/* * Afatech AF9013 demodulator driver * * Copyright (C) 2007 Antti Palosaari * Copyright (C) 2011 Antti Palosaari * * Thanks to Afatech who kindly provided information. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include "af9013_priv.h" /* Max transfer size done by I2C transfer functions */ #define MAX_XFER_SIZE 64 struct af9013_state { struct i2c_adapter *i2c; struct dvb_frontend fe; u8 i2c_addr; u32 clk; u8 tuner; u32 if_frequency; u8 ts_mode; bool spec_inv; u8 api_version[4]; u8 gpio[4]; /* tuner/demod RF and IF AGC limits used for signal strength calc */ u8 signal_strength_en, rf_50, rf_80, if_50, if_80; u16 signal_strength; u32 ber; u32 ucblocks; u16 snr; u32 bandwidth_hz; enum fe_status fe_status; unsigned long set_frontend_jiffies; unsigned long read_status_jiffies; bool first_tune; bool i2c_gate_state; unsigned int statistics_step:3; struct delayed_work statistics_work; }; /* write multiple registers */ static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg, const u8 *val, int len) { int ret; u8 buf[MAX_XFER_SIZE]; struct i2c_msg msg[1] = { { .addr = priv->i2c_addr, .flags = 0, .len = 3 + len, .buf = buf, } }; if (3 + len > sizeof(buf)) { dev_warn(&priv->i2c->dev, "%s: i2c wr reg=%04x: len=%d is too big!\n", KBUILD_MODNAME, reg, len); return -EINVAL; } buf[0] = (reg >> 8) & 0xff; buf[1] = (reg >> 0) & 0xff; buf[2] = mbox; memcpy(&buf[3], val, len); ret = i2c_transfer(priv->i2c, msg, 1); if (ret == 1) { ret = 0; } else { dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%04x " \ "len=%d\n", KBUILD_MODNAME, ret, reg, len); ret = -EREMOTEIO; } return ret; } /* read multiple registers */ static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg, u8 *val, int len) { int ret; u8 buf[3]; struct i2c_msg msg[2] = { { .addr = priv->i2c_addr, .flags = 0, .len = 3, .buf = buf, }, { .addr = priv->i2c_addr, .flags = I2C_M_RD, .len = len, .buf = val, } }; buf[0] = (reg >> 8) & 0xff; buf[1] = (reg >> 0) & 0xff; buf[2] = mbox; ret = i2c_transfer(priv->i2c, msg, 2); if (ret == 2) { ret = 0; } else { dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%04x " \ "len=%d\n", KBUILD_MODNAME, ret, reg, len); ret = -EREMOTEIO; } return ret; } /* write multiple registers */ static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val, int len) { int ret, i; u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0); if ((priv->ts_mode == AF9013_TS_USB) && ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) { mbox |= ((len - 1) << 2); ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len); } else { for (i = 0; i < len; i++) { ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1); if (ret) goto err; } } err: return 0; } /* read multiple registers */ static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len) { int ret, i; u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0); if ((priv->ts_mode == AF9013_TS_USB) && ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) { mbox |= ((len - 1) << 2); ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len); } else { for (i = 0; i < len; i++) { ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1); if (ret) goto err; } } err: return 0; } /* write single register */ static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val) { return af9013_wr_regs(priv, reg, &val, 1); } /* read single register */ static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val) { return af9013_rd_regs(priv, reg, val, 1); } static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val, u8 len) { u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0); return af9013_wr_regs_i2c(state, mbox, reg, val, len); } static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos, int len, u8 val) { int ret; u8 tmp, mask; /* no need for read if whole reg is written */ if (len != 8) { ret = af9013_rd_reg(state, reg, &tmp); if (ret) return ret; mask = (0xff >> (8 - len)) << pos; val <<= pos; tmp &= ~mask; val |= tmp; } return af9013_wr_reg(state, reg, val); } static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos, int len, u8 *val) { int ret; u8 tmp; ret = af9013_rd_reg(state, reg, &tmp); if (ret) return ret; *val = (tmp >> pos); *val &= (0xff >> (8 - len)); return 