/* * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR * * Copyright (C) 2010 Jarod Wilson * Copyright (C) 2009 Nuvoton PS Team * * Special thanks to Nuvoton for providing hardware, spec sheets and * sample code upon which portions of this driver are based. Indirect * thanks also to Maxim Levitsky, whose ene_ir driver this driver is * modeled after. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include "nuvoton-cir.h" static const struct nvt_chip nvt_chips[] = { { "w83667hg", NVT_W83667HG }, { "NCT6775F", NVT_6775F }, { "NCT6776F", NVT_6776F }, { "NCT6779D", NVT_6779D }, }; static inline bool is_w83667hg(struct nvt_dev *nvt) { return nvt->chip_ver == NVT_W83667HG; } /* write val to config reg */ static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg) { outb(reg, nvt->cr_efir); outb(val, nvt->cr_efdr); } /* read val from config reg */ static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg) { outb(reg, nvt->cr_efir); return inb(nvt->cr_efdr); } /* update config register bit without changing other bits */ static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg) { u8 tmp = nvt_cr_read(nvt, reg) | val; nvt_cr_write(nvt, tmp, reg); } /* clear config register bit without changing other bits */ static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg) { u8 tmp = nvt_cr_read(nvt, reg) & ~val; nvt_cr_write(nvt, tmp, reg); } /* enter extended function mode */ static inline int nvt_efm_enable(struct nvt_dev *nvt) { if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME)) return -EBUSY; /* Enabling Extended Function Mode explicitly requires writing 2x */ outb(EFER_EFM_ENABLE, nvt->cr_efir); outb(EFER_EFM_ENABLE, nvt->cr_efir); return 0; } /* exit extended function mode */ static inline void nvt_efm_disable(struct nvt_dev *nvt) { outb(EFER_EFM_DISABLE, nvt->cr_efir); release_region(nvt->cr_efir, 2); } /* * When you want to address a specific logical device, write its logical * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN. */ static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev) { nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL); } /* select and enable logical device with setting EFM mode*/ static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev) { nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, ldev); nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); nvt_efm_disable(nvt); } /* select and disable logical device with setting EFM mode*/ static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev) { nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, ldev); nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN); nvt_efm_disable(nvt); } /* write val to cir config register */ static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset) { outb(val, nvt->cir_addr + offset); } /* read val from cir config register */ static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset) { u8 val; val = inb(nvt->cir_addr + offset); return val; } /* write val to cir wake register */ static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt, u8 val, u8 offset) { outb(val, nvt->cir_wake_addr + offset); } /* read val from cir wake config register */ static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset) { u8 val; val = inb(nvt->cir_wake_addr + offset); return val; } /* don't override io address if one is set already */ static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr) { unsigned long old_addr; old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8; old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO); if (old_addr) *ioaddr = old_addr; else { nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI); nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO); } } /* dump current cir register contents */ static void cir_dump_regs(struct nvt_dev *nvt) { nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME); pr_info(" * CR CIR ACTIVE : 0x%x\n", nvt_cr_read(nvt, CR_LOGICAL_DEV_EN)); pr_info(" * CR CIR BASE ADDR: 0x%x\n", (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) | nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO)); pr_info(" * CR CIR IRQ NUM: 