max duration */ } else { while (dur > 0x3F) { dur = dur / 4; factor += 1; } durval = dur + (factor * 64); } return durval; } static int bme680_set_mode(struct bme680_data *data, bool mode) { struct device *dev = regmap_get_device(data->regmap); int ret; if (mode) { ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS, BME680_MODE_MASK, BME680_MODE_FORCED); if (ret < 0) dev_err(dev, "failed to set forced mode\n"); } else { ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS, BME680_MODE_MASK, BME680_MODE_SLEEP); if (ret < 0) dev_err(dev, "failed to set sleep mode\n"); } return ret; } static int bme680_chip_config(struct bme680_data *data) { struct device *dev = regmap_get_device(data->regmap); int ret; u8 osrs = FIELD_PREP(BME680_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1); /* * Highly recommended to set oversampling of humidity before * temperature/pressure oversampling. */ ret = regmap_update_bits(data->regmap, BME680_REG_CTRL_HUMIDITY, BME680_OSRS_HUMIDITY_MASK, osrs); if (ret < 0) { dev_err(dev, "failed to write ctrl_hum register\n"); return ret; } /* IIR filter settings */ ret = regmap_update_bits(data->regmap, BME680_REG_CONFIG, BME680_FILTER_MASK, BME680_FILTER_COEFF_VAL); if (ret < 0) { dev_err(dev, "failed to write config register\n"); return ret; } osrs = FIELD_PREP(BME680_OSRS_TEMP_MASK, data->oversampling_temp + 1) | FIELD_PREP(BME680_OSRS_PRESS_MASK, data->oversampling_press + 1); ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS, BME680_OSRS_TEMP_MASK | BME680_OSRS_PRESS_MASK, osrs); if (ret < 0) dev_err(dev, "failed to write ctrl_meas register\n"); return ret; } static int bme680_gas_config(struct bme680_data *data) { struct device *dev = regmap_get_device(data->regmap); int ret; u8 heatr_res, heatr_dur; heatr_res = bme680_calc_heater_res(data, data->heater_temp); /* set target heater temperature */ ret = regmap_write(data->regmap, BME680_REG_RES_HEAT_0, heatr_res); if (ret < 0) { dev_err(dev, "failed to write res_heat_0 register\n"); return ret; } heatr_dur = bme680_calc_heater_dur(data->heater_dur); /* set target heating duration */ ret = regmap_write(data->regmap, BME680_REG_GAS_WAIT_0, heatr_dur); if (ret < 0) { dev_err(dev, "failed to write gas_wait_0 register\n"); return ret; } /* Selecting the runGas and NB conversion settings for the sensor */ ret = regmap_update_bits(data->regmap, BME680_REG_CTRL_GAS_1, BME680_RUN_GAS_MASK | BME680_NB_CONV_MASK, BME680_RUN_GAS_EN_BIT | BME680_NB_CONV_0_VAL); if (ret < 0) dev_err(dev, "failed to write ctrl_gas_1 register\n"); return ret; } static int bme680_read_temp(struct bme680_data *data, int *val, int *val2) { struct device *dev = regmap_get_device(data->regmap); int ret; __be32 tmp = 0; s32 adc_temp; s16 comp_temp; /* set forced mode to trigger measurement */ ret = bme680_set_mode(data, true); if (ret < 0) return ret; ret = regmap_bulk_read(data->regmap, BME680_REG_TEMP_MSB, (u8 *) &tmp, 3); if (ret < 0) { dev_err(dev, "failed to read temperature\n"); return ret; } adc_temp = be32_to_cpu(tmp) >> 12; if (adc_temp == BME680_MEAS_SKIPPED) { /* reading was skipped */ dev_err(dev, "reading temperature skipped\n"); return -EINVAL; } comp_temp = bme680_compensate_temp(data, adc_temp); /* * val might be NULL if we're called by the read_press/read_humid * routine which is callled to get t_fine value used in * compensate_press/compensate_humid to get compensated * pressure/humidity readings. */ if (val && val2) { *val = comp_temp; *val2 = 100; return IIO_VAL_FRACTIONAL; } return ret; } static