0; } static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval) { int ret; u8 pos; u16 addr; dev_dbg(&state->i2c->dev, "%s: gpio=%d gpioval=%02x\n", __func__, gpio, gpioval); /* * GPIO0 & GPIO1 0xd735 * GPIO2 & GPIO3 0xd736 */ switch (gpio) { case 0: case 1: addr = 0xd735; break; case 2: case 3: addr = 0xd736; break; default: dev_err(&state->i2c->dev, "%s: invalid gpio=%d\n", KBUILD_MODNAME, gpio); ret = -EINVAL; goto err; } switch (gpio) { case 0: case 2: pos = 0; break; case 1: case 3: default: pos = 4; break; } ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval); if (ret) goto err; return ret; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static u32 af9013_div(struct af9013_state *state, u32 a, u32 b, u32 x) { u32 r = 0, c = 0, i; dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x); if (a > b) { c = a / b; a = a - c * b; } for (i = 0; i < x; i++) { if (a >= b) { r += 1; a -= b; } a <<= 1; r <<= 1; } r = (c << (u32)x) + r; dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n", __func__, a, b, x, r, r); return r; } static int af9013_power_ctrl(struct af9013_state *state, u8 onoff) { int ret, i; u8 tmp; dev_dbg(&state->i2c->dev, "%s: onoff=%d\n", __func__, onoff); /* enable reset */ ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1); if (ret) goto err; /* start reset mechanism */ ret = af9013_wr_reg(state, 0xaeff, 1); if (ret) goto err; /* wait reset performs */ for (i = 0; i < 150; i++) { ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp); if (ret) goto err; if (tmp) break; /* reset done */ usleep_range(5000, 25000); } if (!tmp) return -ETIMEDOUT; if (onoff) { /* clear reset */ ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0); if (ret) goto err; /* disable reset */ ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0); /* power on */ ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0); } else { /* power off */ ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1); } return ret; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; int ret; dev_dbg(&state->i2c->dev, "%s:\n", __func__); /* reset and start BER counter */ ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1); if (ret) goto err; return ret; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; int ret; u8 buf[5]; dev_dbg(&state->i2c->dev, "%s:\n", __func__); /* check if error bit count is ready */ ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]); if (ret) goto err; if (!buf[0]) { dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__); return 0; } ret = af9013_rd_regs(state, 0xd387, buf, 5); if (ret) goto err; state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0]; state->ucblocks += (buf[4] << 8) | buf[3]; return ret; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9013_statistics_snr_start(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; int ret; dev_dbg(&state->i2c->dev, "%s:\n", __func__); /* start SNR meas */ ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1); if (ret) goto err; return ret; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9013_statistics_snr_result(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; int ret, i, len; u8 buf[3], tmp; u32 snr_val; const struct af9013_snr *uninitialized_var(snr_lut); dev_dbg(&state->i2c->dev, "%s:\n", __func__); /* check if SNR ready */ ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp); if (ret) goto err; if (!tmp) { dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__); return 0; } /* read value */ ret = af9013_rd_regs(state, 0xd2e3, buf, 3); if (ret) goto err; snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0]; /* read current modulation */ ret = af9013_rd_reg(state, 0xd3c1, &tmp); if (ret) goto err; switch ((tmp >> 6) & 3) { case 0: len = ARRAY_SIZE(qpsk_snr_lut); snr_lut = qpsk_snr_lut; break; case 1: len = ARRAY_SIZE(qam16_snr_lut); snr_lut = qam16_snr_lut; break; case 2: len = ARRAY_SIZE(qam64_snr_lut); snr_lut = qam64_snr_lut; break; default: goto err; } for (i = 0; i < len; i++) { tmp = snr_lut[i].snr; if (snr_val < snr_lut[i].val) break; } state->snr = tmp * 10; /* dB/10 */ return ret; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9013_statistics_signal_strength(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; int