#include #include #include #include #include #include #include #include #include #include #include #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ #define RINGBUF_PGOFF \ (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) /* consumer page and producer page */ #define RINGBUF_POS_PAGES 2 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) /* Maximum size of ring buffer area is limited by 32-bit page offset within * record header, counted in pages. Reserve 8 bits for extensibility, and take * into account few extra pages for consumer/producer pages and * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single * ring buffer. */ #define RINGBUF_MAX_DATA_SZ \ (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) struct bpf_ringbuf { wait_queue_head_t waitq; struct irq_work work; u64 mask; struct page **pages; int nr_pages; spinlock_t spinlock ____cacheline_aligned_in_smp; /* Consumer and producer counters are put into separate pages to allow * mapping consumer page as r/w, but restrict producer page to r/o. * This protects producer position from being modified by user-space * application and ruining in-kernel position tracking. */ unsigned long consumer_pos __aligned(PAGE_SIZE); unsigned long producer_pos __aligned(PAGE_SIZE); char data[] __aligned(PAGE_SIZE); }; struct bpf_ringbuf_map { struct bpf_map map; struct bpf_map_memory memory; struct bpf_ringbuf *rb; }; /* 8-byte ring buffer record header structure */ struct bpf_ringbuf_hdr { u32 len; u32 pg_off; }; static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) { const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | __GFP_ZERO; int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES; int nr_data_pages = data_sz >> PAGE_SHIFT; int nr_pages = nr_meta_pages + nr_data_pages; struct page **pages, *page; struct bpf_ringbuf *rb; size_t array_size; int i; /* Each data page is mapped twice to allow "virtual" * continuous read of samples wrapping around the end of ring * buffer area: * ------------------------------------------------------ * | meta pages | real data pages | same data pages | * ------------------------------------------------------ * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | * ------------------------------------------------------ * | | TA DA | TA DA | * ------------------------------------------------------ * ^^^^^^^ * | * Here, no need to worry about special handling of wrapped-around * data due to double-mapped data pages. This works both in kernel and * when mmap()'ed in user-space, simplifying both kernel and * user-space implementations significantly. */ array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); pages = bpf_map_area_alloc(array_size, numa_node); if (!pages) return NULL; for (i = 0; i < nr_pages; i++) { page = alloc_pages_node(numa_node, flags, 0); if (!page) { nr_pages = i; goto err_free_pages; } pages[i] = page; if (i >= nr_meta_pages) pages[nr_data_pages + i] = page; } rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, VM_ALLOC | VM_USERMAP, PAGE_KERNEL); if (rb) { rb->pages = pages; rb->nr_pages = nr_pages; return rb; } err_free_pages: for (i = 0; i < nr_pages; i++) __free_page(pages[i]); kvfree(pages); return NULL; } static void bpf_ringbuf_notify(struct irq_work *work) { struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); wake_up_all(&rb->waitq); } static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) { struct bpf_ringbuf *rb; rb = bpf_ringbuf_area_alloc(data_sz, numa_node); if (!rb) return ERR_PTR(-ENOMEM); spin_lock_init(&rb->spinlock); init_waitqueue_head(&rb->waitq); init_irq_work(&rb->work, bpf_ringbuf_notify); rb->mask = data_sz - 1; rb->consumer_pos = 0; rb->producer_pos = 0; return rb; } static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) { struct bpf_ringbuf_map *rb_map; u64 cost; int err; if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) return ERR_PTR(-EINVAL); if (attr->key_size || attr->value_size || !is_power_of_2(attr->max_entries) || !PAGE_ALIGNED(attr->max_entries)) return ERR_PTR(-EINVAL); #ifdef CONFIG_64BIT /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */ if (attr->max_entries > RINGBUF_MAX_DATA_SZ) return ERR_PTR(-E2BIG); #endif rb_map = kzalloc(sizeof(*rb_map), GFP_USER | __GFP_ACCOUNT); if (!rb_map) return ERR_PTR(-ENOMEM); bpf_map_init_from_attr(&rb_map->map, attr); cost = sizeof(struct bpf_ringbuf_map) + sizeof(struct bpf_ringbuf) + attr->max_entries; err = bpf_map_charge_init(&rb_map->map.memory, cost); if (err) goto err_free_map; rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); if (IS_ERR(rb_map->rb)) { err = PTR_ERR(rb_map->rb); goto err_uncharge; } return &rb_map->map; err_uncharge: bpf_map_charge_finish(&rb_map->map.memory); err_free_map: kfree(rb_map); return ERR_PTR(err); } static void bpf_ringbuf_free(struct bpf_ringbuf *rb) { /* copy pages pointer and nr_pages to local variable, as we are going * to unmap rb itself with vunmap() below */ struct page **pages = rb->pages; int i, nr_pages = rb->nr_pages; vunmap(rb); for (i = 0; i < nr_pages; i++) __free_page(pages[i]); kvfree(pages); } static void ringbuf_map_free(struct bpf_map *map) { struct bpf_ringbuf_map *rb_map; rb_map = container_of(map, struct bpf_ringbuf_map, map); bpf_ringbuf_free(rb_map->rb); kfree(rb_map); } static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) { return ERR_PTR(-ENOTSUPP); } static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return -ENOTSUPP; } static int ringbuf_map_delete_elem(struct bpf_map *map, void *key) { return -ENOTSUPP; } static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { return -ENOTSUPP; } static size_t bpf_ringbuf_mmap_page_cnt(const struct bpf_ringbuf *rb) { size_t data_pages = (rb->mask + 1) >> PAGE_SHIFT; /* consumer page + producer page + 2 x data pages */ return RINGBUF_POS_PAGES + 2 * data_pages; } static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) { struct bpf_ringbuf_map *rb_map; size_t mmap_sz; rb_map = container_of(map, struct bpf_ringbuf_map, map); mmap_sz = bpf_ringbuf_mmap_page_cnt(rb_map->rb) << PAGE_SHIFT; if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > mmap_sz) return -EINVAL; return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); } static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) { unsigned long cons_pos, prod_pos; cons_pos = smp_load_acquire(&rb->consumer_pos); prod_pos = smp_load_acquire(&rb->producer_pos); return prod_pos - cons_pos; } static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp, struct poll_table_struct *pts) { struct bpf_ringbuf_map *rb_map; rb_map = container_of(map, struct bpf_ringbuf_map, map); poll_wait(filp, &rb_map->rb->waitq, pts); if (ringbuf_avail_data_sz(rb_map->rb)) return EPOLLIN | EPOLLRDNORM; return 0; } static int ringbuf_map_btf_id; const struct bpf_map_ops ringbuf_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc = ringbuf_map_alloc, .map_free = ringbuf_map_free, .map_mmap = ringbuf_map_mmap, .map_poll = ringbuf_map_poll, .map_lookup_elem = ringbuf_map_lookup_elem, .map_update_elem = ringbuf_map_update_elem, .map_delete_elem = ringbuf_map_delete_elem, .map_get_next_key = ringbuf_map_get_next_key, .map_btf_name = "bpf_ringbuf_map", .map_btf_id = &ringbuf_map_btf_id, }; /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, * calculate offset from record metadata to ring buffer in pages, rounded * down. This page offset is stored as part of record metadata and allows to * restore struct bpf_ringbuf * from record pointer. This page offset is * stored at offset 4 of record metadata header. */ static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, struct bpf_ringbuf_hdr *hdr) { return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; } /* Given pointer to ring buffer record header, restore pointer to struct * bpf_ringbuf itself by using page offset stored at offset 4 */ static struct bpf_ringbuf * bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) { unsigned long