/* * The file intends to implement the platform dependent EEH operations on pseries. * Actually, the pseries platform is built based on RTAS heavily. That means the * pseries platform dependent EEH operations will be built on RTAS calls. The functions * are devired from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has * been done. * * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011. * Copyright IBM Corporation 2001, 2005, 2006 * Copyright Dave Engebretsen & Todd Inglett 2001 * Copyright Linas Vepstas 2005, 2006 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * pseries_eeh_init - EEH platform dependent initialization * * EEH platform dependent initialization on pseries. */ static int pseries_eeh_init(void) { return 0; } /** * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable * @dn: device node * @option: operation to be issued * * The function is used to control the EEH functionality globally. * Currently, following options are support according to PAPR: * Enable EEH, Disable EEH, Enable MMIO and Enable DMA */ static int pseries_eeh_set_option(struct device_node *dn, int option) { return 0; } /** * pseries_eeh_get_pe_addr - Retrieve PE address * @dn: device node * * Retrieve the assocated PE address. Actually, there're 2 RTAS * function calls dedicated for the purpose. We need implement * it through the new function and then the old one. Besides, * you should make sure the config address is figured out from * FDT node before calling the function. * * It's notable that zero'ed return value means invalid PE config * address. */ static int pseries_eeh_get_pe_addr(struct device_node *dn) { return 0; } /** * pseries_eeh_get_state - Retrieve PE state * @dn: PE associated device node * @state: return value * * Retrieve the state of the specified PE. On RTAS compliant * pseries platform, there already has one dedicated RTAS function * for the purpose. It's notable that the associated PE config address * might be ready when calling the function. Therefore, endeavour to * use the PE config address if possible. Further more, there're 2 * RTAS calls for the purpose, we need to try the new one and back * to the old one if the new one couldn't work properly. */ static int pseries_eeh_get_state(struct device_node *dn, int *state) { return 0; } /** * pseries_eeh_reset - Reset the specified PE * @dn: PE associated device node * @option: reset option * * Reset the specified PE */ static int pseries_eeh_reset(struct device_node *dn, int option) { return 0; } /** * pseries_eeh_wait_state - Wait for PE state * @dn: PE associated device node * @max_wait: maximal period in microsecond * * Wait for the state of associated PE. It might take some time * to retrieve the PE's state. */ static int pseries_eeh_wait_state(struct device_node *dn, int max_wait) { return 0; } /** * pseries_eeh_get_log - Retrieve error log * @dn: device node * @severity: temporary or permanent error log * @drv_log: driver log to be combined with retrieved error log * @len: length of driver log * * Retrieve the temporary or permanent error from the PE. * Actually, the error will be retrieved through the dedicated * RTAS call. */ static int pseries_eeh_get_log(struct device_node *dn, int severity, char *drv_log, unsigned long len) { return 0; } /** * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE * @dn: PE associated device node * * The function will be called to reconfigure the bridges included * in the specified PE so that the mulfunctional PE would be recovered * again. */ static int pseries_eeh_configure_bridge(struct device_node *dn) { return 0; } static struct eeh_ops pseries_eeh_ops = { .name = "pseries", .init = pseries_eeh_init, .set_option = pseries_eeh_set_option, .get_pe_addr = pseries_eeh_get_pe_addr, .get_state = pseries_eeh_get_state, .reset = pseries_eeh_reset, .wait_state = pseries_eeh_wait_state, .get_log = pseries_eeh_get_log, .configure_bridge = pseries_eeh_configure_bridge }; /** * eeh_pseries_init - Register platform dependent EEH operations * * EEH initialization on pseries platform. This function should be * called before any EEH related functions. */ int __init eeh_pseries_init(void) { return eeh_ops_register(&pseries_eeh_ops); }