0x%x\n", nvt_cr_read(nvt, CR_CIR_IRQ_RSRC)); nvt_efm_disable(nvt); pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME); pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON)); pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS)); pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN)); pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT)); pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP)); pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC)); pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH)); pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL)); pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON)); pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS)); pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO)); pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT)); pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO)); pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH)); pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL)); pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM)); } /* dump current cir wake register contents */ static void cir_wake_dump_regs(struct nvt_dev *nvt) { u8 i, fifo_len; nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); pr_info("%s: Dump CIR WAKE logical device registers:\n", NVT_DRIVER_NAME); pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n", nvt_cr_read(nvt, CR_LOGICAL_DEV_EN)); pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n", (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) | nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO)); pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n", nvt_cr_read(nvt, CR_CIR_IRQ_RSRC)); nvt_efm_disable(nvt); pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME); pr_info(" * IRCON: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON)); pr_info(" * IRSTS: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS)); pr_info(" * IREN: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN)); pr_info(" * FIFO CMP DEEP: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP)); pr_info(" * FIFO CMP TOL: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL)); pr_info(" * FIFO COUNT: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT)); pr_info(" * SLCH: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH)); pr_info(" * SLCL: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL)); pr_info(" * FIFOCON: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON)); pr_info(" * SRXFSTS: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS)); pr_info(" * SAMPLE RX FIFO: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO)); pr_info(" * WR FIFO DATA: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA)); pr_info(" * RD FIFO ONLY: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY)); pr_info(" * RD FIFO ONLY IDX: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)); pr_info(" * FIFO IGNORE: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE)); pr_info(" * IRFSM: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM)); fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT); pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len); pr_info("* Contents ="); for (i = 0; i < fifo_len; i++) pr_cont(" %02x", nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY)); pr_cont("\n"); } static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id) { int i; for (i = 0; i < ARRAY_SIZE(nvt_chips); i++) if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) { nvt->chip_ver = nvt_chips[i].chip_ver; return nvt_chips[i].name; } return NULL; } /* detect hardware features */ static int nvt_hw_detect(struct nvt_dev *nvt) { const char *chip_name; int chip_id; nvt_efm_enable(nvt); /* Check if we're wired for the alternate EFER setup */ nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI); if (nvt->chip_major == 0xff) { nvt->cr_efir = CR_EFIR2; nvt->cr_efdr = CR_EFDR2; nvt_efm_enable(nvt); nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI); } nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO); nvt_efm_disable(nvt); chip_id = nvt->chip_major << 8 | nvt->chip_minor; if (chip_id == NVT_INVALID) { dev_err(&nvt->pdev->dev, "No device found on either EFM port\n"); return -ENODEV; } chip_name = nvt_find_chip(nvt, chip_id); /* warn, but still let the driver load, if we don't know this chip */ if (!chip_name) dev_warn(&nvt->pdev->dev, "unknown chip, id: 0x%02x 0x%02x, it may not work...", nvt->chip_major, nvt->chip_minor); else dev_info(&nvt->pdev->dev, "found %s or compatible: chip id: 0x%02x 0x%02x", chip_name, nvt->chip_major, nvt->chip_minor); return 0; } static void nvt_cir_ldev_init(struct nvt_dev *nvt) { u8 val, psreg, psmask, psval; if (is_w83667hg(nvt)) { psreg = CR_MULTIFUNC_PIN_SEL; psmask = MULTIFUNC_PIN_SEL_MASK; psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB; } else { psreg = CR_OUTPUT_PIN_SEL; psmask = OUTPUT_PIN_SEL_MASK; psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB; } /* output pin selection: enable CIR, with WB