ret = 0; u8 buf[2], rf_gain, if_gain; int signal_strength; dev_dbg(&state->i2c->dev, "%s:\n", __func__); if (!state->signal_strength_en) return 0; ret = af9013_rd_regs(state, 0xd07c, buf, 2); if (ret) goto err; rf_gain = buf[0]; if_gain = buf[1]; signal_strength = (0xffff / \ (9 * (state->rf_50 + state->if_50) - \ 11 * (state->rf_80 + state->if_80))) * \ (10 * (rf_gain + if_gain) - \ 11 * (state->rf_80 + state->if_80)); if (signal_strength < 0) signal_strength = 0; else if (signal_strength > 0xffff) signal_strength = 0xffff; state->signal_strength = signal_strength; return ret; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static void af9013_statistics_work(struct work_struct *work) { struct af9013_state *state = container_of(work, struct af9013_state, statistics_work.work); unsigned int next_msec; /* update only signal strength when demod is not locked */ if (!(state->fe_status & FE_HAS_LOCK)) { state->statistics_step = 0; state->ber = 0; state->snr = 0; } switch (state->statistics_step) { default: state->statistics_step = 0; /* fall-through */ case 0: af9013_statistics_signal_strength(&state->fe); state->statistics_step++; next_msec = 300; break; case 1: af9013_statistics_snr_start(&state->fe); state->statistics_step++; next_msec = 200; break; case 2: af9013_statistics_ber_unc_start(&state->fe); state->statistics_step++; next_msec = 1000; break; case 3: af9013_statistics_snr_result(&state->fe); state->statistics_step++; next_msec = 400; break; case 4: af9013_statistics_ber_unc_result(&state->fe); state->statistics_step++; next_msec = 100; break; } schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(next_msec)); } static int af9013_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *fesettings) { fesettings->min_delay_ms = 800; fesettings->step_size = 0; fesettings->max_drift = 0; return 0; } static int af9013_set_frontend(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int ret, i, sampling_freq; bool auto_mode, spec_inv; u8 buf[6]; u32 if_frequency, freq_cw; dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n", __func__, c->frequency, c->bandwidth_hz); /* program tuner */ if (fe->ops.tuner_ops.set_params) fe->ops.tuner_ops.set_params(fe); /* program CFOE coefficients */ if (c->bandwidth_hz != state->bandwidth_hz) { for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) { if (coeff_lut[i].clock == state->clk && coeff_lut[i].bandwidth_hz == c->bandwidth_hz) { break; } } /* Return an error if can't find bandwidth or the right clock */ if (i == ARRAY_SIZE(coeff_lut)) return -EINVAL; ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val, sizeof(coeff_lut[i].val)); if (ret) goto err; } /* program frequency control */ if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) { /* get used IF frequency */ if (fe->ops.tuner_ops.get_if_frequency) fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency); else if_frequency = state->if_frequency; dev_dbg(&state->i2c->dev, "%s: if_frequency=%d\n", __func__, if_frequency); sampling_freq = if_frequency; while (sampling_freq > (state->clk / 2)) sampling_freq -= state->clk; if (sampling_freq < 0) { sampling_freq *= -1; spec_inv = state->spec_inv; } else { spec_inv = !state->spec_inv; } freq_cw = af9013_div(state, sampling_freq, state->clk, 23); if (spec_inv) freq_cw = 0x800000 - freq_cw; buf[0] = (freq_cw >> 0) & 0xff; buf[1] = (freq_cw >> 8) & 0xff; buf[2] = (freq_cw >> 16) & 0x7f; freq_cw = 0x800000 - freq_cw; buf[3] = (freq_cw >> 0) & 0xff; buf[4] = (freq_cw >> 8) & 0xff; buf[5] = (freq_cw >> 16) & 0x7f; ret = af9013_wr_regs(state, 0xd140, buf, 3); if (ret) goto err; ret = af9013_wr_regs(state, 0x9be7, buf, 6); if (ret) goto err; } /* clear TPS lock flag */ ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1); if (ret) goto err; /* clear MPEG2 lock flag */ ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0); if (ret) goto err; /* empty channel function */ ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0); if (ret) goto err; /* empty DVB-T channel function */ ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0); if (ret) goto err; /* transmission parameters */ auto_mode = false; memset(buf, 0, 