// SPDX-License-Identifier: GPL-2.0 /* * Freescale data path resource container (DPRC) driver * * Copyright (C) 2014-2016 Freescale Semiconductor, Inc. * Copyright 2019-2020 NXP * Author: German Rivera * */ #include #include #include #include #include "fsl-mc-private.h" #define FSL_MC_DPRC_DRIVER_NAME "fsl_mc_dprc" struct fsl_mc_child_objs { int child_count; struct fsl_mc_obj_desc *child_array; }; static bool fsl_mc_device_match(struct fsl_mc_device *mc_dev, struct fsl_mc_obj_desc *obj_desc) { return mc_dev->obj_desc.id == obj_desc->id && strcmp(mc_dev->obj_desc.type, obj_desc->type) == 0; } static bool fsl_mc_obj_desc_is_allocatable(struct fsl_mc_obj_desc *obj) { if (strcmp(obj->type, "dpmcp") == 0 || strcmp(obj->type, "dpcon") == 0 || strcmp(obj->type, "dpbp") == 0) return true; else return false; } static int __fsl_mc_device_remove_if_not_in_mc(struct device *dev, void *data) { int i; struct fsl_mc_child_objs *objs; struct fsl_mc_device *mc_dev; mc_dev = to_fsl_mc_device(dev); objs = data; for (i = 0; i < objs->child_count; i++) { struct fsl_mc_obj_desc *obj_desc = &objs->child_array[i]; if (strlen(obj_desc->type) != 0 && fsl_mc_device_match(mc_dev, obj_desc)) break; } if (i == objs->child_count) fsl_mc_device_remove(mc_dev); return 0; } static int __fsl_mc_device_remove(struct device *dev, void *data) { fsl_mc_device_remove(to_fsl_mc_device(dev)); return 0; } /** * dprc_remove_devices - Removes devices for objects removed from a DPRC * * @mc_bus_dev: pointer to the fsl-mc device that represents a DPRC object * @obj_desc_array: array of object descriptors for child objects currently * present in the DPRC in the MC. * @num_child_objects_in_mc: number of entries in obj_desc_array * * Synchronizes the state of the Linux bus driver with the actual state of * the MC by removing devices that represent MC objects that have * been dynamically removed in the physical DPRC. */ void dprc_remove_devices(struct fsl_mc_device *mc_bus_dev, struct fsl_mc_obj_desc *obj_desc_array, int num_child_objects_in_mc) { if (num_child_objects_in_mc != 0) { /* * Remove child objects that are in the DPRC in Linux, * but not in the MC: */ struct fsl_mc_child_objs objs; objs.child_count = num_child_objects_in_mc; objs.child_array = obj_desc_array; device_for_each_child(&mc_bus_dev->dev, &objs, __fsl_mc_device_remove_if_not_in_mc); } else { /* * There are no child objects for this DPRC in the MC. * So, remove all the child devices from Linux: */ device_for_each_child(&mc_bus_dev->dev, NULL, __fsl_mc_device_remove); } } EXPORT_SYMBOL_GPL(dprc_remove_devices); static int __fsl_mc_device_match(struct device *dev, void *data) { struct fsl_mc_obj_desc *obj_desc = data; struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); return fsl_mc_device_match(mc_dev, obj_desc); } struct fsl_mc_device *fsl_mc_device_lookup(struct fsl_mc_obj_desc *obj_desc, struct fsl_mc_device *mc_bus_dev) { struct device *dev; dev = device_find_child(&mc_bus_dev->dev, obj_desc, __fsl_mc_device_match); return dev ? to_fsl_mc_device(dev) : NULL; } /** * check_plugged_state_change - Check change in an MC object's plugged state * * @mc_dev: pointer to the fsl-mc device for a given MC object * @obj_desc: pointer to the MC object's descriptor in the MC * * If the plugged state has changed from unplugged to plugged, the fsl-mc * device is bound to the corresponding device driver. * If the plugged state has changed from plugged to unplugged, the fsl-mc * device is unbound from the corresponding