sensor enabled */ val = nvt_cr_read(nvt, psreg); val &= psmask; val |= psval; nvt_cr_write(nvt, val, psreg); /* Select CIR logical device */ nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); nvt_set_ioaddr(nvt, &nvt->cir_addr); nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC); nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d", nvt->cir_addr, nvt->cir_irq); } static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt) { /* Select ACPI logical device and anable it */ nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI); nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); /* Enable CIR Wake via PSOUT# (Pin60) */ nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE); /* enable pme interrupt of cir wakeup event */ nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2); /* Select CIR Wake logical device */ nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); nvt_set_ioaddr(nvt, &nvt->cir_wake_addr); nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC); nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d", nvt->cir_wake_addr, nvt->cir_wake_irq); } /* clear out the hardware's cir rx fifo */ static void nvt_clear_cir_fifo(struct nvt_dev *nvt) { u8 val; val = nvt_cir_reg_read(nvt, CIR_FIFOCON); nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON); } /* clear out the hardware's cir wake rx fifo */ static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt) { u8 val, config; config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON); /* clearing wake fifo works in learning mode only */ nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0, CIR_WAKE_IRCON); val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON); nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR, CIR_WAKE_FIFOCON); nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON); } /* clear out the hardware's cir tx fifo */ static void nvt_clear_tx_fifo(struct nvt_dev *nvt) { u8 val; val = nvt_cir_reg_read(nvt, CIR_FIFOCON); nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON); } /* enable RX Trigger Level Reach and Packet End interrupts */ static void nvt_set_cir_iren(struct nvt_dev *nvt) { u8 iren; iren = CIR_IREN_RTR | CIR_IREN_PE; nvt_cir_reg_write(nvt, iren, CIR_IREN); } static void nvt_cir_regs_init(struct nvt_dev *nvt) { /* set sample limit count (PE interrupt raised when reached) */ nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH); nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL); /* set fifo irq trigger levels */ nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV | CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON); /* * Enable TX and RX, specify carrier on = low, off = high, and set * sample period (currently 50us) */ nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN | CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL, CIR_IRCON); /* clear hardware rx and tx fifos */ nvt_clear_cir_fifo(nvt); nvt_clear_tx_fifo(nvt); /* clear any and all stray interrupts */ nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); /* and finally, enable interrupts */ nvt_set_cir_iren(nvt); /* enable the CIR logical device */ nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR); } static void nvt_cir_wake_regs_init(struct nvt_dev *nvt) { /* set number of bytes needed for wake from s3 (default 65) */ nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES, CIR_WAKE_FIFO_CMP_DEEP); /* set tolerance/variance allowed per byte during wake compare */ nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE, CIR_WAKE_FIFO_CMP_TOL); /* set sample limit count (PE interrupt raised when reached) */ nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH); nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL); /* set cir wake fifo rx trigger level (currently 67) */ nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV, CIR_WAKE_FIFOCON); /* * Enable TX and RX, specific carrier on = low, off = high, and set * sample period (currently 50us) */ nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN | CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV | CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL, CIR_WAKE_IRCON); /* clear cir wake rx fifo */ nvt_clear_cir_wake_fifo(nvt); /* clear any and all stray interrupts */ nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS); /* enable the CIR WAKE logical device */ nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); } static void nvt_enable_wake(struct nvt_dev *nvt) { unsigned long