3); switch (c->transmission_mode) { case TRANSMISSION_MODE_AUTO: auto_mode = true; break; case TRANSMISSION_MODE_2K: break; case TRANSMISSION_MODE_8K: buf[0] |= (1 << 0); break; default: dev_dbg(&state->i2c->dev, "%s: invalid transmission_mode\n", __func__); auto_mode = true; } switch (c->guard_interval) { case GUARD_INTERVAL_AUTO: auto_mode = true; break; case GUARD_INTERVAL_1_32: break; case GUARD_INTERVAL_1_16: buf[0] |= (1 << 2); break; case GUARD_INTERVAL_1_8: buf[0] |= (2 << 2); break; case GUARD_INTERVAL_1_4: buf[0] |= (3 << 2); break; default: dev_dbg(&state->i2c->dev, "%s: invalid guard_interval\n", __func__); auto_mode = true; } switch (c->hierarchy) { case HIERARCHY_AUTO: auto_mode = true; break; case HIERARCHY_NONE: break; case HIERARCHY_1: buf[0] |= (1 << 4); break; case HIERARCHY_2: buf[0] |= (2 << 4); break; case HIERARCHY_4: buf[0] |= (3 << 4); break; default: dev_dbg(&state->i2c->dev, "%s: invalid hierarchy\n", __func__); auto_mode = true; } switch (c->modulation) { case QAM_AUTO: auto_mode = true; break; case QPSK: break; case QAM_16: buf[1] |= (1 << 6); break; case QAM_64: buf[1] |= (2 << 6); break; default: dev_dbg(&state->i2c->dev, "%s: invalid modulation\n", __func__); auto_mode = true; } /* Use HP. How and which case we can switch to LP? */ buf[1] |= (1 << 4); switch (c->code_rate_HP) { case FEC_AUTO: auto_mode = true; break; case FEC_1_2: break; case FEC_2_3: buf[2] |= (1 << 0); break; case FEC_3_4: buf[2] |= (2 << 0); break; case FEC_5_6: buf[2] |= (3 << 0); break; case FEC_7_8: buf[2] |= (4 << 0); break; default: dev_dbg(&state->i2c->dev, "%s: invalid code_rate_HP\n", __func__); auto_mode = true; } switch (c->code_rate_LP) { case FEC_AUTO: auto_mode = true; break; case FEC_1_2: break; case FEC_2_3: buf[2] |= (1 << 3); break; case FEC_3_4: buf[2] |= (2 << 3); break; case FEC_5_6: buf[2] |= (3 << 3); break; case FEC_7_8: buf[2] |= (4 << 3); break; case FEC_NONE: break; default: dev_dbg(&state->i2c->dev, "%s: invalid code_rate_LP\n", __func__); auto_mode = true; } switch (c->bandwidth_hz) { case 6000000: break; case 7000000: buf[1] |= (1 << 2); break; case 8000000: buf[1] |= (2 << 2); break; default: dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n", __func__); ret = -EINVAL; goto err; } ret = af9013_wr_regs(state, 0xd3c0, buf, 3); if (ret) goto err; if (auto_mode) { /* clear easy mode flag */ ret = af9013_wr_reg(state, 0xaefd, 0); if (ret) goto err; dev_dbg(&state->i2c->dev, "%s: auto params\n", __func__); } else { /* set easy mode flag */ ret = af9013_wr_reg(state, 0xaefd, 1); if (ret) goto err; ret = af9013_wr_reg(state, 0xaefe, 0); if (ret) goto err; dev_dbg(&state->i2c->dev, "%s: manual params\n", __func__); } /* tune */ ret = af9013_wr_reg(state, 0xffff, 0); if (ret) goto err; state->bandwidth_hz = c->bandwidth_hz; state->set_frontend_jiffies = jiffies; state->first_tune = false; return ret; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9013_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *c) { struct af9013_state *state = fe->demodulator_priv; int ret; u8 buf[3]; dev_dbg(&state->i2c->dev, "%s:\n", __func__); ret = af9013_rd_regs(state, 0xd3c0, buf, 3); if (ret) goto err; switch ((buf[1] >> 6) & 3) { case 0: c->modulation = QPSK; break; case 1: c->modulation = QAM_16; break; case 2: c->modulation = QAM_64; break; } switch ((buf[0] >> 0) & 3) { case 0: c->transmission_mode = TRANSMISSION_MODE_2K; break; case 1: c->transmission_mode = TRANSMISSION_MODE_8K; } switch ((buf[0] >> 2) & 3) { case 0: c->guard_interval = GUARD_INTERVAL_1_32; break; case 1: c->guard_interval = GUARD_INTERVAL_1_16; break; case 2: c->guard_interval = GUARD_INTERVAL_1_8; break; case 3: c->guard_interval = GUARD_INTERVAL_1_4; break; } switch ((buf[0] >> 4) & 7) { case 0: c->hierarchy = HIERARCHY_NONE; break; case 1: c->hierarchy = HIERARCHY_1; break; case 2: c->hierarchy = HIERARCHY_2; break; case 3: c->hierarchy = HIERARCHY_4; break; } switch ((buf[2] >> 0) & 7) { case 0: c->code_rate_HP = FEC_1_2; break; case 1: c->code_rate_HP = FEC_2_3; break; case 2: c->code_rate_HP = FEC_3_4; break; case 3: c->code_rate_HP = FEC_5_6; break; case 4: c->code_rate_HP = FEC_7_8; break; } switch ((buf[2] >> 3) & 7) { case 