int bme680_read_press(struct bme680_data *data, int *val, int *val2) { struct device *dev = regmap_get_device(data->regmap); int ret; __be32 tmp = 0; s32 adc_press; /* Read and compensate temperature to get a reading of t_fine */ ret = bme680_read_temp(data, NULL, NULL); if (ret < 0) return ret; ret = regmap_bulk_read(data->regmap, BME680_REG_PRESS_MSB, (u8 *) &tmp, 3); if (ret < 0) { dev_err(dev, "failed to read pressure\n"); return ret; } adc_press = be32_to_cpu(tmp) >> 12; if (adc_press == BME680_MEAS_SKIPPED) { /* reading was skipped */ dev_err(dev, "reading pressure skipped\n"); return -EINVAL; } *val = bme680_compensate_press(data, adc_press); *val2 = 100; return IIO_VAL_FRACTIONAL; } static int bme680_read_humid(struct bme680_data *data, int *val, int *val2) { struct device *dev = regmap_get_device(data->regmap); int ret; __be16 tmp = 0; s32 adc_humidity; u32 comp_humidity; /* Read and compensate temperature to get a reading of t_fine */ ret = bme680_read_temp(data, NULL, NULL); if (ret < 0) return ret; ret = regmap_bulk_read(data->regmap, BM6880_REG_HUMIDITY_MSB, (u8 *) &tmp, 2); if (ret < 0) { dev_err(dev, "failed to read humidity\n"); return ret; } adc_humidity = be16_to_cpu(tmp); if (adc_humidity == BME680_MEAS_SKIPPED) { /* reading was skipped */ dev_err(dev, "reading humidity skipped\n"); return -EINVAL; } comp_humidity = bme680_compensate_humid(data, adc_humidity); *val = comp_humidity; *val2 = 1000; return IIO_VAL_FRACTIONAL; } static int bme680_read_gas(struct bme680_data *data, int *val) { struct device *dev = regmap_get_device(data->regmap); int ret; __be16 tmp = 0; unsigned int check; u16 adc_gas_res; u8 gas_range; /* Set heater settings */ ret = bme680_gas_config(data); if (ret < 0) { dev_err(dev, "failed to set gas config\n"); return ret; } /* set forced mode to trigger measurement */ ret = bme680_set_mode(data, true); if (ret < 0) return ret; ret = regmap_read(data->regmap, BME680_REG_MEAS_STAT_0, &check); if (check & BME680_GAS_MEAS_BIT) { dev_err(dev, "gas measurement incomplete\n"); return -EBUSY; } ret = regmap_read(data->regmap, BME680_REG_GAS_R_LSB, &check); if (ret < 0) { dev_err(dev, "failed to read gas_r_lsb register\n"); return ret; } /* * occurs if either the gas heating duration was insuffient * to reach the target heater temperature or the target * heater temperature was too high for the heater sink to * reach. */ if ((check & BME680_GAS_STAB_BIT) == 0) { dev_err(dev, "heater failed to reach the target temperature\n"); return -EINVAL; } ret = regmap_bulk_read(data->regmap, BME680_REG_GAS_MSB, (u8 *) &tmp, 2); if (ret < 0) { dev_err(dev, "failed to read gas resistance\n"); return ret; } gas_range = check & BME680_GAS_RANGE_MASK; adc_gas_res = be16_to_cpu(tmp) >> BME680_ADC_GAS_RES_SHIFT; *val = bme680_compensate_gas(data, adc_gas_res, gas_range); return IIO_VAL_INT; } static int bme680_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bme680_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_TEMP: return bme680_read_temp(data, val, val2); case IIO_PRESSURE: return bme680_read_press(data, val, val2); case IIO_HUMIDITYRELATIVE: return bme680_read_humid(data, val, val2); case IIO_RESISTANCE: return bme680_read_gas(data, val); default: return -EINVAL; } case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->type) { case IIO_TEMP: *val = 1 << data->oversampling_temp; return IIO_VAL_INT; case IIO_PRESSURE: *val = 1 << data->oversampling_press; return IIO_VAL_INT; case IIO_HUMIDITYRELATIVE: *val = 1 << data->oversampling_humid; return