device driver. */ static void check_plugged_state_change(struct fsl_mc_device *mc_dev, struct fsl_mc_obj_desc *obj_desc) { int error; u32 plugged_flag_at_mc = obj_desc->state & FSL_MC_OBJ_STATE_PLUGGED; if (plugged_flag_at_mc != (mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED)) { if (plugged_flag_at_mc) { mc_dev->obj_desc.state |= FSL_MC_OBJ_STATE_PLUGGED; error = device_attach(&mc_dev->dev); if (error < 0) { dev_err(&mc_dev->dev, "device_attach() failed: %d\n", error); } } else { mc_dev->obj_desc.state &= ~FSL_MC_OBJ_STATE_PLUGGED; device_release_driver(&mc_dev->dev); } } } static void fsl_mc_obj_device_add(struct fsl_mc_device *mc_bus_dev, struct fsl_mc_obj_desc *obj_desc) { int error; struct fsl_mc_device *child_dev; /* * Check if device is already known to Linux: */ child_dev = fsl_mc_device_lookup(obj_desc, mc_bus_dev); if (child_dev) { check_plugged_state_change(child_dev, obj_desc); put_device(&child_dev->dev); } else { error = fsl_mc_device_add(obj_desc, NULL, &mc_bus_dev->dev, &child_dev); if (error < 0) return; } } /** * dprc_add_new_devices - Adds devices to the logical bus for a DPRC * * @mc_bus_dev: pointer to the fsl-mc device that represents a DPRC object * @obj_desc_array: array of device descriptors for child devices currently * present in the physical DPRC. * @num_child_objects_in_mc: number of entries in obj_desc_array * * Synchronizes the state of the Linux bus driver with the actual * state of the MC by adding objects that have been newly discovered * in the physical DPRC. */ static void dprc_add_new_devices(struct fsl_mc_device *mc_bus_dev, struct fsl_mc_obj_desc *obj_desc_array, int num_child_objects_in_mc) { int i; /* probe the allocable objects first */ for (i = 0; i < num_child_objects_in_mc; i++) { struct fsl_mc_obj_desc *obj_desc = &obj_desc_array[i]; if (strlen(obj_desc->type) > 0 && fsl_mc_obj_desc_is_allocatable(obj_desc)) fsl_mc_obj_device_add(mc_bus_dev, obj_desc); } for (i = 0; i < num_child_objects_in_mc; i++) { struct fsl_mc_obj_desc *obj_desc = &obj_desc_array[i]; if (strlen(obj_desc->type) > 0 && !fsl_mc_obj_desc_is_allocatable(obj_desc)) fsl_mc_obj_device_add(mc_bus_dev, obj_desc); } } /** * dprc_scan_objects - Discover objects in a DPRC * * @mc_bus_dev: pointer to the fsl-mc device that represents a DPRC object * @alloc_interrupts: if true the function allocates the interrupt pool, * otherwise the interrupt allocation is delayed * * Detects objects added and removed from a DPRC and synchronizes the * state of the Linux bus driver, MC by adding and removing * devices accordingly. * Two types of devices can be found in a DPRC: allocatable objects (e.g., * dpbp, dpmcp) and non-allocatable devices (e.g., dprc, dpni). * All allocatable devices needed to be probed before all non-allocatable * devices, to ensure that device drivers for non-allocatable * devices can allocate any type of allocatable devices. * That is, we need to ensure that the corresponding resource pools are * populated before they can get allocation requests from probe callbacks * of the device drivers for the non-allocatable devices. */ int dprc_scan_objects(struct fsl_mc_device *mc_bus_dev, bool alloc_interrupts) { int num_child_objects; int dprc_get_obj_failures; int error; unsigned int irq_count = mc_bus_dev->obj_desc.irq_count; struct fsl_mc_obj_desc *child_obj_desc_array = NULL; struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev); error = dprc_get_obj_count(mc_bus_dev->mc_io, 