0: c->code_rate_LP = FEC_1_2; break; case 1: c->code_rate_LP = FEC_2_3; break; case 2: c->code_rate_LP = FEC_3_4; break; case 3: c->code_rate_LP = FEC_5_6; break; case 4: c->code_rate_LP = FEC_7_8; break; } switch ((buf[1] >> 2) & 3) { case 0: c->bandwidth_hz = 6000000; break; case 1: c->bandwidth_hz = 7000000; break; case 2: c->bandwidth_hz = 8000000; break; } return ret; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9013_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct af9013_state *state = fe->demodulator_priv; int ret; u8 tmp; /* * Return status from the cache if it is younger than 2000ms with the * exception of last tune is done during 4000ms. */ if (time_is_after_jiffies( state->read_status_jiffies + msecs_to_jiffies(2000)) && time_is_before_jiffies( state->set_frontend_jiffies + msecs_to_jiffies(4000)) ) { *status = state->fe_status; return 0; } else { *status = 0; } /* MPEG2 lock */ ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp); if (ret) goto err; if (tmp) *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; if (!*status) { /* TPS lock */ ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp); if (ret) goto err; if (tmp) *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI; } state->fe_status = *status; state->read_status_jiffies = jiffies; return ret; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr) { struct af9013_state *state = fe->demodulator_priv; *snr = state->snr; return 0; } static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct af9013_state *state = fe->demodulator_priv; *strength = state->signal_strength; return 0; } static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber) { struct af9013_state *state = fe->demodulator_priv; *ber = state->ber; return 0; } static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct af9013_state *state = fe->demodulator_priv; *ucblocks = state->ucblocks; return 0; } static int af9013_init(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; int ret, i, len; u8 buf[3], tmp; u32 adc_cw; const struct af9013_reg_bit *init; dev_dbg(&state->i2c->dev, "%s:\n", __func__); /* power on */ ret = af9013_power_ctrl(state, 1); if (ret) goto err; /* enable ADC */ ret = af9013_wr_reg(state, 0xd73a, 0xa4); if (ret) goto err; /* write API version to firmware */ ret = af9013_wr_regs(state, 0x9bf2, state->api_version, 4); if (ret) goto err; /* program ADC control */ switch (state->clk) { case 28800000: /* 28.800 MHz */ tmp = 0; break; case 20480000: /* 20.480 MHz */ tmp = 1; break; case 28000000: /* 28.000 MHz */ tmp = 2; break; case 25000000: /* 25.000 MHz */ tmp = 3; break; default: dev_err(&state->i2c->dev, "%s: invalid clock\n", KBUILD_MODNAME); return -EINVAL; } adc_cw = af9013_div(state, state->clk, 1000000ul, 19); buf[0] = (adc_cw >> 0) & 0xff; buf[1] = (adc_cw >> 8) & 0xff; buf[2] = (adc_cw >> 16) & 0xff; ret = af9013_wr_regs(state, 0xd180, buf, 3); if (ret) goto err; ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp); if (ret) goto err; /* set I2C master clock */ ret = af9013_wr_reg(state, 0xd416, 0x14); if (ret) goto err; /* set 16 embx */ ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1); if (ret) goto err; /* set no trigger */ ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0); if (ret) goto err; /* set read-update bit for constellation */ ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1); if (ret) goto err; /* settings for mp2if */ if (state->ts_mode == AF9013_TS_USB) { /* AF9015 split PSB to 1.5k + 0.5k */ ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1); if (ret) goto err; } else { /* AF9013 change the output bit to data7 */ ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1); if (ret) goto err; /* AF9013 set mpeg to full speed */ ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1); if (ret) goto err; } ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1); if (ret) goto err; /* load OFSM settings */ dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__); len = ARRAY_SIZE(ofsm_init); init = ofsm_init; for (i = 0; i < len; i++) { ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos, init[i].len, init[i].val); if (ret) goto err; } /* load tuner specific settings */ dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n", __func__); switch (state->tuner) { case AF9013_TUNER_MXL5003D: len = ARRAY_SIZE(tuner_init_mxl5003d); init = tuner_init_mxl5003d; break; case AF9013_TUNER_MXL5005D: case AF9013_TUNER_MXL5005R: case AF9013_TUNER_MXL5007T: len = ARRAY_SIZE(tuner_init_mxl5005); init = tuner_init_mxl5005; break; case AF9013_TUNER_ENV77H11D5: len = ARRAY_SIZE(tuner_init_env77h11d5); init = tuner_init_env77h11d5; break; case AF9013_TUNER_MT2060: len = ARRAY_SIZE(tuner_init_mt2060); init = tuner_init_mt2060; break; case AF9013_TUNER_MC44S803: len = ARRAY_SIZE(tuner_init_mc44s803); init = tuner_init_mc44s803; break; case AF9013_TUNER_QT1010: case AF9013_TUNER_QT1010A: len = ARRAY_SIZE(tuner_init_qt1010); init = tuner_init_qt1010; break; case AF9013_TUNER_MT2060_2: len = ARRAY_SIZE(tuner_init_mt2060_2); init = tuner_init_mt2060_2; break; case AF9013_TUNER_TDA18271: case AF9013_TUNER_TDA18218: len = ARRAY_SIZE(tuner_init_tda18271); init = tuner_init_tda18271; break; case AF9013_TUNER_UNKNOWN: default: len = ARRAY_SIZE(tuner_init_unknown); init = tuner_init_unknown; break; } for (i = 0; i < len; i++) { ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos, init[i].len, init[i].val); if (ret) goto err; } /* TS mode */ ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->ts_mode); if (ret) goto err; /* enable lock led */ ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1); if (ret) goto err; /* check if we support signal strength */ if (!state->signal_strength_en) { ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1, &state->signal_strength_en); if (ret) goto err; } /* read values needed for signal strength calculation */ if (state->signal_strength_en && !state->rf_50) { ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50); if (ret) goto err; ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80); if (ret) goto err; ret = af9013_rd_reg(state, 0x9be2, &state->if_50); if (ret) goto err; ret = af9013_rd_reg(state, 0x9be4, &state->if_80); if (ret) goto err; } /* SNR */ ret = af9013_wr_reg(state, 0xd2e2, 1); if (ret) goto err; /* BER / UCB */ buf[0] = (10000 >> 0) & 0xff; buf[1] = (10000 >> 8) & 0xff; ret = af9013_wr_regs(state, 0xd385, buf, 2); if (ret) goto err; /* enable FEC monitor */ ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1); if (ret) goto err; state->first_tune = true; schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400)); return ret; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9013_sleep(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; int ret; dev_dbg(&state->i2c->dev, "%s:\n", __func__); /* stop statistics polling */ cancel_delayed_work_sync(&state->statistics_work); /* disable lock led */ ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0); if (ret) goto err; /* power off */ ret = af9013_power_ctrl(state, 0); if (ret) goto err; return ret; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { int ret; struct af9013_state *state = fe->demodulator_priv; dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable); /* gate already open or close */ if (state->i2c_gate_state == enable) return 0; if (state->ts_mode == AF9013_TS_USB) ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable); else ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable); if (ret) goto err; state->i2c_gate_state = enable; return ret; err: dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static void af9013_release(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; /* stop statistics polling */ cancel_delayed_work_sync(&state->statistics_work); kfree(state); } static const struct dvb_frontend_ops af9013_ops; static int af9013_download_firmware(struct af9013_state *state) { int i, len, remaining, ret; const struct firmware *fw; u16 checksum = 0; u8 val; u8 fw_params[4]; u8 *fw_file = AF9013_FIRMWARE; msleep(100); /* check whether firmware is already running */ ret = af9013_rd_reg(state, 0x98be, &val); if (ret) goto err; else dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n", __func__, val); if (val == 0x0c) /* fw is running, no need for download */ goto exit; dev_info(&state->i2c->dev, "%s: found a '%s' in cold state, will try " \ "to load a