flags; nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI); nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE); nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2); nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); nvt_efm_disable(nvt); spin_lock_irqsave(&nvt->nvt_lock, flags); nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN | CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV | CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL, CIR_WAKE_IRCON); nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS); nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN); spin_unlock_irqrestore(&nvt->nvt_lock, flags); } #if 0 /* Currently unused */ /* rx carrier detect only works in learning mode, must be called w/nvt_lock */ static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt) { u32 count, carrier, duration = 0; int i; count = nvt_cir_reg_read(nvt, CIR_FCCL) | nvt_cir_reg_read(nvt, CIR_FCCH) << 8; for (i = 0; i < nvt->pkts; i++) { if (nvt->buf[i] & BUF_PULSE_BIT) duration += nvt->buf[i] & BUF_LEN_MASK; } duration *= SAMPLE_PERIOD; if (!count || !duration) { dev_notice(&nvt->pdev->dev, "Unable to determine carrier! (c:%u, d:%u)", count, duration); return 0; } carrier = MS_TO_NS(count) / duration; if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER)) nvt_dbg("WTF? Carrier frequency out of range!"); nvt_dbg("Carrier frequency: %u (count %u, duration %u)", carrier, count, duration); return carrier; } #endif /* * set carrier frequency * * set carrier on 2 registers: CP & CC * always set CP as 0x81 * set CC by SPEC, CC = 3MHz/carrier - 1 */ static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier) { struct nvt_dev *nvt = dev->priv; u16 val; if (carrier == 0) return -EINVAL; nvt_cir_reg_write(nvt, 1, CIR_CP); val = 3000000 / (carrier) - 1; nvt_cir_reg_write(nvt, val & 0xff, CIR_CC); nvt_dbg("cp: 0x%x cc: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC)); return 0; } /* * nvt_tx_ir * * 1) clean TX fifo first (handled by AP) * 2) copy data from user space * 3) disable RX interrupts, enable TX interrupts: TTR & TFU * 4) send 9 packets to TX FIFO to open TTR * in interrupt_handler: * 5) send all data out * go back to write(): * 6) disable TX interrupts, re-enable RX interupts * * The key problem of this function is user space data may larger than * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to * buf, and keep current copied data buf num in cur_buf_num. But driver's buf * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to * set TXFCONT as 0xff, until buf_count less than 0xff. */ static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n) { struct nvt_dev *nvt = dev->priv; unsigned long flags; unsigned int i; u8 iren; int ret; spin_lock_irqsave(&nvt->tx.lock, flags); ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n); nvt->tx.buf_count = (ret * sizeof(unsigned)); memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count); nvt->tx.cur_buf_num = 0; /* save currently enabled interrupts */ iren = nvt_cir_reg_read(nvt, CIR_IREN); /* now disable all interrupts, save TFU & TTR */ nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN); nvt->tx.tx_state = ST_TX_REPLY; nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON); /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */ for (i = 0; i < 9; i++) nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO); spin_unlock_irqrestore(&nvt->tx.lock, flags); wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST); spin_lock_irqsave(&nvt->tx.lock, flags); nvt->tx.tx_state = ST_TX_NONE; spin_unlock_irqrestore(&nvt->tx.lock, flags); /* restore enabled interrupts to prior state */ nvt_cir_reg_write(nvt, iren, CIR_IREN); return ret; } /* dump contents of the last rx buffer we got from the hw rx fifo */ static void nvt_dump_rx_buf(struct nvt_dev *nvt) { int i; printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts); for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++) printk(KERN_CONT "0x%02x ", nvt->buf[i]); printk(KERN_CONT "\n"); } /* * Process raw data in rx driver buffer, store it in raw IR event kfifo, * trigger decode when appropriate. * * We get IR data samples one byte at a time. If the msb is set, its a pulse, * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD * (default 50us) intervals for that pulse/space. A discrete signal is * followed by a series of 0x7f packets, then either 0x7 or 0x80 * to signal more IR coming (repeats) or end of IR, respectively. We store * sample data in the raw event kfifo until we see 0x7 (except f) * or 0x80, at which time, we trigger a decode operation. */ static void nvt_process_rx_ir_data(struct nvt_dev *nvt) { DEFINE_IR_RAW_EVENT(rawir); u8 sample; int i; nvt_dbg_verbose("%s firing", __func__); if (debug) nvt_dump_rx_buf(nvt); nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts); init_ir_raw_event(&rawir); for (i = 0; i < nvt->pkts; i++) { sample = nvt->buf[i]; rawir.pulse = ((sample & BUF_PULSE_BIT) != 0); rawir.duration = US_TO_NS((sample & BUF_LEN_MASK) * SAMPLE_PERIOD); nvt_dbg("Storing %s with duration %d", rawir.pulse ? "pulse" : "space", rawir.duration); ir_raw_event_store_with_filter(nvt->rdev, &rawir); /* * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE * indicates end of IR signal, but new data incoming. In both * cases, it means we're ready to call ir_raw_event_handle */ if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) { nvt_dbg("Calling ir_raw_event_handle (signal end)\n"); ir_raw_event_handle(nvt->rdev); } } nvt->pkts = 0; nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n"); ir_raw_event_handle(nvt->rdev); nvt_dbg_verbose("%s done", __func__); } static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt) { dev_warn(&nvt->pdev->dev, "RX FIFO overrun detected, flushing data!"); nvt->pkts = 0; nvt_clear_cir_fifo(nvt); ir_raw_event_reset(nvt->rdev); } /* copy data from hardware rx fifo into driver buffer */ static void nvt_get_rx_ir_data(struct nvt_dev *nvt) { u8 fifocount, val; unsigned int b_idx; bool overrun = false; int i; /* Get count of how many bytes to read from RX FIFO */ fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT); /* if we get 0xff, probably means the logical dev is disabled */ if (fifocount == 0xff) return; /* watch out for a fifo overrun condition */ else if (fifocount > RX_BUF_LEN) { overrun = true; fifocount = RX_BUF_LEN; } nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount); b_idx = nvt->pkts; /* This should never happen, but lets check anyway... */ if (b_idx + fifocount > RX_BUF_LEN) { nvt_process_rx_ir_data(nvt); b_idx = 0; } /* Read fifocount bytes from CIR Sample RX FIFO register */ for (i = 0; i < fifocount; i++) { val = nvt_cir_reg_read(nvt, CIR_SRXFIFO); nvt->buf[b_idx + i] = val; } nvt->pkts += fifocount; nvt_dbg("%s: pkts now %d", __func__, nvt->pkts); nvt_process_rx_ir_data(nvt); if (overrun) nvt_handle_rx_fifo_overrun(nvt); } static void nvt_cir_log_irqs(u8 status, u8 iren) { nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s", status, iren, status & CIR_IRSTS_RDR ? " RDR" : "", status & CIR_IRSTS_RTR ? " RTR" : "", status & CIR_IRSTS_PE ? " PE" : "", status & CIR_IRSTS_RFO ? " RFO" : "", status & CIR_IRSTS_TE ? " TE" : "", status & CIR_IRSTS_TTR ? " TTR" : "", status & CIR_IRSTS_TFU ? " TFU" : "", status & CIR_IRSTS_GH ? " GH" : "", status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE | CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR | CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : ""); } static bool nvt_cir_tx_inactive(struct nvt_dev *nvt) { unsigned long flags; u8 tx_state; spin_lock_irqsave(&nvt->tx.lock, flags); tx_state = nvt->tx.tx_state; spin_unlock_irqrestore(&nvt->tx.lock, flags); return tx_state == ST_TX_NONE; } /* interrupt service routine for incoming and outgoing CIR data */ static irqreturn_t nvt_cir_isr(int irq, void *data) { struct nvt_dev *nvt = data; u8 status, iren, cur_state; unsigned long flags; nvt_dbg_verbose("%s firing", __func__); spin_lock_irqsave(&nvt->nvt_lock, flags); /* * Get IR Status register contents. Write 1 to ack/clear * * bit: reg name - description * 7: CIR_IRSTS_RDR - RX Data Ready * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach * 5: CIR_IRSTS_PE - Packet End * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set) * 3: CIR_IRSTS_TE - TX FIFO Empty * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach * 1: CIR_IRSTS_TFU - TX FIFO Underrun * 0: CIR_IRSTS_GH - Min Length Detected */ status = nvt_cir_reg_read(nvt, CIR_IRSTS); iren = nvt_cir_reg_read(nvt, CIR_IREN); /* IRQ may be shared with CIR WAKE, therefore check for each * status bit whether the related interrupt source is enabled */ if (!