0, mc_bus_dev->mc_handle, &num_child_objects); if (error < 0) { dev_err(&mc_bus_dev->dev, "dprc_get_obj_count() failed: %d\n", error); return error; } if (num_child_objects != 0) { int i; child_obj_desc_array = devm_kmalloc_array(&mc_bus_dev->dev, num_child_objects, sizeof(*child_obj_desc_array), GFP_KERNEL); if (!child_obj_desc_array) return -ENOMEM; /* * Discover objects currently present in the physical DPRC: */ dprc_get_obj_failures = 0; for (i = 0; i < num_child_objects; i++) { struct fsl_mc_obj_desc *obj_desc = &child_obj_desc_array[i]; error = dprc_get_obj(mc_bus_dev->mc_io, 0, mc_bus_dev->mc_handle, i, obj_desc); if (error < 0) { dev_err(&mc_bus_dev->dev, "dprc_get_obj(i=%d) failed: %d\n", i, error); /* * Mark the obj entry as "invalid", by using the * empty string as obj type: */ obj_desc->type[0] = '\0'; obj_desc->id = error; dprc_get_obj_failures++; continue; } /* * add a quirk for all versions of dpsec < 4.0...none * are coherent regardless of what the MC reports. */ if ((strcmp(obj_desc->type, "dpseci") == 0) && (obj_desc->ver_major < 4)) obj_desc->flags |= FSL_MC_OBJ_FLAG_NO_MEM_SHAREABILITY; irq_count += obj_desc->irq_count; dev_dbg(&mc_bus_dev->dev, "Discovered object: type %s, id %d\n", obj_desc->type, obj_desc->id); } if (dprc_get_obj_failures != 0) { dev_err(&mc_bus_dev->dev, "%d out of %d devices could not be retrieved\n", dprc_get_obj_failures, num_child_objects); } } /* * Allocate IRQ's before binding the scanned devices with their * respective drivers. */ if (dev_get_msi_domain(&mc_bus_dev->dev)) { if (irq_count > FSL_MC_IRQ_POOL_MAX_TOTAL_IRQS) { dev_warn(&mc_bus_dev->dev, "IRQs needed (%u) exceed IRQs preallocated (%u)\n", irq_count, FSL_MC_IRQ_POOL_MAX_TOTAL_IRQS); } if (alloc_interrupts && !mc_bus->irq_resources) { error = fsl_mc_populate_irq_pool(mc_bus_dev, FSL_MC_IRQ_POOL_MAX_TOTAL_IRQS); if (error < 0) return error; } } dprc_remove_devices(mc_bus_dev, child_obj_desc_array, num_child_objects); dprc_add_new_devices(mc_bus_dev, child_obj_desc_array, num_child_objects); if (child_obj_desc_array) devm_kfree(&mc_bus_dev->dev, child_obj_desc_array); return 0; } /** * dprc_scan_container - Scans a physical DPRC and synchronizes Linux bus state * * @mc_bus_dev: pointer to the fsl-mc device that represents a DPRC object * @alloc_interrupts: if true the function allocates the interrupt pool, * otherwise the interrupt allocation is delayed * Scans the physical DPRC and synchronizes the state of the Linux * bus driver with the actual state of the MC by adding and removing * devices as appropriate. */ int dprc_scan_container(struct fsl_mc_device *mc_bus_dev, bool alloc_interrupts) { int error = 0; struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev); fsl_mc_init_all_resource_pools(mc_bus_dev); /* * Discover objects in the DPRC: */ mutex_lock(&mc_bus->scan_mutex); error = dprc_scan_objects(mc_bus_dev, alloc_interrupts); mutex_unlock(&mc_bus->scan_mutex); return error; } EXPORT_SYMBOL_GPL(dprc_scan_container); /** * dprc_irq0_handler - Regular ISR for DPRC interrupt 0 * * @irq_num: IRQ number of the interrupt being handled * @arg: Pointer to device structure */ static irqreturn_t dprc_irq0_handler(int irq_num, void *arg) { return IRQ_WAKE_THREAD; } /** * dprc_irq0_handler_thread - Handler thread function for DPRC interrupt 0 * * @irq_num: IRQ number of the interrupt being handled * @arg: Pointer to device structure */ static irqreturn_t dprc_irq0_handler_thread(int irq_num, void *arg) { int error; u32 status; struct device *dev = arg; struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev); struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_dev); struct fsl_mc_io *mc_io = mc_dev->mc_io; int irq = mc_dev->irqs[0]->virq; dev_dbg(dev, "DPRC IRQ %d triggered on CPU %u\n", irq_num, smp_processor_id()); if (!