firmware\n", KBUILD_MODNAME, af9013_ops.info.name); /* request the firmware, this will block and timeout */ ret = request_firmware(&fw, fw_file, state->i2c->dev.parent); if (ret) { dev_info(&state->i2c->dev, "%s: did not find the firmware " \ "file. (%s) Please see linux/Documentation/dvb/ for " \ "more details on firmware-problems. (%d)\n", KBUILD_MODNAME, fw_file, ret); goto err; } dev_info(&state->i2c->dev, "%s: downloading firmware from file '%s'\n", KBUILD_MODNAME, fw_file); /* calc checksum */ for (i = 0; i < fw->size; i++) checksum += fw->data[i]; fw_params[0] = checksum >> 8; fw_params[1] = checksum & 0xff; fw_params[2] = fw->size >> 8; fw_params[3] = fw->size & 0xff; /* write fw checksum & size */ ret = af9013_write_ofsm_regs(state, 0x50fc, fw_params, sizeof(fw_params)); if (ret) goto err_release; #define FW_ADDR 0x5100 /* firmware start address */ #define LEN_MAX 16 /* max packet size */ for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) { len = remaining; if (len > LEN_MAX) len = LEN_MAX; ret = af9013_write_ofsm_regs(state, FW_ADDR + fw->size - remaining, (u8 *) &fw->data[fw->size - remaining], len); if (ret) { dev_err(&state->i2c->dev, "%s: firmware download failed=%d\n", KBUILD_MODNAME, ret); goto err_release; } } /* request boot firmware */ ret = af9013_wr_reg(state, 0xe205, 1); if (ret) goto err_release; for (i = 0; i < 15; i++) { msleep(100); /* check firmware status */ ret = af9013_rd_reg(state, 0x98be, &val); if (ret) goto err_release; dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n", __func__, val); if (val == 0x0c || val == 0x04) /* success or fail */ break; } if (val == 0x04) { dev_err(&state->i2c->dev, "%s: firmware did not run\n", KBUILD_MODNAME); ret = -ENODEV; } else if (val != 0x0c) { dev_err(&state->i2c->dev, "%s: firmware boot timeout\n", KBUILD_MODNAME); ret = -ENODEV; } err_release: release_firmware(fw); err: exit: if (!ret) dev_info(&state->i2c->dev, "%s: found a '%s' in warm state\n", KBUILD_MODNAME, af9013_ops.info.name); return ret; } struct dvb_frontend *af9013_attach(const struct af9013_config *config, struct i2c_adapter *i2c) { int ret; struct af9013_state *state = NULL; u8 buf[4], i; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL); if (state == NULL) goto err; /* setup the state */ state->i2c = i2c; state->i2c_addr = config->i2c_addr; state->clk = config->clock; state->tuner = config->tuner; state->if_frequency = config->if_frequency; state->ts_mode = config->ts_mode; state->spec_inv = config->spec_inv; memcpy(&state->api_version, config->api_version, sizeof(state->api_version)); memcpy(&state->gpio, config->gpio, sizeof(state->gpio)); /* download firmware */ if (state->ts_mode != AF9013_TS_USB) { ret = af9013_download_firmware(state); if (ret) goto err; } /* firmware version */ ret = af9013_rd_regs(state, 0x5103, buf, 4); if (ret) goto err; dev_info(&state->i2c->dev, "%s: firmware version %d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1], buf[2], buf[3]); /* set GPIOs */ for (i = 0; i < sizeof(state->gpio); i++) { ret = af9013_set_gpio(state, i, state->gpio[i]); if (ret) goto err; } /* create dvb_frontend */ memcpy(&state->fe.ops, &af9013_ops, sizeof(struct dvb_frontend_ops)); state->fe.demodulator_priv = state; INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work); return &state->fe; err: kfree(state); return NULL; } EXPORT_SYMBOL(af9013_attach); static const struct dvb_frontend_ops af9013_ops = { .delsys = { SYS_DVBT }, .info = { .name = "Afatech AF9013", .frequency_min = 174000000, .frequency_max = 862000000, .frequency_stepsize = 250000, .frequency_tolerance = 0, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS }, .release = af9013_release, .init = af9013_init, .sleep = af9013_sleep, .get_tune_settings = af9013_get_tune_settings, .set_frontend = af9013_set_frontend, .get_frontend = af9013_get_frontend, .read_status = af9013_read_status, .read_snr = af9013_read_snr, .read_signal_strength = af9013_read_signal_strength, .read_ber = af9013_read_ber, .read_ucblocks = af9013_read_ucblocks, .i2c_gate_ctrl = af9013_i2c_gate_ctrl, }; MODULE_AUTHOR("Antti Palosaari "); MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(AF9013_FIRMWARE);