(status & iren)) { spin_unlock_irqrestore(&nvt->nvt_lock, flags); nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__); return IRQ_NONE; } /* ack/clear all irq flags we've got */ nvt_cir_reg_write(nvt, status, CIR_IRSTS); nvt_cir_reg_write(nvt, 0, CIR_IRSTS); nvt_cir_log_irqs(status, iren); if (status & CIR_IRSTS_RTR) { /* FIXME: add code for study/learn mode */ /* We only do rx if not tx'ing */ if (nvt_cir_tx_inactive(nvt)) nvt_get_rx_ir_data(nvt); } if (status & CIR_IRSTS_PE) { if (nvt_cir_tx_inactive(nvt)) nvt_get_rx_ir_data(nvt); cur_state = nvt->study_state; if (cur_state == ST_STUDY_NONE) nvt_clear_cir_fifo(nvt); } spin_unlock_irqrestore(&nvt->nvt_lock, flags); if (status & CIR_IRSTS_TE) nvt_clear_tx_fifo(nvt); if (status & CIR_IRSTS_TTR) { unsigned int pos, count; u8 tmp; spin_lock_irqsave(&nvt->tx.lock, flags); pos = nvt->tx.cur_buf_num; count = nvt->tx.buf_count; /* Write data into the hardware tx fifo while pos < count */ if (pos < count) { nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO); nvt->tx.cur_buf_num++; /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */ } else { tmp = nvt_cir_reg_read(nvt, CIR_IREN); nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN); } spin_unlock_irqrestore(&nvt->tx.lock, flags); } if (status & CIR_IRSTS_TFU) { spin_lock_irqsave(&nvt->tx.lock, flags); if (nvt->tx.tx_state == ST_TX_REPLY) { nvt->tx.tx_state = ST_TX_REQUEST; wake_up(&nvt->tx.queue); } spin_unlock_irqrestore(&nvt->tx.lock, flags); } nvt_dbg_verbose("%s done", __func__); return IRQ_HANDLED; } /* Interrupt service routine for CIR Wake */ static irqreturn_t nvt_cir_wake_isr(int irq, void *data) { u8 status, iren, val; struct nvt_dev *nvt = data; unsigned long flags; nvt_dbg_wake("%s firing", __func__); spin_lock_irqsave(&nvt->nvt_lock, flags); status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS); iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN); /* IRQ may be shared with CIR, therefore check for each * status bit whether the related interrupt source is enabled */ if (!(status & iren)) { spin_unlock_irqrestore(&nvt->nvt_lock, flags); return IRQ_NONE; } if (status & CIR_WAKE_IRSTS_IR_PENDING) nvt_clear_cir_wake_fifo(nvt); nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS); nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS); if ((status & CIR_WAKE_IRSTS_PE) && (nvt->wake_state == ST_WAKE_START)) { while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) { val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY); nvt_dbg("setting wake up key: 0x%x", val); } nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN); nvt->wake_state = ST_WAKE_FINISH; } spin_unlock_irqrestore(&nvt->nvt_lock, flags); nvt_dbg_wake("%s done", __func__); return IRQ_HANDLED; } static void nvt_disable_cir(struct nvt_dev *nvt) { /* disable CIR interrupts */ nvt_cir_reg_write(nvt, 0, CIR_IREN); /* clear any and all pending interrupts */ nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); /* clear all function enable flags */ nvt_cir_reg_write(nvt, 0, CIR_IRCON); /* clear hardware rx and tx fifos */ nvt_clear_cir_fifo(nvt); nvt_clear_tx_fifo(nvt); /* disable the CIR logical device */ nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR); } static int nvt_open(struct rc_dev *dev) { struct nvt_dev *nvt = dev->priv; unsigned long flags; spin_lock_irqsave(&nvt->nvt_lock, flags); /* set function enable flags */ nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN | CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL, CIR_IRCON); /* clear all pending interrupts */ nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); /* enable interrupts */ nvt_set_cir_iren(nvt); spin_unlock_irqrestore(&nvt->nvt_lock, flags); /* enable the CIR logical device */ nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR); return 0; } static void nvt_close(struct rc_dev *dev) { struct nvt_dev *nvt = dev->priv; unsigned long flags; spin_lock_irqsave(&nvt->nvt_lock, flags); nvt_disable_cir(nvt); spin_unlock_irqrestore(&nvt->nvt_lock, flags); } /* Allocate memory, probe hardware, and initialize everything */ static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id) { struct nvt_dev *nvt; struct rc_dev *rdev; int ret = -ENOMEM; nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL); if (!nvt) return ret; /* input device for IR remote (and tx) */ rdev = rc_allocate_device(); if (!rdev) goto exit_free_dev_rdev; ret = -ENODEV; /* activate pnp device */ if (pnp_activate_dev(pdev) < 0) { dev_err(&pdev->dev, "Could not activate PNP device!\n"); goto exit_free_dev_rdev; } /* validate pnp resources */ if (!pnp_port_valid(pdev, 0) || pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) { dev_err(&pdev->dev, "IR PNP Port not valid!\n"); goto exit_free_dev_rdev; } if (!pnp_irq_valid(pdev, 0)) { dev_err(&pdev->dev, "PNP IRQ not valid!\n"); goto exit_free_dev_rdev; } if (!pnp_port_valid(pdev, 1) || pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) { dev_err(&pdev->dev, "Wake PNP Port not valid!