/* * fs/f2fs/recovery.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include "f2fs.h" #include "node.h" #include "segment.h" static struct kmem_cache *fsync_entry_slab; bool space_for_roll_forward(struct f2fs_sb_info *sbi) { if (sbi->last_valid_block_count + sbi->alloc_valid_block_count > sbi->user_block_count) return false; return true; } static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, nid_t ino) { struct list_head *this; struct fsync_inode_entry *entry; list_for_each(this, head) { entry = list_entry(this, struct fsync_inode_entry, list); if (entry->inode->i_ino == ino) return entry; } return NULL; } static int recover_dentry(struct page *ipage, struct inode *inode) { struct f2fs_inode *raw_inode = F2FS_INODE(ipage); nid_t pino = le32_to_cpu(raw_inode->i_pino); struct f2fs_dir_entry *de; struct qstr name; struct page *page; struct inode *dir, *einode; int err = 0; dir = check_dirty_dir_inode(F2FS_SB(inode->i_sb), pino); if (!dir) { dir = f2fs_iget(inode->i_sb, pino); if (IS_ERR(dir)) { err = PTR_ERR(dir); goto out; } set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT); add_dirty_dir_inode(dir); } name.len = le32_to_cpu(raw_inode->i_namelen); name.name = raw_inode->i_name; if (unlikely(name.len > F2FS_NAME_LEN)) { WARN_ON(1); err = -ENAMETOOLONG; goto out; } retry: de = f2fs_find_entry(dir, &name, &page); if (de && inode->i_ino == le32_to_cpu(de->ino)) goto out_unmap_put; if (de) { einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino)); if (IS_ERR(einode)) { WARN_ON(1); if (PTR_ERR(einode) == -ENOENT) err = -EEXIST; goto out_unmap_put; } err = acquire_orphan_inode(F2FS_SB(inode->i_sb)); if (err) { iput(einode); goto out_unmap_put; } f2fs_delete_entry(de, page, einode); iput(einode); goto retry; } err = __f2fs_add_link(dir, &name, inode); goto out; out_unmap_put: kunmap(page); f2fs_put_page(page, 0); out: f2fs_msg(inode->i_sb, KERN_NOTICE, "%s: ino = %x, name = %s, dir = %lx, err = %d", __func__, ino_of_node(ipage), raw_inode->i_name, IS_ERR(dir) ? 0 : dir->i_ino, err); return err; } static int recover_inode(struct inode *inode, struct page *node_page) { struct f2fs_inode *raw_inode = F2FS_INODE(node_page); if (!IS_INODE(node_page)) return 0; inode->i_mode = le16_to_cpu(raw_inode->i_mode); i_size_write(inode, le64_to_cpu(raw_inode->i_size)); inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime); inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime); inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime); inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec); inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec); if (is_dent_dnode(node_page)) return recover_dentry(node_page, inode); f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s", ino_of_node(node_page), raw_inode->i_name); return 0; } static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head) { unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); struct curseg_info *curseg; struct page *page; block_t blkaddr; int err = 0; /* get node pages in the current segment */ curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff; /* read node page */ page = alloc_page(GFP_F2FS_ZERO); if (!page) return -ENOMEM; lock_page(page); while (1) { struct fsync_inode_entry *entry; err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC); if (err) return err; lock_page(page); if (cp_ver != cpver_of_node(page)) break; if (!is_fsync_dnode(page)) goto next; entry = get_fsync_inode(head, ino_of_node(page)); if (entry) { if (IS_INODE(page) && is_dent_dnode(page)) set_inode_flag(F2FS_I(entry->inode), FI_INC_LINK); } else { if (IS_INODE(page) && is_dent_dnode(page)) { err = recover_inode_page(sbi, page); if (err) break; } /* add this fsync inode to the list */ entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS); if (!entry) { err = -ENOMEM; break; } entry->inode = f2fs_iget(sbi->sb, ino_of_node(page)); if (IS_ERR(entry->inode)) { err = PTR_ERR(entry->inode); kmem_cache_free(fsync_entry_slab, entry); break; } list_add_tail(&entry->list, head); } entry->blkaddr = blkaddr; err = recover_inode(entry->inode, page); if (err && err != -ENOENT) break; next: /* check next segment */ blkaddr = next_blkaddr_of_node(page); } unlock_page(page); __free_pages(page, 0); return err; } static void destroy_fsync_dnodes(struct list_head *head) { struct fsync_inode_entry *entry, *tmp; list_for_each_entry_safe(entry, tmp, head, list) { iput(entry->inode); list_del(&entry->list); kmem_cache_free(fsync_entry_slab, entry); } } static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, block_t blkaddr, struct dnode_of_data *dn) { struct seg_entry *sentry; unsigned int segno = GET_SEGNO(sbi, blkaddr); unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1); struct f2fs_summary sum; nid_t ino, nid; void *kaddr; struct inode *inode; struct page *node_page; unsigned int offset; block_t bidx; int i; sentry = get_seg_entry(sbi, segno); if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) return 0; /* Get the previous summary */ for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) { struct curseg_info *curseg = CURSEG_I(sbi, i); if (curseg->segno == segno) { sum = curseg->sum_blk->entries[blkoff]; break; } } if (i > CURSEG_COLD_DATA) { struct page *sum_page = get_sum_page(sbi, segno); struct f2fs_summary_block *sum_node; kaddr = page_address(sum_page); sum_node = (struct f2fs_summary_block *)kaddr; sum = sum_node->entries[blkoff]; f2fs_put_page(sum_page, 1); } /* Use the locked dnode page and inode */ nid = le32_to_cpu(sum.nid); if (dn->inode->i_ino == nid) { struct dnode_of_data tdn = *dn; tdn.nid = nid; tdn.node_page = dn->inode_page; tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); truncate_data_blocks_range(&tdn, 1); return 0; } else if (dn->nid == nid) { struct dnode_of_data tdn = *dn; tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); truncate_data_blocks_range(&tdn, 1); return 0; } /* Get the node page */ node_page = get_node_page(sbi, nid); if (IS_ERR(node_page)) return PTR_ERR(node_page); offset = ofs_of_node(node_page); ino = ino_of_node(node_page); f2fs_put_page(node_page, 1); /* Deallocate previous index in the node page */ inode = f2fs_iget(sbi->sb, ino); if (IS_ERR(inode)) return PTR_ERR(inode); bidx = start_bidx_of_node(offset, F2FS_I(inode)) + le16_to_cpu(sum.ofs_in_node); truncate_hole(inode, bidx, bidx + 1); iput(inode); return 0; } static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, struct page *page, block_t blkaddr) { struct f2fs_inode_info *fi = F2FS_I(inode); unsigned int start, end; struct dnode_of_data dn; struct f2fs_summary sum; struct node_info ni; int err = 0, recovered = 0; if (recover_inline_data(inode, page)) goto out; if (recover_xattr_data(inode, page, blkaddr)) goto out; start = start_bidx_of_node(ofs_of_node(page), fi); if (IS_INODE(page)) end = start + ADDRS_PER_INODE(fi); else end = start + ADDRS_PER_BLOCK; f2fs_lock_op(sbi); set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, start, ALLOC_NODE); if (err) { f2fs_unlock_op(sbi); goto out; } wait_on_page_writeback(dn.node_page); get_node_info(sbi, dn.nid, &ni); f2fs_bug_on(ni.ino != ino_of_node(page)); f2fs_bug_on(ofs_of_node(dn.node_page) != ofs_of_node(page)); for (; start < end; start++) { block_t src, dest; src = datablock_addr(dn.node_page, dn.ofs_in_node); dest = datablock_addr(page, dn.ofs_in_node); if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) { if (src == NULL_ADDR) { err = reserve_new_block(&dn); /* We should not get -ENOSPC */ f2fs_bug_on(err); } /* Check the previous node page having this index */ err = check_index_in_prev_nodes(sbi, dest, &dn); if (err) goto err; set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); /* write dummy data page */ recover_data_page(sbi, NULL, &sum, src, dest); update_extent_cache(dest, &dn); recovered++; } dn.ofs_in_node++; } /* write node page in place */ set_summary(&sum, dn.nid, 0, 0); if (IS_INODE(dn.node_page)) sync_inode_page(&dn); copy_node_footer(dn.node_page, page); fill_node_footer(dn.node_page, dn.nid, ni.ino, ofs_of_node(page), false); set_page_dirty(dn.node_page); recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr); err: f2fs_put_dnode(&dn); f2fs_unlock_op(sbi); out: f2fs_msg(sbi->sb, KERN_NOTICE, "recover_data: ino = %lx, recovered = %d blocks, err = %d", inode->i_ino, recovered, err); return err; } static int recover_data(struct f2fs_sb_info *sbi, struct list_head *head, int type) { unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); struct curseg_info *curseg; struct page *page; int err = 0; block_t blkaddr; /* get node pages in the current segment */ curseg = CURSEG_I(sbi, type); blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); /* read node page */ page = alloc_page(GFP_F2FS_ZERO); if (!page) return -ENOMEM; lock_page(page); while (1) { struct fsync_inode_entry *entry; err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC); if (err) return err; lock_page(page); if (cp_ver != cpver_of_node(page)) break; entry = get_fsync_inode(head, ino_of_node(page)); if (!entry) goto next; err = do_recover_data(sbi, entry->inode, page, blkaddr); if (err) break; if (entry->blkaddr == blkaddr) { iput(entry->inode); list_del(&entry->list); kmem_cache_free(fsync_entry_slab, entry); } next: /* check next segment */ blkaddr = next_blkaddr_of_node(page); } unlock_page(page); __free_pages(page, 0); if (!err) allocate_new_segments(sbi); return err; } int recover_fsync_data(struct f2fs_sb_info *sbi) { struct list_head inode_list; int err; bool need_writecp = false; fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", sizeof(struct fsync_inode_entry), NULL); if (!fsync_entry_slab) return -ENOMEM; INIT_LIST_HEAD(&inode_list); /* step #1: find fsynced inode numbers */ sbi->por_doing = true; err = find_fsync_dnodes(sbi, &inode_list); if (err) goto out; if (list_empty(&inode_list)) goto out; need_writecp = true; /* step #2: recover data */ err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE); f2fs_bug_on(!list_empty(&inode_list)); out: destroy_fsync_dnodes(&inode_list); kmem_cache_destroy(fsync_entry_slab); sbi->por_doing = false; if (!err && need_writecp) write_checkpoint(sbi, false); return err; }