IIO_VAL_INT; default: return -EINVAL; } default: return -EINVAL; } } static int bme680_write_oversampling_ratio_temp(struct bme680_data *data, int val) { int i; for (i = 0; i < ARRAY_SIZE(bme680_oversampling_avail); i++) { if (bme680_oversampling_avail[i] == val) { data->oversampling_temp = ilog2(val); return bme680_chip_config(data); } } return -EINVAL; } static int bme680_write_oversampling_ratio_press(struct bme680_data *data, int val) { int i; for (i = 0; i < ARRAY_SIZE(bme680_oversampling_avail); i++) { if (bme680_oversampling_avail[i] == val) { data->oversampling_press = ilog2(val); return bme680_chip_config(data); } } return -EINVAL; } static int bme680_write_oversampling_ratio_humid(struct bme680_data *data, int val) { int i; for (i = 0; i < ARRAY_SIZE(bme680_oversampling_avail); i++) { if (bme680_oversampling_avail[i] == val) { data->oversampling_humid = ilog2(val); return bme680_chip_config(data); } } return -EINVAL; } static int bme680_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bme680_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->type) { case IIO_TEMP: return bme680_write_oversampling_ratio_temp(data, val); case IIO_PRESSURE: return bme680_write_oversampling_ratio_press(data, val); case IIO_HUMIDITYRELATIVE: return bme680_write_oversampling_ratio_humid(data, val); default: return -EINVAL; } default: return -EINVAL; } } static const char bme680_oversampling_ratio_show[] = "1 2 4 8 16"; static IIO_CONST_ATTR(oversampling_ratio_available, bme680_oversampling_ratio_show); static struct attribute *bme680_attributes[] = { &iio_const_attr_oversampling_ratio_available.dev_attr.attr, NULL, }; static const struct attribute_group bme680_attribute_group = { .attrs = bme680_attributes, }; static const struct iio_info bme680_info = { .read_raw = &bme680_read_raw, .write_raw = &bme680_write_raw, .attrs = &bme680_attribute_group, }; static const char *bme680_match_acpi_device(struct device *dev) { const struct acpi_device_id *id; id = acpi_match_device(dev->driver->acpi_match_table, dev); if (!id) return NULL; return dev_name(dev); } int bme680_core_probe(struct device *dev, struct regmap *regmap, const char *name) { struct iio_dev *indio_dev; struct bme680_data *data; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; if (!name && ACPI_HANDLE(dev)) name = bme680_match_acpi_device(dev); data = iio_priv(indio_dev); dev_set_drvdata(dev, indio_dev); data->regmap = regmap; indio_dev->dev.parent = dev; indio_dev->name = name; indio_dev->channels = bme680_channels; indio_dev->num_channels = ARRAY_SIZE(bme680_channels); indio_dev->info = &bme680_info; indio_dev->modes = INDIO_DIRECT_MODE; /* default values for the sensor */ data->oversampling_humid = ilog2(2); /* 2X oversampling rate */ data->oversampling_press = ilog2(4); /* 4X oversampling rate */ data->oversampling_temp = ilog2(8); /* 8X oversampling rate */ data->heater_temp = 320; /* degree Celsius */ data->heater_dur = 150; /* milliseconds */ ret = bme680_chip_config(data); if (ret < 0) { dev_err(dev, "failed to set chip_config data\n"); return ret; } ret = bme680_gas_config(data); if (ret < 0) { dev_err(dev, "failed to set gas config data\n"); return ret; } ret = bme680_read_calib(data, &data->bme680); if (ret < 0) { dev_err(dev, "failed to read calibration coefficients at probe\n"); return ret; } return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_GPL(bme680_core_probe); MODULE_AUTHOR("Himanshu Jha "); MODULE_DESCRIPTION("Bosch BME680 Driver"); MODULE_LICENSE("GPL v2");