\n"); goto exit_free_dev_rdev; } nvt->cir_addr = pnp_port_start(pdev, 0); nvt->cir_irq = pnp_irq(pdev, 0); nvt->cir_wake_addr = pnp_port_start(pdev, 1); /* irq is always shared between cir and cir wake */ nvt->cir_wake_irq = nvt->cir_irq; nvt->cr_efir = CR_EFIR; nvt->cr_efdr = CR_EFDR; spin_lock_init(&nvt->nvt_lock); spin_lock_init(&nvt->tx.lock); pnp_set_drvdata(pdev, nvt); nvt->pdev = pdev; init_waitqueue_head(&nvt->tx.queue); ret = nvt_hw_detect(nvt); if (ret) goto exit_free_dev_rdev; /* Initialize CIR & CIR Wake Logical Devices */ nvt_efm_enable(nvt); nvt_cir_ldev_init(nvt); nvt_cir_wake_ldev_init(nvt); nvt_efm_disable(nvt); /* * Initialize CIR & CIR Wake Config Registers * and enable logical devices */ nvt_cir_regs_init(nvt); nvt_cir_wake_regs_init(nvt); /* Set up the rc device */ rdev->priv = nvt; rdev->driver_type = RC_DRIVER_IR_RAW; rdev->allowed_protocols = RC_BIT_ALL; rdev->open = nvt_open; rdev->close = nvt_close; rdev->tx_ir = nvt_tx_ir; rdev->s_tx_carrier = nvt_set_tx_carrier; rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver"; rdev->input_phys = "nuvoton/cir0"; rdev->input_id.bustype = BUS_HOST; rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2; rdev->input_id.product = nvt->chip_major; rdev->input_id.version = nvt->chip_minor; rdev->dev.parent = &pdev->dev; rdev->driver_name = NVT_DRIVER_NAME; rdev->map_name = RC_MAP_RC6_MCE; rdev->timeout = MS_TO_NS(100); /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */ rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD); #if 0 rdev->min_timeout = XYZ; rdev->max_timeout = XYZ; /* tx bits */ rdev->tx_resolution = XYZ; #endif nvt->rdev = rdev; ret = rc_register_device(rdev); if (ret) goto exit_free_dev_rdev; ret = -EBUSY; /* now claim resources */ if (!devm_request_region(&pdev->dev, nvt->cir_addr, CIR_IOREG_LENGTH, NVT_DRIVER_NAME)) goto exit_unregister_device; if (devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr, IRQF_SHARED, NVT_DRIVER_NAME, (void *)nvt)) goto exit_unregister_device; if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr, CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake")) goto exit_unregister_device; if (devm_request_irq(&pdev->dev, nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED, NVT_DRIVER_NAME "-wake", (void *)nvt)) goto exit_unregister_device; device_init_wakeup(&pdev->dev, true); dev_notice(&pdev->dev, "driver has been successfully loaded\n"); if (debug) { cir_dump_regs(nvt); cir_wake_dump_regs(nvt); } return 0; exit_unregister_device: rc_unregister_device(rdev); rdev = NULL; exit_free_dev_rdev: rc_free_device(rdev); return ret; } static void nvt_remove(struct pnp_dev *pdev) { struct nvt_dev *nvt = pnp_get_drvdata(pdev); unsigned long flags; spin_lock_irqsave(&nvt->nvt_lock, flags); /* disable CIR */ nvt_cir_reg_write(nvt, 0, CIR_IREN); nvt_disable_cir(nvt); spin_unlock_irqrestore(&nvt->nvt_lock, flags); /* enable CIR Wake (for IR power-on) */ nvt_enable_wake(nvt); rc_unregister_device(nvt->rdev); } static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state) { struct nvt_dev *nvt = pnp_get_drvdata(pdev); unsigned long flags; nvt_dbg("%s called", __func__); spin_lock_irqsave(&nvt->tx.lock, flags); nvt->tx.tx_state = ST_TX_NONE; spin_unlock_irqrestore(&nvt->tx.lock, flags); spin_lock_irqsave(&nvt->nvt_lock, flags); /* zero out misc state tracking */ nvt->study_state = ST_STUDY_NONE; nvt->wake_state = ST_WAKE_NONE; /* disable all CIR interrupts */ nvt_cir_reg_write(nvt, 0, CIR_IREN); spin_unlock_irqrestore(&nvt->nvt_lock, flags); /* disable cir logical dev */ nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR); /* make sure wake is enabled */ nvt_enable_wake(nvt); return 0; } static int nvt_resume(struct pnp_dev *pdev) { struct nvt_dev *nvt = pnp_get_drvdata(pdev); nvt_dbg("%s called", __func__); nvt_cir_regs_init(nvt); nvt_cir_wake_regs_init(nvt); return 0; } static void nvt_shutdown(struct pnp_dev *pdev) { struct nvt_dev *nvt = pnp_get_drvdata(pdev); nvt_enable_wake(nvt); } static const struct pnp_device_id nvt_ids[] = { { "WEC0530", 0 }, /* CIR */ { "NTN0530", 0 }, /* CIR for new chip's pnp id*/ { "", 0 }, }; static struct pnp_driver nvt_driver = { .name = NVT_DRIVER_NAME, .id_table = nvt_ids, .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, .probe = nvt_probe, .remove = nvt_remove, .suspend = nvt_suspend, .resume = nvt_resume, .shutdown = nvt_shutdown, }; module_param(debug, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(debug, "Enable debugging output"); MODULE_DEVICE_TABLE(pnp, nvt_ids); MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver"); MODULE_AUTHOR("Jarod Wilson "); MODULE_LICENSE("GPL"); module_pnp_driver(nvt_driver);