(mc_dev->flags & FSL_MC_IS_DPRC)) return IRQ_HANDLED; mutex_lock(&mc_bus->scan_mutex); if (irq != (u32)irq_num) goto out; status = 0; error = dprc_get_irq_status(mc_io, 0, mc_dev->mc_handle, 0, &status); if (error < 0) { dev_err(dev, "dprc_get_irq_status() failed: %d\n", error); goto out; } error = dprc_clear_irq_status(mc_io, 0, mc_dev->mc_handle, 0, status); if (error < 0) { dev_err(dev, "dprc_clear_irq_status() failed: %d\n", error); goto out; } if (status & (DPRC_IRQ_EVENT_OBJ_ADDED | DPRC_IRQ_EVENT_OBJ_REMOVED | DPRC_IRQ_EVENT_CONTAINER_DESTROYED | DPRC_IRQ_EVENT_OBJ_DESTROYED | DPRC_IRQ_EVENT_OBJ_CREATED)) { error = dprc_scan_objects(mc_dev, true); if (error < 0) { /* * If the error is -ENXIO, we ignore it, as it indicates * that the object scan was aborted, as we detected that * an object was removed from the DPRC in the MC, while * we were scanning the DPRC. */ if (error != -ENXIO) { dev_err(dev, "dprc_scan_objects() failed: %d\n", error); } goto out; } } out: mutex_unlock(&mc_bus->scan_mutex); return IRQ_HANDLED; } /* * Disable and clear interrupt for a given DPRC object */ int disable_dprc_irq(struct fsl_mc_device *mc_dev) { struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_dev); int error; struct fsl_mc_io *mc_io = mc_dev->mc_io; /* * Disable generation of interrupt, while we configure it: */ error = dprc_set_irq_enable(mc_io, 0, mc_dev->mc_handle, 0, 0); if (error < 0) { dev_err(&mc_dev->dev, "Disabling DPRC IRQ failed: dprc_set_irq_enable() failed: %d\n", error); return error; } /* * Disable all interrupt causes for the interrupt: */ error = dprc_set_irq_mask(mc_io, 0, mc_dev->mc_handle, 0, 0x0); if (error < 0) { dev_err(&mc_dev->dev, "Disabling DPRC IRQ failed: dprc_set_irq_mask() failed: %d\n", error); return error; } /* * Clear any leftover interrupts: */ error = dprc_clear_irq_status(mc_io, 0, mc_dev->mc_handle, 0, ~0x0U); if (error < 0) { dev_err(&mc_dev->dev, "Disabling DPRC IRQ failed: dprc_clear_irq_status() failed: %d\n", error); return error; } mc_bus->irq_enabled = 0; return 0; } int get_dprc_irq_state(struct fsl_mc_device *mc_dev) { struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_dev); return mc_bus->irq_enabled; } static int register_dprc_irq_handler(struct fsl_mc_device *mc_dev) { int error; struct fsl_mc_device_irq *irq = mc_dev->irqs[0]; /* * NOTE: devm_request_threaded_irq() invokes the device-specific * function that programs the MSI physically in the device */ error = devm_request_threaded_irq(&mc_dev->dev, irq->virq, dprc_irq0_handler, dprc_irq0_handler_thread, IRQF_NO_SUSPEND | IRQF_ONESHOT, dev_name(&mc_dev->dev), &mc_dev->dev); if (error < 0) { dev_err(&mc_dev->dev, "devm_request_threaded_irq() failed: %d\n", error); return error; } return 0; } int enable_dprc_irq(struct fsl_mc_device *mc_dev) { struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_dev); int error; /* * Enable all interrupt causes for the interrupt: */ error = dprc_set_irq_mask(mc_dev->mc_io, 0, mc_dev->mc_handle, 0, ~0x0u); if (error < 0) { dev_err(&mc_dev->dev, "Enabling DPRC IRQ failed: dprc_set_irq_mask() failed: %d\n", error); return error; } /* * Enable generation of the interrupt: */ error = dprc_set_irq_enable(mc_dev->mc_io, 