addr = (unsigned long)(void *)hdr; unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; return (void*)((addr & PAGE_MASK) - off); } static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) { unsigned long cons_pos, prod_pos, new_prod_pos, flags; u32 len, pg_off; struct bpf_ringbuf_hdr *hdr; if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) return NULL; len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); cons_pos = smp_load_acquire(&rb->consumer_pos); if (in_nmi()) { if (!spin_trylock_irqsave(&rb->spinlock, flags)) return NULL; } else { spin_lock_irqsave(&rb->spinlock, flags); } prod_pos = rb->producer_pos; new_prod_pos = prod_pos + len; /* check for out of ringbuf space by ensuring producer position * doesn't advance more than (ringbuf_size - 1) ahead */ if (new_prod_pos - cons_pos > rb->mask) { spin_unlock_irqrestore(&rb->spinlock, flags); return NULL; } hdr = (void *)rb->data + (prod_pos & rb->mask); pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); hdr->len = size | BPF_RINGBUF_BUSY_BIT; hdr->pg_off = pg_off; /* pairs with consumer's smp_load_acquire() */ smp_store_release(&rb->producer_pos, new_prod_pos); spin_unlock_irqrestore(&rb->spinlock, flags); return (void *)hdr + BPF_RINGBUF_HDR_SZ; } BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) { struct bpf_ringbuf_map *rb_map; if (unlikely(flags)) return 0; rb_map = container_of(map, struct bpf_ringbuf_map, map); return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); } const struct bpf_func_proto bpf_ringbuf_reserve_proto = { .func = bpf_ringbuf_reserve, .ret_type = RET_PTR_TO_ALLOC_MEM_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) { unsigned long rec_pos, cons_pos; struct bpf_ringbuf_hdr *hdr; struct bpf_ringbuf *rb; u32 new_len; hdr = sample - BPF_RINGBUF_HDR_SZ; rb = bpf_ringbuf_restore_from_rec(hdr); new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; if (discard) new_len |= BPF_RINGBUF_DISCARD_BIT; /* update record header with correct final size prefix */ xchg(&hdr->len, new_len); /* if consumer caught up and is waiting for our record, notify about * new data availability */ rec_pos = (void *)hdr - (void *)rb->data; cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; if (flags & BPF_RB_FORCE_WAKEUP) irq_work_queue(&rb->work); else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) irq_work_queue(&rb->work); } BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) { bpf_ringbuf_commit(sample, flags, false /* discard */); return 0; } const struct bpf_func_proto bpf_ringbuf_submit_proto = { .func = bpf_ringbuf_submit, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_ALLOC_MEM, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) { bpf_ringbuf_commit(sample, flags, true /* discard */); return 0; } const struct bpf_func_proto bpf_ringbuf_discard_proto = { .func = bpf_ringbuf_discard, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_ALLOC_MEM, .arg2_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, u64, flags) { struct bpf_ringbuf_map *rb_map; void *rec; if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) return -EINVAL; rb_map = container_of(map, struct bpf_ringbuf_map, map); rec = __bpf_ringbuf_reserve(rb_map->rb, size); if (!rec) return -EAGAIN; memcpy(rec, data, size); bpf_ringbuf_commit(rec, flags, false /* discard */); return 0; } const struct bpf_func_proto bpf_ringbuf_output_proto = { .func = bpf_ringbuf_output, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) { struct bpf_ringbuf *rb; rb = container_of(map, struct bpf_ringbuf_map, map)->rb; switch (flags) { case BPF_RB_AVAIL_DATA: return ringbuf_avail_data_sz(rb); case BPF_RB_RING_SIZE: return rb->mask + 1; case BPF_RB_CONS_POS: return smp_load_acquire(&rb->consumer_pos); case BPF_RB_PROD_POS: return smp_load_acquire(&rb->producer_pos); default: return 0; } } const struct bpf_func_proto bpf_ringbuf_query_proto = { .func = bpf_ringbuf_query, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_ANYTHING, };