// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. */ #include #include #include "ctree.h" #include "disk-io.h" #include "free-space-cache.h" #include "inode-map.h" #include "transaction.h" #include "delalloc-space.h" static void fail_caching_thread(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; btrfs_warn(fs_info, "failed to start inode caching task"); btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE, "disabling inode map caching"); spin_lock(&root->ino_cache_lock); root->ino_cache_state = BTRFS_CACHE_ERROR; spin_unlock(&root->ino_cache_lock); wake_up(&root->ino_cache_wait); } static int caching_kthread(void *data) { struct btrfs_root *root = data; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; struct btrfs_key key; struct btrfs_path *path; struct extent_buffer *leaf; u64 last = (u64)-1; int slot; int ret; if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) return 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; /* Since the commit root is read-only, we can safely skip locking. */ path->skip_locking = 1; path->search_commit_root = 1; path->reada = READA_FORWARD; key.objectid = BTRFS_FIRST_FREE_OBJECTID; key.offset = 0; key.type = BTRFS_INODE_ITEM_KEY; again: /* need to make sure the commit_root doesn't disappear */ down_read(&fs_info->commit_root_sem); ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto out; while (1) { if (btrfs_fs_closing(fs_info)) goto out; leaf = path->nodes[0]; slot = path->slots[0]; if (slot >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret < 0) goto out; else if (ret > 0) break; if (need_resched() || btrfs_transaction_in_commit(fs_info)) { leaf = path->nodes[0]; if (WARN_ON(btrfs_header_nritems(leaf) == 0)) break; /* * Save the key so we can advances forward * in the next search. */ btrfs_item_key_to_cpu(leaf, &key, 0); btrfs_release_path(path); root->ino_cache_progress = last; up_read(&fs_info->commit_root_sem); schedule_timeout(1); goto again; } else continue; } btrfs_item_key_to_cpu(leaf, &key, slot); if (key.type != BTRFS_INODE_ITEM_KEY) goto next; if (key.objectid >= root->highest_objectid) break; if (last != (u64)-1 && last + 1 != key.objectid) { __btrfs_add_free_space(fs_info, ctl, last + 1, key.objectid - last - 1); wake_up(&root->ino_cache_wait); } last = key.objectid; next: path->slots[0]++; } if (last < root->highest_objectid - 1) { __btrfs_add_free_space(fs_info, ctl, last + 1, root->highest_objectid - last - 1); } spin_lock(&root->ino_cache_lock); root->ino_cache_state = BTRFS_CACHE_FINISHED; spin_unlock(&root->ino_cache_lock); root->ino_cache_progress = (u64)-1; btrfs_unpin_free_ino(root); out: wake_up(&root->ino_cache_wait); up_read(&fs_info->commit_root_sem); btrfs_free_path(path); return ret; } static void start_caching(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; struct task_struct *tsk; int ret; u64 objectid; if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) return; spin_lock(&root->ino_cache_lock); if (root->ino_cache_state != BTRFS_CACHE_NO) { spin_unlock(&root->ino_cache_lock); return; } root->ino_cache_state = BTRFS_CACHE_STARTED; spin_unlock(&root->ino_cache_lock); ret = load_free_ino_cache(fs_info, root); if (ret == 1) { spin_lock(&root->ino_cache_lock); root->ino_cache_state = BTRFS_CACHE_FINISHED; spin_unlock(&root->ino_cache_lock); wake_up(&root->ino_cache_wait); return; } /* * It can be quite time-consuming to fill the cache by searching * through the extent tree, and this can keep ino allocation path * waiting. Therefore at start we quickly find out the highest * inode number and we know we can use inode numbers which fall in * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID]. */ ret = btrfs_find_free_objectid(root, &objectid); if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) { __btrfs_add_free_space(fs_info, ctl, objectid, BTRFS_LAST_FREE_OBJECTID - objectid + 1); } tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu", root->root_key.objectid); if (IS_ERR(tsk)) fail_caching_thread(root); } int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid) { if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE)) return btrfs_find_free_objectid(root, objectid); again: *objectid = btrfs_find_ino_for_alloc(root); if (*objectid != 0) return 0; start_caching(root); wait_event(root->ino_cache_wait, root->ino_cache_state == BTRFS_CACHE_FINISHED || root->ino_cache_state == BTRFS_CACHE_ERROR || root->free_ino_ctl->free_space > 0); if (root->ino_cache_state == BTRFS_CACHE_FINISHED && root->free_ino_ctl->free_space == 0) return -ENOSPC; else if (root->ino_cache_state == BTRFS_CACHE_ERROR) return btrfs_find_free_objectid(root, objectid); else goto again; } void btrfs_return_ino(struct btrfs_root *root, u64 objectid) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_free_space_ctl *pinned = root->free_ino_pinned; if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) return; again: if (root->ino_cache_state == BTRFS_CACHE_FINISHED) { __btrfs_add_free_space(fs_info, pinned, objectid, 1); } else { down_write(&fs_info->commit_root_sem); spin_lock(&root->ino_cache_lock); if (root->ino_cache_state == BTRFS_CACHE_FINISHED) { spin_unlock(&root->ino_cache_lock); up_write(&fs_info->commit_root_sem); goto again; } spin_unlock(&root->ino_cache_lock); start_caching(root); __btrfs_add_free_space(fs_info, pinned, objectid, 1); up_write(&fs_info->commit_root_sem); } } /* * When a transaction is committed, we'll move those inode numbers which are * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and * others will just be dropped, because the commit root we were searching has * changed. * * Must be called with root->fs_info->commit_root_sem held */ void btrfs_unpin_free_ino(struct btrfs_root *root) { struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset; spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock; struct btrfs_free_space *info; struct rb_node *n; u64 count; if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE)) return; while (1) { spin_lock(rbroot_lock); n = rb_first(rbroot); if (!n) { spin_unlock(rbroot_lock); break; } info = rb_entry(n, struct btrfs_free_space, offset_index); BUG_ON(info->bitmap); /* Logic error */ if (info->offset > root->ino_cache_progress) count = 0; else count = min(root->ino_cache_progress - info->offset + 1, info->bytes); rb_erase(&info->offset_index, rbroot); spin_unlock(rbroot_lock); if (count) __btrfs_add_free_space(root->fs_info, ctl, info->offset, count); kmem_cache_free(btrfs_free_space_cachep, info); } } #define INIT_THRESHOLD ((SZ_32K / 2) / sizeof(struct btrfs_free_space)) #define INODES_PER_BITMAP (PAGE_SIZE * 8) /* * The goal is to keep the memory used by the free_ino tree won't * exceed the memory if we use bitmaps only. */ static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) { struct btrfs_free_space *info; struct rb_node *n; int max_ino; int max_bitmaps; n = rb_last(&ctl->free_space_offset); if (!n) { ctl->extents_thresh = INIT_THRESHOLD; return; } info = rb_entry(n, struct btrfs_free_space, offset_index); /* * Find the maximum inode number in the filesystem. Note we * ignore the fact that this can be a bitmap, because we are * not doing precise calculation. */ max_ino = info->bytes - 1; max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP; if (max_bitmaps <= ctl->total_bitmaps) { ctl->extents_thresh = 0; return; } ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) * PAGE_SIZE / sizeof(*info); } /* * We don't fall back to bitmap, if we are below the extents threshold * or this chunk of inode numbers is a big one. */ static bool use_bitmap(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info) { if (ctl->free_extents < ctl->extents_thresh || info->bytes > INODES_PER_BITMAP / 10) return false; return true; } static const struct btrfs_free_space_op free_ino_op = { .recalc_thresholds = recalculate_thresholds, .use_bitmap = use_bitmap, }; static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl) { } static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl, struct btrfs_free_space *info) { /* * We always use extents for two reasons: * * - The pinned tree is only used during the process of caching * work. * - Make code simpler. See btrfs_unpin_free_ino(). */ return false; } static const struct btrfs_free_space_op pinned_free_ino_op = { .recalc_thresholds = pinned_recalc_thresholds, .use_bitmap = pinned_use_bitmap, }; void btrfs_init_free_ino_ctl(struct btrfs_root *root) { struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; struct btrfs_free_space_ctl *pinned = root->free_ino_pinned; spin_lock_init(&ctl->tree_lock); ctl->unit = 1; ctl->start = 0; ctl->private = NULL; ctl->op = &free_ino_op; INIT_LIST_HEAD(&ctl->trimming_ranges); mutex_init(&ctl->cache_writeout_mutex); /* * Initially we allow to use 16K of ram to cache chunks of * inode numbers before we resort to bitmaps. This is somewhat * arbitrary, but it will be adjusted in runtime. */ ctl->extents_thresh = INIT_THRESHOLD; spin_lock_init(&pinned->tree_lock); pinned->unit = 1; pinned->start = 0; pinned->private = NULL; pinned->extents_thresh = 0; pinned->op = &pinned_free_ino_op; } int btrfs_save_ino_cache(struct btrfs_root *root, struct btrfs_trans_handle *trans) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; struct btrfs_path *path; struct inode *inode; struct btrfs_block_rsv *rsv; struct extent_changeset *data_reserved = NULL; u64 num_bytes; u64 alloc_hint = 0; int ret; int prealloc; bool retry = false; /* only fs tree and subvol/snap needs ino cache */ if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID && (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID || root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID)) return 0; /* Don't save inode cache if we are deleting this root */ if (btrfs_root_refs(&root->root_item) == 0) return 0; if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) return 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; rsv = trans->block_rsv; trans->block_rsv = &fs_info->trans_block_rsv; num_bytes = trans->bytes_reserved; /* * 1 item for inode item insertion if need * 4 items for inode item update (in the worst case) * 1 items for slack space if we need do truncation * 1 item for free space object * 3 items for pre-allocation */ trans->bytes_reserved = btrfs_calc_trans_metadata_size(fs_info, 10); ret = btrfs_block_rsv_add(root, trans->block_rsv, trans->bytes_reserved, BTRFS_RESERVE_NO_FLUSH); if (ret) goto out; trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid, trans->bytes_reserved, 1); again: inode = lookup_free_ino_inode(root, path); if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) { ret = PTR_ERR(inode); goto out_release; } if (IS_ERR(inode)) { BUG_ON(retry); /* Logic error */ retry = true; ret = create_free_ino_inode(root, trans, path); if (ret) goto out_release; goto again; } BTRFS_I(inode)->generation = 0; ret = btrfs_update_inode(trans, root, inode); if (ret) { btrfs_abort_transaction(trans, ret); goto out_put; } if (i_size_read(inode) > 0) { ret = btrfs_truncate_free_space_cache(trans, NULL, inode); if (ret) { if (ret != -ENOSPC) btrfs_abort_transaction(trans, ret); goto out_put; } } spin_lock(&root->ino_cache_lock); if (root->ino_cache_state != BTRFS_CACHE_FINISHED) { ret = -1; spin_unlock(&root->ino_cache_lock); goto out_put; } spin_unlock(&root->ino_cache_lock); spin_lock(&ctl->tree_lock); prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents; prealloc = ALIGN(prealloc, PAGE_SIZE); prealloc += ctl->total_bitmaps * PAGE_SIZE; spin_unlock(&ctl->tree_lock); /* Just to make sure we have enough space */ prealloc += 8 * PAGE_SIZE; ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 0, prealloc); if (ret) goto out_put; ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc, prealloc, prealloc, &alloc_hint); if (ret) { btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc, true); btrfs_delalloc_release_metadata(BTRFS_I(inode), prealloc, true); goto out_put; } ret = btrfs_write_out_ino_cache(root, trans, path, inode); btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc, false); out_put: iput(inode); out_release: trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid, trans->bytes_reserved, 0); btrfs_block_rsv_release(fs_info, trans->block_rsv, trans->bytes_reserved); out: trans->block_rsv = rsv; trans->bytes_reserved = num_bytes; btrfs_free_path(path); extent_changeset_free(data_reserved); return ret; } int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid) { struct btrfs_path *path; int ret; struct extent_buffer *l; struct btrfs_key search_key; struct btrfs_key found_key; int slot; path = btrfs_alloc_path(); if (!path) return -ENOMEM; search_key.objectid = BTRFS_LAST_FREE_OBJECTID; search_key.type = -1; search_key.offset = (u64)-1; ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); if (ret < 0) goto error; BUG_ON(ret == 0); /* Corruption */ if (path->slots[0] > 0) { slot = path->slots[0] - 1; l = path->nodes[0]; btrfs_item_key_to_cpu(l, &found_key, slot); *objectid = max_t(u64, found_key.objectid, BTRFS_FIRST_FREE_OBJECTID - 1); } else { *objectid = BTRFS_FIRST_FREE_OBJECTID - 1; } ret = 0; error: btrfs_free_path(path); return ret; } int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid) { int ret; mutex_lock(&root->objectid_mutex); if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) { btrfs_warn(root->fs_info, "the objectid of root %llu reaches its highest value", root->root_key.objectid); ret = -ENOSPC; goto out; } *objectid = ++root->highest_objectid; ret = 0; out: mutex_unlock(&root->objectid_mutex); return ret; }