0, mc_dev->mc_handle, 0, 1); if (error < 0) { dev_err(&mc_dev->dev, "Enabling DPRC IRQ failed: dprc_set_irq_enable() failed: %d\n", error); return error; } mc_bus->irq_enabled = 1; return 0; } /* * Setup interrupt for a given DPRC device */ static int dprc_setup_irq(struct fsl_mc_device *mc_dev) { int error; error = fsl_mc_allocate_irqs(mc_dev); if (error < 0) return error; error = disable_dprc_irq(mc_dev); if (error < 0) goto error_free_irqs; error = register_dprc_irq_handler(mc_dev); if (error < 0) goto error_free_irqs; error = enable_dprc_irq(mc_dev); if (error < 0) goto error_free_irqs; return 0; error_free_irqs: fsl_mc_free_irqs(mc_dev); return error; } /** * dprc_setup - opens and creates a mc_io for DPRC * * @mc_dev: Pointer to fsl-mc device representing a DPRC * * It opens the physical DPRC in the MC. * It configures the DPRC portal used to communicate with MC */ int dprc_setup(struct fsl_mc_device *mc_dev) { struct device *parent_dev = mc_dev->dev.parent; struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_dev); struct irq_domain *mc_msi_domain; bool mc_io_created = false; bool msi_domain_set = false; bool uapi_created = false; u16 major_ver, minor_ver; size_t region_size; int error; if (!is_fsl_mc_bus_dprc(mc_dev)) return -EINVAL; if (dev_get_msi_domain(&mc_dev->dev)) return -EINVAL; if (!mc_dev->mc_io) { /* * This is a child DPRC: */ if (!dev_is_fsl_mc(parent_dev)) return -EINVAL; if (mc_dev->obj_desc.region_count == 0) return -EINVAL; region_size = resource_size(mc_dev->regions); error = fsl_create_mc_io(&mc_dev->dev, mc_dev->regions[0].start, region_size, NULL, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_dev->mc_io); if (error < 0) return error; mc_io_created = true; } else { error = fsl_mc_uapi_create_device_file(mc_bus); if (error < 0) return -EPROBE_DEFER; uapi_created = true; } mc_msi_domain = fsl_mc_find_msi_domain(&mc_dev->dev); if (!mc_msi_domain) { dev_warn(&mc_dev->dev, "WARNING: MC bus without interrupt support\n"); } else { dev_set_msi_domain(&mc_dev->dev, mc_msi_domain); msi_domain_set = true; } error = dprc_open(mc_dev->mc_io, 0, mc_dev->obj_desc.id, &mc_dev->mc_handle); if (error < 0) { dev_err(&mc_dev->dev, "dprc_open() failed: %d\n", error); goto error_cleanup_msi_domain; } error = dprc_get_attributes(mc_dev->mc_io, 0, mc_dev->mc_handle, &mc_bus->dprc_attr); if (error < 0) { dev_err(&mc_dev->dev, "dprc_get_attributes() failed: %d\n", error); goto error_cleanup_open; } error = dprc_get_api_version(mc_dev->mc_io, 0, &major_ver, &minor_ver); if (error < 0) { dev_err(&mc_dev->dev, "dprc_get_api_version() failed: %d\n", error); goto error_cleanup_open; } if (major_ver < DPRC_MIN_VER_MAJOR) { dev_err(&mc_dev->dev, "ERROR: DPRC version %d.%d not supported\n", major_ver, minor_ver); error = -ENOTSUPP; goto error_cleanup_open; } return 0; error_cleanup_open: (void)dprc_close(mc_dev->mc_io, 0, mc_dev->mc_handle); error_cleanup_msi_domain: if (msi_domain_set) dev_set_msi_domain(&mc_dev->dev, NULL); if (mc_io_created) { fsl_destroy_mc_io(mc_dev->mc_io); mc_dev->mc_io = NULL; } if (uapi_created) fsl_mc_uapi_remove_device_file(mc_bus); return error; } EXPORT_SYMBOL_GPL(dprc_setup); /** * dprc_probe - callback invoked when a DPRC is being bound to this driver * * @mc_dev: Pointer to fsl-mc device representing a DPRC * * It opens the physical DPRC in the MC. * It scans the DPRC to discover the MC objects contained in it. * It creates the interrupt pool for the MC bus associated with the