// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "btree_cache.h" #include "btree_io.h" #include "btree_key_cache.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_gc.h" #include "buckets.h" #include "clock.h" #include "debug.h" #include "ec.h" #include "error.h" #include "recovery.h" #include "trace.h" #include #include #include #include #include #include #include static const char * const bch2_alloc_field_names[] = { #define x(name, bytes) #name, BCH_ALLOC_FIELDS() #undef x NULL }; static void bch2_recalc_oldest_io(struct bch_fs *, struct bch_dev *, int); /* Ratelimiting/PD controllers */ static void pd_controllers_update(struct work_struct *work) { struct bch_fs *c = container_of(to_delayed_work(work), struct bch_fs, pd_controllers_update); struct bch_dev *ca; s64 free = 0, fragmented = 0; unsigned i; for_each_member_device(ca, c, i) { struct bch_dev_usage stats = bch2_dev_usage_read(ca); free += bucket_to_sector(ca, __dev_buckets_free(ca, stats)) << 9; /* * Bytes of internal fragmentation, which can be * reclaimed by copy GC */ fragmented += max_t(s64, 0, (bucket_to_sector(ca, stats.buckets[BCH_DATA_user] + stats.buckets[BCH_DATA_cached]) - (stats.sectors[BCH_DATA_user] + stats.sectors[BCH_DATA_cached])) << 9); } bch2_pd_controller_update(&c->copygc_pd, free, fragmented, -1); schedule_delayed_work(&c->pd_controllers_update, c->pd_controllers_update_seconds * HZ); } /* Persistent alloc info: */ static inline u64 get_alloc_field(const struct bch_alloc *a, const void **p, unsigned field) { unsigned bytes = BCH_ALLOC_FIELD_BYTES[field]; u64 v; if (!(a->fields & (1 << field))) return 0; switch (bytes) { case 1: v = *((const u8 *) *p); break; case 2: v = le16_to_cpup(*p); break; case 4: v = le32_to_cpup(*p); break; case 8: v = le64_to_cpup(*p); break; default: BUG(); } *p += bytes; return v; } static inline void put_alloc_field(struct bkey_i_alloc *a, void **p, unsigned field, u64 v) { unsigned bytes = BCH_ALLOC_FIELD_BYTES[field]; if (!v) return; a->v.fields |= 1 << field; switch (bytes) { case 1: *((u8 *) *p) = v; break; case 2: *((__le16 *) *p) = cpu_to_le16(v); break; case 4: *((__le32 *) *p) = cpu_to_le32(v); break; case 8: *((__le64 *) *p) = cpu_to_le64(v); break; default: BUG(); } *p += bytes; } struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c k) { struct bkey_alloc_unpacked ret = { .gen = 0 }; if (k.k->type == KEY_TYPE_alloc) { const struct bch_alloc *a = bkey_s_c_to_alloc(k).v; const void *d = a->data; unsigned idx = 0; ret.gen = a->gen; #define x(_name, _bits) ret._name = get_alloc_field(a, &d, idx++); BCH_ALLOC_FIELDS() #undef x } return ret; } void bch2_alloc_pack(struct bkey_i_alloc *dst, const struct bkey_alloc_unpacked src) { unsigned idx = 0; void *d = dst->v.data; unsigned bytes; dst->v.fields = 0; dst->v.gen = src.gen; #define x(_name, _bits) put_alloc_field(dst, &d, idx++, src._name); BCH_ALLOC_FIELDS() #undef x bytes = (void *) d - (void *) &dst->v; set_bkey_val_bytes(&dst->k, bytes); memset_u64s_tail(&dst->v, 0, bytes); } static unsigned bch_alloc_val_u64s(const struct bch_alloc *a) { unsigned i, bytes = offsetof(struct bch_alloc, data); for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_FIELD_BYTES); i++) if (a->fields & (1 << i)) bytes += BCH_ALLOC_FIELD_BYTES[i]; return DIV_ROUND_UP(bytes, sizeof(u64)); } const char *bch2_alloc_invalid(const struct bch_fs *c, struct bkey_s_c k) { struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k); if (k.k->p.inode >= c->sb.nr_devices || !c->devs[k.k->p.inode]) return "invalid device"; /* allow for unknown fields */ if (bkey_val_u64s(a.k) < bch_alloc_val_u64s(a.v)) return "incorrect value size"; return NULL; } void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) { struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k); const void *d = a.v->data; unsigned i; pr_buf(out, "gen %u", a.v->gen); for (i = 0; i < BCH_ALLOC_FIELD_NR; i++) if (a.v->fields & (1 << i)) pr_buf(out, " %s %llu", bch2_alloc_field_names[i], get_alloc_field(a.v, &d, i)); } static int bch2_alloc_read_fn(struct bch_fs *c, enum btree_id id, unsigned level, struct bkey_s_c k) { struct bch_dev *ca; struct bucket *g; struct bkey_alloc_unpacked u; if (level || k.k->type != KEY_TYPE_alloc) return 0; ca = bch_dev_bkey_exists(c, k.k->p.inode); g = __bucket(ca, k.k->p.offset, 0); u = bch2_alloc_unpack(k); g->_mark.gen = u.gen; g->_mark.data_type = u.data_type; g->_mark.dirty_sectors = u.dirty_sectors; g->_mark.cached_sectors = u.cached_sectors; g->io_time[READ] = u.read_time; g->io_time[WRITE] = u.write_time; g->oldest_gen = u.oldest_gen; g->gen_valid = 1; return 0; } int bch2_alloc_read(struct bch_fs *c, struct journal_keys *journal_keys) { struct bch_dev *ca; unsigned i; int ret = 0; down_read(&c->gc_lock); ret = bch2_btree_and_journal_walk(c, journal_keys, BTREE_ID_ALLOC, NULL, bch2_alloc_read_fn); up_read(&c->gc_lock); if (ret) { bch_err(c, "error reading alloc info: %i", ret); return ret; } percpu_down_write(&c->mark_lock); bch2_dev_usage_from_buckets(c); percpu_up_write(&c->mark_lock); mutex_lock(&c->bucket_clock[READ].lock); for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); bch2_recalc_oldest_io(c, ca, READ); up_read(&ca->bucket_lock); } mutex_unlock(&c->bucket_clock[READ].lock); mutex_lock(&c->bucket_clock[WRITE].lock); for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); bch2_recalc_oldest_io(c, ca, WRITE); up_read(&ca->bucket_lock); } mutex_unlock(&c->bucket_clock[WRITE].lock); return 0; } static int bch2_alloc_write_key(struct btree_trans *trans, struct btree_iter *iter, unsigned flags) { struct bch_fs *c = trans->c; struct bkey_s_c k; struct bch_dev *ca; struct bucket_array *ba; struct bucket *g; struct bucket_mark m; struct bkey_alloc_unpacked old_u, new_u; __BKEY_PADDED(k, 8) alloc_key; /* hack: */ struct bkey_i_alloc *a; int ret; retry: bch2_trans_begin(trans); ret = bch2_btree_key_cache_flush(trans, BTREE_ID_ALLOC, iter->pos); if (ret) goto err; k = bch2_btree_iter_peek_slot(iter); ret = bkey_err(k); if (ret) goto err; old_u = bch2_alloc_unpack(k); percpu_down_read(&c->mark_lock); ca = bch_dev_bkey_exists(c, iter->pos.inode); ba = bucket_array(ca); g = &ba->b[iter->pos.offset]; m = READ_ONCE(g->mark); new_u = alloc_mem_to_key(g, m); percpu_up_read(&c->mark_lock); if (!bkey_alloc_unpacked_cmp(old_u, new_u)) return 0; a = bkey_alloc_init(&alloc_key.k); a->k.p = iter->pos; bch2_alloc_pack(a, new_u); bch2_trans_update(trans, iter, &a->k_i, BTREE_TRIGGER_NORUN); ret = bch2_trans_commit(trans, NULL, NULL, BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE| flags); err: if (ret == -EINTR) goto retry; return ret; } int bch2_dev_alloc_write(struct bch_fs *c, struct bch_dev *ca, unsigned flags) { struct btree_trans trans; struct btree_iter *iter; u64 first_bucket, nbuckets; int ret = 0; percpu_down_read(&c->mark_lock); first_bucket = bucket_array(ca)->first_bucket; nbuckets = bucket_array(ca)->nbuckets; percpu_up_read(&c->mark_lock); BUG_ON(BKEY_ALLOC_VAL_U64s_MAX > 8); bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); iter = bch2_trans_get_iter(&trans, BTREE_ID_ALLOC, POS(ca->dev_idx, first_bucket), BTREE_ITER_SLOTS|BTREE_ITER_INTENT); while (iter->pos.offset < nbuckets) { bch2_trans_cond_resched(&trans); ret = bch2_alloc_write_key(&trans, iter, flags); if (ret) break; bch2_btree_iter_next_slot(iter); } bch2_trans_exit(&trans); return ret; } int bch2_alloc_write(struct bch_fs *c, unsigned flags) { struct bch_dev *ca; unsigned i; int ret = 0; for_each_rw_member(ca, c, i) { bch2_dev_alloc_write(c, ca, flags); if (ret) { percpu_ref_put(&ca->io_ref); break; } } return ret; } /* Bucket IO clocks: */ static void bch2_recalc_oldest_io(struct bch_fs *c, struct bch_dev *ca, int rw) { struct bucket_clock *clock = &c->bucket_clock[rw]; struct bucket_array *buckets = bucket_array(ca); struct bucket *g; u16 max_last_io = 0; unsigned i; lockdep_assert_held(&c->bucket_clock[rw].lock); /* Recalculate max_last_io for this device: */ for_each_bucket(g, buckets) max_last_io = max(max_last_io, bucket_last_io(c, g, rw)); ca->max_last_bucket_io[rw] = max_last_io; /* Recalculate global max_last_io: */ max_last_io = 0; for_each_member_device(ca, c, i) max_last_io = max(max_last_io, ca->max_last_bucket_io[rw]); clock->max_last_io = max_last_io; } static void bch2_rescale_bucket_io_times(struct bch_fs *c, int rw) { struct bucket_clock *clock = &c->bucket_clock[rw]; struct bucket_array *buckets; struct bch_dev *ca; struct bucket *g; unsigned i; trace_rescale_prios(c); for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); buckets = bucket_array(ca); for_each_bucket(g, buckets) g->io_time[rw] = clock->hand - bucket_last_io(c, g, rw) / 2; bch2_recalc_oldest_io(c, ca, rw); up_read(&ca->bucket_lock); } } static inline u64 bucket_clock_freq(u64 capacity) { return max(capacity >> 10, 2028ULL); } static void bch2_inc_clock_hand(struct io_timer *timer) { struct bucket_clock *clock = container_of(timer, struct bucket_clock, rescale); struct bch_fs *c = container_of(clock, struct bch_fs, bucket_clock[clock->rw]); struct bch_dev *ca; u64 capacity; unsigned i; mutex_lock(&clock->lock); /* if clock cannot be advanced more, rescale prio */ if (clock->max_last_io >= U16_MAX - 2) bch2_rescale_bucket_io_times(c, clock->rw); BUG_ON(clock->max_last_io >= U16_MAX - 2); for_each_member_device(ca, c, i) ca->max_last_bucket_io[clock->rw]++; clock->max_last_io++; clock->hand++; mutex_unlock(&clock->lock); capacity = READ_ONCE(c->capacity); if (!capacity) return; /* * we only increment when 0.1% of the filesystem capacity has been read * or written too, this determines if it's time * * XXX: we shouldn't really be going off of the capacity of devices in * RW mode (that will be 0 when we're RO, yet we can still service * reads) */ timer->expire += bucket_clock_freq(capacity); bch2_io_timer_add(&c->io_clock[clock->rw], timer); } static void bch2_bucket_clock_init(struct bch_fs *c, int rw) { struct bucket_clock *clock = &c->bucket_clock[rw]; clock->hand = 1; clock->rw = rw; clock->rescale.fn = bch2_inc_clock_hand; clock->rescale.expire = bucket_clock_freq(c->capacity); mutex_init(&clock->lock); } /* Background allocator thread: */ /* * Scans for buckets to be invalidated, invalidates them, rewrites prios/gens * (marking them as invalidated on disk), then optionally issues discard * commands to the newly free buckets, then puts them on the various freelists. */ /** * wait_buckets_available - wait on reclaimable buckets * * If there aren't enough available buckets to fill up free_inc, wait until * there are. */ static int wait_buckets_available(struct bch_fs *c, struct bch_dev *ca) { unsigned long gc_count = c->gc_count; u64 available; int ret = 0; ca->allocator_state = ALLOCATOR_BLOCKED; closure_wake_up(&c->freelist_wait); while (1) { set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) { ret = 1; break; } if (gc_count != c->gc_count) ca->inc_gen_really_needs_gc = 0; available = max_t(s64, 0, dev_buckets_available(ca) - ca->inc_gen_really_needs_gc); if (available > fifo_free(&ca->free_inc) || (available && (!fifo_full(&ca->free[RESERVE_BTREE]) || !fifo_full(&ca->free[RESERVE_MOVINGGC])))) break; up_read(&c->gc_lock); schedule(); try_to_freeze(); down_read(&c->gc_lock); } __set_current_state(TASK_RUNNING); ca->allocator_state = ALLOCATOR_RUNNING; closure_wake_up(&c->freelist_wait); return ret; } static bool bch2_can_invalidate_bucket(struct bch_dev *ca, size_t bucket, struct bucket_mark mark) { u8 gc_gen; if (!is_available_bucket(mark)) return false; if (ca->buckets_nouse && test_bit(bucket, ca->buckets_nouse)) return false; gc_gen = bucket_gc_gen(ca, bucket); if (gc_gen >= BUCKET_GC_GEN_MAX / 2) ca->inc_gen_needs_gc++; if (gc_gen >= BUCKET_GC_GEN_MAX) ca->inc_gen_really_needs_gc++; return gc_gen < BUCKET_GC_GEN_MAX; } /* * Determines what order we're going to reuse buckets, smallest bucket_key() * first. * * * - We take into account the read prio of the bucket, which gives us an * indication of how hot the data is -- we scale the prio so that the prio * farthest from the clock is worth 1/8th of the closest. * * - The number of sectors of cached data in the bucket, which gives us an * indication of the cost in cache misses this eviction will cause. * * - If hotness * sectors used compares equal, we pick the bucket with the * smallest bucket_gc_gen() - since incrementing the same bucket's generation * number repeatedly forces us to run mark and sweep gc to avoid generation * number wraparound. */ static unsigned long bucket_sort_key(struct bch_fs *c, struct bch_dev *ca, size_t b, struct bucket_mark m) { unsigned last_io = bucket_last_io(c, bucket(ca, b), READ); unsigned max_last_io = ca->max_last_bucket_io[READ]; /* * Time since last read, scaled to [0, 8) where larger value indicates * more recently read data: */ unsigned long hotness = (max_last_io - last_io) * 7 / max_last_io; /* How much we want to keep the data in this bucket: */ unsigned long data_wantness = (hotness + 1) * bucket_sectors_used(m); unsigned long needs_journal_commit = bucket_needs_journal_commit(m, c->journal.last_seq_ondisk); return (data_wantness << 9) | (needs_journal_commit << 8) | (bucket_gc_gen(ca, b) / 16); } static inline int bucket_alloc_cmp(alloc_heap *h, struct alloc_heap_entry l, struct alloc_heap_entry r) { return cmp_int(l.key, r.key) ?: cmp_int(r.nr, l.nr) ?: cmp_int(l.bucket, r.bucket); } static inline int bucket_idx_cmp(const void *_l, const void *_r) { const struct alloc_heap_entry *l = _l, *r = _r; return cmp_int(l->bucket, r->bucket); } static void find_reclaimable_buckets_lru(struct bch_fs *c, struct bch_dev *ca) { struct bucket_array *buckets; struct alloc_heap_entry e = { 0 }; size_t b, i, nr = 0; ca->alloc_heap.used = 0; mutex_lock(&c->bucket_clock[READ].lock); down_read(&ca->bucket_lock); buckets = bucket_array(ca); bch2_recalc_oldest_io(c, ca, READ); /* * Find buckets with lowest read priority, by building a maxheap sorted * by read priority and repeatedly replacing the maximum element until * all buckets have been visited. */ for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) { struct bucket_mark m = READ_ONCE(buckets->b[b].mark); unsigned long key = bucket_sort_key(c, ca, b, m); if (!bch2_can_invalidate_bucket(ca, b, m)) continue; if (e.nr && e.bucket + e.nr == b && e.key == key) { e.nr++; } else { if (e.nr) heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL); e = (struct alloc_heap_entry) { .bucket = b, .nr = 1, .key = key, }; } cond_resched(); } if (e.nr) heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL); for (i = 0; i < ca->alloc_heap.used; i++) nr += ca->alloc_heap.data[i].nr; while (nr - ca->alloc_heap.data[0].nr >= ALLOC_SCAN_BATCH(ca)) { nr -= ca->alloc_heap.data[0].nr; heap_pop(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL); } up_read(&ca->bucket_lock); mutex_unlock(&c->bucket_clock[READ].lock); } static void find_reclaimable_buckets_fifo(struct bch_fs *c, struct bch_dev *ca) { struct bucket_array *buckets = bucket_array(ca); struct bucket_mark m; size_t b, start; if (ca->fifo_last_bucket < ca->mi.first_bucket || ca->fifo_last_bucket >= ca->mi.nbuckets) ca->fifo_last_bucket = ca->mi.first_bucket; start = ca->fifo_last_bucket; do { ca->fifo_last_bucket++; if (ca->fifo_last_bucket == ca->mi.nbuckets) ca->fifo_last_bucket = ca->mi.first_bucket; b = ca->fifo_last_bucket; m = READ_ONCE(buckets->b[b].mark); if (bch2_can_invalidate_bucket(ca, b, m)) { struct alloc_heap_entry e = { .bucket = b, .nr = 1, }; heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); if (heap_full(&ca->alloc_heap)) break; } cond_resched(); } while (ca->fifo_last_bucket != start); } static void find_reclaimable_buckets_random(struct bch_fs *c, struct bch_dev *ca) { struct bucket_array *buckets = bucket_array(ca); struct bucket_mark m; size_t checked, i; for (checked = 0; checked < ca->mi.nbuckets / 2; checked++) { size_t b = bch2_rand_range(ca->mi.nbuckets - ca->mi.first_bucket) + ca->mi.first_bucket; m = READ_ONCE(buckets->b[b].mark); if (bch2_can_invalidate_bucket(ca, b, m)) { struct alloc_heap_entry e = { .bucket = b, .nr = 1, }; heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); if (heap_full(&ca->alloc_heap)) break; } cond_resched(); } sort(ca->alloc_heap.data, ca->alloc_heap.used, sizeof(ca->alloc_heap.data[0]), bucket_idx_cmp, NULL); /* remove duplicates: */ for (i = 0; i + 1 < ca->alloc_heap.used; i++) if (ca->alloc_heap.data[i].bucket == ca->alloc_heap.data[i + 1].bucket) ca->alloc_heap.data[i].nr = 0; } static size_t find_reclaimable_buckets(struct bch_fs *c, struct bch_dev *ca) { size_t i, nr = 0; ca->inc_gen_needs_gc = 0; switch (ca->mi.replacement) { case CACHE_REPLACEMENT_LRU: find_reclaimable_buckets_lru(c, ca); break; case CACHE_REPLACEMENT_FIFO: find_reclaimable_buckets_fifo(c, ca); break; case CACHE_REPLACEMENT_RANDOM: find_reclaimable_buckets_random(c, ca); break; } heap_resort(&ca->alloc_heap, bucket_alloc_cmp, NULL); for (i = 0; i < ca->alloc_heap.used; i++) nr += ca->alloc_heap.data[i].nr; return nr; } static inline long next_alloc_bucket(struct bch_dev *ca) { struct alloc_heap_entry e, *top = ca->alloc_heap.data; while (ca->alloc_heap.used) { if (top->nr) { size_t b = top->bucket; top->bucket++; top->nr--; return b; } heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); } return -1; } /* * returns sequence number of most recent journal entry that updated this * bucket: */ static u64 bucket_journal_seq(struct bch_fs *c, struct bucket_mark m) { if (m.journal_seq_valid) { u64 journal_seq = atomic64_read(&c->journal.seq); u64 bucket_seq = journal_seq; bucket_seq &= ~((u64) U16_MAX); bucket_seq |= m.journal_seq; if (bucket_seq > journal_seq) bucket_seq -= 1 << 16; return bucket_seq; } else { return 0; } } static int bch2_invalidate_one_bucket2(struct btree_trans *trans, struct bch_dev *ca, struct btree_iter *iter, u64 *journal_seq, unsigned flags) { #if 0 __BKEY_PADDED(k, BKEY_ALLOC_VAL_U64s_MAX) alloc_key; #else /* hack: */ __BKEY_PADDED(k, 8) alloc_key; #endif struct bch_fs *c = trans->c; struct bkey_i_alloc *a; struct bkey_alloc_unpacked u; struct bucket *g; struct bucket_mark m; bool invalidating_cached_data; size_t b; int ret = 0; BUG_ON(!ca->alloc_heap.used || !ca->alloc_heap.data[0].nr); b = ca->alloc_heap.data[0].bucket; /* first, put on free_inc and mark as owned by allocator: */ percpu_down_read(&c->mark_lock); spin_lock(&c->freelist_lock); verify_not_on_freelist(c, ca, b); BUG_ON(!fifo_push(&ca->free_inc, b)); g = bucket(ca, b); m = READ_ONCE(g->mark); invalidating_cached_data = m.cached_sectors != 0; /* * If we're not invalidating cached data, we only increment the bucket * gen in memory here, the incremented gen will be updated in the btree * by bch2_trans_mark_pointer(): */ if (!invalidating_cached_data) bch2_invalidate_bucket(c, ca, b, &m); else bch2_mark_alloc_bucket(c, ca, b, true, gc_pos_alloc(c, NULL), 0); spin_unlock(&c->freelist_lock); percpu_up_read(&c->mark_lock); if (!invalidating_cached_data) goto out; /* * If the read-only path is trying to shut down, we can't be generating * new btree updates: */ if (test_bit(BCH_FS_ALLOCATOR_STOPPING, &c->flags)) { ret = 1; goto out; } BUG_ON(BKEY_ALLOC_VAL_U64s_MAX > 8); bch2_btree_iter_set_pos(iter, POS(ca->dev_idx, b)); retry: ret = bch2_btree_iter_traverse(iter); if (ret) return ret; percpu_down_read(&c->mark_lock); g = bucket(ca, iter->pos.offset); m = READ_ONCE(g->mark); u = alloc_mem_to_key(g, m); percpu_up_read(&c->mark_lock); invalidating_cached_data = u.cached_sectors != 0; u.gen++; u.data_type = 0; u.dirty_sectors = 0; u.cached_sectors = 0; u.read_time = c->bucket_clock[READ].hand; u.write_time = c->bucket_clock[WRITE].hand; a = bkey_alloc_init(&alloc_key.k); a->k.p = iter->pos; bch2_alloc_pack(a, u); bch2_trans_update(trans, iter, &a->k_i, BTREE_TRIGGER_BUCKET_INVALIDATE); /* * XXX: * when using deferred btree updates, we have journal reclaim doing * btree updates and thus requiring the allocator to make forward * progress, and here the allocator is requiring space in the journal - * so we need a journal pre-reservation: */ ret = bch2_trans_commit(trans, NULL, invalidating_cached_data ? journal_seq : NULL, BTREE_INSERT_NOUNLOCK| BTREE_INSERT_NOCHECK_RW| BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE| BTREE_INSERT_USE_ALLOC_RESERVE| flags); if (ret == -EINTR) goto retry; out: if (!ret) { /* remove from alloc_heap: */ struct alloc_heap_entry e, *top = ca->alloc_heap.data; top->bucket++; top->nr--; if (!top->nr) heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); /* * Make sure we flush the last journal entry that updated this * bucket (i.e. deleting the last reference) before writing to * this bucket again: */ *journal_seq = max(*journal_seq, bucket_journal_seq(c, m)); } else { size_t b2; /* remove from free_inc: */ percpu_down_read(&c->mark_lock); spin_lock(&c->freelist_lock); bch2_mark_alloc_bucket(c, ca, b, false, gc_pos_alloc(c, NULL), 0); BUG_ON(!fifo_pop_back(&ca->free_inc, b2)); BUG_ON(b != b2); spin_unlock(&c->freelist_lock); percpu_up_read(&c->mark_lock); } return ret < 0 ? ret : 0; } /* * Pull buckets off ca->alloc_heap, invalidate them, move them to ca->free_inc: */ static int bch2_invalidate_buckets(struct bch_fs *c, struct bch_dev *ca) { struct btree_trans trans; struct btree_iter *iter; u64 journal_seq = 0; int ret = 0; bch2_trans_init(&trans, c, 0, 0); iter = bch2_trans_get_iter(&trans, BTREE_ID_ALLOC, POS(ca->dev_idx, 0), BTREE_ITER_CACHED| BTREE_ITER_CACHED_NOFILL| BTREE_ITER_INTENT); /* Only use nowait if we've already invalidated at least one bucket: */ while (!ret && !fifo_full(&ca->free_inc) && ca->alloc_heap.used) ret = bch2_invalidate_one_bucket2(&trans, ca, iter, &journal_seq, BTREE_INSERT_GC_LOCK_HELD| (!fifo_empty(&ca->free_inc) ? BTREE_INSERT_NOWAIT : 0)); bch2_trans_exit(&trans); /* If we used NOWAIT, don't return the error: */ if (!fifo_empty(&ca->free_inc)) ret = 0; if (ret) { bch_err(ca, "error invalidating buckets: %i", ret); return ret; } if (journal_seq) ret = bch2_journal_flush_seq(&c->journal, journal_seq); if (ret) { bch_err(ca, "journal error: %i", ret); return ret; } return 0; } static int push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, size_t bucket) { unsigned i; int ret = 0; while (1) { set_current_state(TASK_INTERRUPTIBLE); spin_lock(&c->freelist_lock); for (i = 0; i < RESERVE_NR; i++) { /* * Don't strand buckets on the copygc freelist until * after recovery is finished: */ if (!test_bit(BCH_FS_STARTED, &c->flags) && i == RESERVE_MOVINGGC) continue; if (fifo_push(&ca->free[i], bucket)) { fifo_pop(&ca->free_inc, bucket); closure_wake_up(&c->freelist_wait); ca->allocator_state = ALLOCATOR_RUNNING; spin_unlock(&c->freelist_lock); goto out; } } if (ca->allocator_state != ALLOCATOR_BLOCKED_FULL) { ca->allocator_state = ALLOCATOR_BLOCKED_FULL; closure_wake_up(&c->freelist_wait); } spin_unlock(&c->freelist_lock); if ((current->flags & PF_KTHREAD) && kthread_should_stop()) { ret = 1; break; } schedule(); try_to_freeze(); } out: __set_current_state(TASK_RUNNING); return ret; } /* * Pulls buckets off free_inc, discards them (if enabled), then adds them to * freelists, waiting until there's room if necessary: */ static int discard_invalidated_buckets(struct bch_fs *c, struct bch_dev *ca) { while (!fifo_empty(&ca->free_inc)) { size_t bucket = fifo_peek(&ca->free_inc); if (ca->mi.discard && bdev_max_discard_sectors(ca->disk_sb.bdev)) blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, bucket), ca->mi.bucket_size, GFP_NOIO); if (push_invalidated_bucket(c, ca, bucket)) return 1; } return 0; } /** * bch_allocator_thread - move buckets from free_inc to reserves * * The free_inc FIFO is populated by find_reclaimable_buckets(), and * the reserves are depleted by bucket allocation. When we run out * of free_inc, try to invalidate some buckets and write out * prios and gens. */ static int bch2_allocator_thread(void *arg) { struct bch_dev *ca = arg; struct bch_fs *c = ca->fs; size_t nr; int ret; set_freezable(); ca->allocator_state = ALLOCATOR_RUNNING; while (1) { cond_resched(); if (kthread_should_stop()) break; pr_debug("discarding %zu invalidated buckets", fifo_used(&ca->free_inc)); ret = discard_invalidated_buckets(c, ca); if (ret) goto stop; down_read(&c->gc_lock); ret = bch2_invalidate_buckets(c, ca); if (ret) { up_read(&c->gc_lock); goto stop; } if (!fifo_empty(&ca->free_inc)) { up_read(&c->gc_lock); continue; } pr_debug("free_inc now empty"); do { /* * Find some buckets that we can invalidate, either * they're completely unused, or only contain clean data * that's been written back to the backing device or * another cache tier */ pr_debug("scanning for reclaimable buckets"); nr = find_reclaimable_buckets(c, ca); pr_debug("found %zu buckets", nr); trace_alloc_batch(ca, nr, ca->alloc_heap.size); if ((ca->inc_gen_needs_gc >= ALLOC_SCAN_BATCH(ca) || ca->inc_gen_really_needs_gc) && c->gc_thread) { atomic_inc(&c->kick_gc); wake_up_process(c->gc_thread); } /* * If we found any buckets, we have to invalidate them * before we scan for more - but if we didn't find very * many we may want to wait on more buckets being * available so we don't spin: */ if (!nr || (nr < ALLOC_SCAN_BATCH(ca) && !fifo_empty(&ca->free[RESERVE_NONE]))) { ret = wait_buckets_available(c, ca); if (ret) { up_read(&c->gc_lock); goto stop; } } } while (!nr); up_read(&c->gc_lock); pr_debug("%zu buckets to invalidate", nr); /* * alloc_heap is now full of newly-invalidated buckets: next, * write out the new bucket gens: */ } stop: pr_debug("alloc thread stopping (ret %i)", ret); ca->allocator_state = ALLOCATOR_STOPPED; closure_wake_up(&c->freelist_wait); return 0; } /* Startup/shutdown (ro/rw): */ void bch2_recalc_capacity(struct bch_fs *c) { struct bch_dev *ca; u64 capacity = 0, reserved_sectors = 0, gc_reserve, copygc_threshold = 0; unsigned bucket_size_max = 0; unsigned long ra_pages = 0; unsigned i, j; lockdep_assert_held(&c->state_lock); for_each_online_member(ca, c, i) { struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_disk->bdi; ra_pages += bdi->ra_pages; } bch2_set_ra_pages(c, ra_pages); for_each_rw_member(ca, c, i) { u64 dev_reserve = 0; /* * We need to reserve buckets (from the number * of currently available buckets) against * foreground writes so that mainly copygc can * make forward progress. * * We need enough to refill the various reserves * from scratch - copygc will use its entire * reserve all at once, then run against when * its reserve is refilled (from the formerly * available buckets). * * This reserve is just used when considering if * allocations for foreground writes must wait - * not -ENOSPC calculations. */ for (j = 0; j < RESERVE_NONE; j++) dev_reserve += ca->free[j].size; dev_reserve += 1; /* btree write point */ dev_reserve += 1; /* copygc write point */ dev_reserve += 1; /* rebalance write point */ dev_reserve *= ca->mi.bucket_size; copygc_threshold += dev_reserve; capacity += bucket_to_sector(ca, ca->mi.nbuckets - ca->mi.first_bucket); reserved_sectors += dev_reserve * 2; bucket_size_max = max_t(unsigned, bucket_size_max, ca->mi.bucket_size); } gc_reserve = c->opts.gc_reserve_bytes ? c->opts.gc_reserve_bytes >> 9 : div64_u64(capacity * c->opts.gc_reserve_percent, 100); reserved_sectors = max(gc_reserve, reserved_sectors); reserved_sectors = min(reserved_sectors, capacity); c->copygc_threshold = copygc_threshold; c->capacity = capacity - reserved_sectors; c->bucket_size_max = bucket_size_max; /* Wake up case someone was waiting for buckets */ closure_wake_up(&c->freelist_wait); } static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca) { struct open_bucket *ob; bool ret = false; for (ob = c->open_buckets; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { spin_lock(&ob->lock); if (ob->valid && !ob->on_partial_list && ob->ptr.dev == ca->dev_idx) ret = true; spin_unlock(&ob->lock); } return ret; } /* device goes ro: */ void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca) { unsigned i; BUG_ON(ca->alloc_thread); /* First, remove device from allocation groups: */ for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) clear_bit(ca->dev_idx, c->rw_devs[i].d); /* * Capacity is calculated based off of devices in allocation groups: */ bch2_recalc_capacity(c); /* Next, close write points that point to this device... */ for (i = 0; i < ARRAY_SIZE(c->write_points); i++) bch2_writepoint_stop(c, ca, &c->write_points[i]); bch2_writepoint_stop(c, ca, &c->copygc_write_point); bch2_writepoint_stop(c, ca, &c->rebalance_write_point); bch2_writepoint_stop(c, ca, &c->btree_write_point); mutex_lock(&c->btree_reserve_cache_lock); while (c->btree_reserve_cache_nr) { struct btree_alloc *a = &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; bch2_open_buckets_put(c, &a->ob); } mutex_unlock(&c->btree_reserve_cache_lock); while (1) { struct open_bucket *ob; spin_lock(&c->freelist_lock); if (!ca->open_buckets_partial_nr) { spin_unlock(&c->freelist_lock); break; } ob = c->open_buckets + ca->open_buckets_partial[--ca->open_buckets_partial_nr]; ob->on_partial_list = false; spin_unlock(&c->freelist_lock); bch2_open_bucket_put(c, ob); } bch2_ec_stop_dev(c, ca); /* * Wake up threads that were blocked on allocation, so they can notice * the device can no longer be removed and the capacity has changed: */ closure_wake_up(&c->freelist_wait); /* * journal_res_get() can block waiting for free space in the journal - * it needs to notice there may not be devices to allocate from anymore: */ wake_up(&c->journal.wait); /* Now wait for any in flight writes: */ closure_wait_event(&c->open_buckets_wait, !bch2_dev_has_open_write_point(c, ca)); } /* device goes rw: */ void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca) { unsigned i; for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) if (ca->mi.data_allowed & (1 << i)) set_bit(ca->dev_idx, c->rw_devs[i].d); } void bch2_dev_allocator_quiesce(struct bch_fs *c, struct bch_dev *ca) { if (ca->alloc_thread) closure_wait_event(&c->freelist_wait, ca->allocator_state != ALLOCATOR_RUNNING); } /* stop allocator thread: */ void bch2_dev_allocator_stop(struct bch_dev *ca) { struct task_struct *p; p = rcu_dereference_protected(ca->alloc_thread, 1); ca->alloc_thread = NULL; /* * We need an rcu barrier between setting ca->alloc_thread = NULL and * the thread shutting down to avoid bch2_wake_allocator() racing: * * XXX: it would be better to have the rcu barrier be asynchronous * instead of blocking us here */ synchronize_rcu(); if (p) { kthread_stop(p); put_task_struct(p); } } /* start allocator thread: */ int bch2_dev_allocator_start(struct bch_dev *ca) { struct task_struct *p; /* * allocator thread already started? */ if (ca->alloc_thread) return 0; p = kthread_create(bch2_allocator_thread, ca, "bch-alloc/%s", ca->name); if (IS_ERR(p)) return PTR_ERR(p); get_task_struct(p); rcu_assign_pointer(ca->alloc_thread, p); wake_up_process(p); return 0; } void bch2_fs_allocator_background_init(struct bch_fs *c) { spin_lock_init(&c->freelist_lock); bch2_bucket_clock_init(c, READ); bch2_bucket_clock_init(c, WRITE); c->pd_controllers_update_seconds = 5; INIT_DELAYED_WORK(&c->pd_controllers_update, pd_controllers_update); }