DPRC. * It configures the interrupts for the DPRC device itself. */ static int dprc_probe(struct fsl_mc_device *mc_dev) { int error; error = dprc_setup(mc_dev); if (error < 0) return error; /* * Discover MC objects in DPRC object: */ error = dprc_scan_container(mc_dev, true); if (error < 0) goto dprc_cleanup; /* * Configure interrupt for the DPRC object associated with this MC bus: */ error = dprc_setup_irq(mc_dev); if (error < 0) goto scan_cleanup; dev_info(&mc_dev->dev, "DPRC device bound to driver"); return 0; scan_cleanup: device_for_each_child(&mc_dev->dev, NULL, __fsl_mc_device_remove); dprc_cleanup: dprc_cleanup(mc_dev); return error; } /* * Tear down interrupt for a given DPRC object */ static void dprc_teardown_irq(struct fsl_mc_device *mc_dev) { struct fsl_mc_device_irq *irq = mc_dev->irqs[0]; (void)disable_dprc_irq(mc_dev); devm_free_irq(&mc_dev->dev, irq->virq, &mc_dev->dev); fsl_mc_free_irqs(mc_dev); } /** * dprc_cleanup - function that cleanups a DPRC * * @mc_dev: Pointer to fsl-mc device representing the DPRC * * It closes the DPRC device in the MC. * It destroys the interrupt pool associated with this MC bus. */ int dprc_cleanup(struct fsl_mc_device *mc_dev) { struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_dev); int error; /* this function should be called only for DPRCs, it * is an error to call it for regular objects */ if (!is_fsl_mc_bus_dprc(mc_dev)) return -EINVAL; if (dev_get_msi_domain(&mc_dev->dev)) { fsl_mc_cleanup_irq_pool(mc_dev); dev_set_msi_domain(&mc_dev->dev, NULL); } fsl_mc_cleanup_all_resource_pools(mc_dev); /* if this step fails we cannot go further with cleanup as there is no way of * communicating with the firmware */ if (!mc_dev->mc_io) { dev_err(&mc_dev->dev, "mc_io is NULL, tear down cannot be performed in firmware\n"); return -EINVAL; } error = dprc_close(mc_dev->mc_io, 0, mc_dev->mc_handle); if (error < 0) dev_err(&mc_dev->dev, "dprc_close() failed: %d\n", error); if (!fsl_mc_is_root_dprc(&mc_dev->dev)) { fsl_destroy_mc_io(mc_dev->mc_io); mc_dev->mc_io = NULL; } else { fsl_mc_uapi_remove_device_file(mc_bus); } return 0; } EXPORT_SYMBOL_GPL(dprc_cleanup); /** * dprc_remove - callback invoked when a DPRC is being unbound from this driver * * @mc_dev: Pointer to fsl-mc device representing the DPRC * * It removes the DPRC's child objects from Linux (not from the MC) and * closes the DPRC device in the MC. * It tears down the interrupts that were configured for the DPRC device. * It destroys the interrupt pool associated with this MC bus. */ static int dprc_remove(struct fsl_mc_device *mc_dev) { struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_dev); if (!mc_bus->irq_resources) { dev_err(&mc_dev->dev, "No irq resources, so unbinding the device failed\n"); return 0; } if (dev_get_msi_domain(&mc_dev->dev)) dprc_teardown_irq(mc_dev); device_for_each_child(&mc_dev->dev, NULL, __fsl_mc_device_remove); dprc_cleanup(mc_dev); dev_info(&mc_dev->dev, "DPRC device unbound from driver"); return 0; } static const struct fsl_mc_device_id match_id_table[] = { { .vendor = FSL_MC_VENDOR_FREESCALE, .obj_type = "dprc"}, {.vendor = 0x0}, }; static struct fsl_mc_driver dprc_driver = { .driver = { .name = FSL_MC_DPRC_DRIVER_NAME, .owner = THIS_MODULE, .pm = NULL, }, .match_id_table = match_id_table, .probe = dprc_probe, .remove = dprc_remove, }; int __init dprc_driver_init(void) { return fsl_mc_driver_register(&dprc_driver); } void dprc_driver_exit(void) { fsl_mc_driver_unregister(&dprc_driver); }