// SPDX-License-Identifier: GPL-2.0+ // // drivers/dma/imx-sdma.c // // This file contains a driver for the Freescale Smart DMA engine // // Copyright 2010 Sascha Hauer, Pengutronix // // Based on code from Freescale: // // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dmaengine.h" #include "virt-dma.h" /* SDMA registers */ #define SDMA_H_C0PTR 0x000 #define SDMA_H_INTR 0x004 #define SDMA_H_STATSTOP 0x008 #define SDMA_H_START 0x00c #define SDMA_H_EVTOVR 0x010 #define SDMA_H_DSPOVR 0x014 #define SDMA_H_HOSTOVR 0x018 #define SDMA_H_EVTPEND 0x01c #define SDMA_H_DSPENBL 0x020 #define SDMA_H_RESET 0x024 #define SDMA_H_EVTERR 0x028 #define SDMA_H_INTRMSK 0x02c #define SDMA_H_PSW 0x030 #define SDMA_H_EVTERRDBG 0x034 #define SDMA_H_CONFIG 0x038 #define SDMA_ONCE_ENB 0x040 #define SDMA_ONCE_DATA 0x044 #define SDMA_ONCE_INSTR 0x048 #define SDMA_ONCE_STAT 0x04c #define SDMA_ONCE_CMD 0x050 #define SDMA_EVT_MIRROR 0x054 #define SDMA_ILLINSTADDR 0x058 #define SDMA_CHN0ADDR 0x05c #define SDMA_ONCE_RTB 0x060 #define SDMA_XTRIG_CONF1 0x070 #define SDMA_XTRIG_CONF2 0x074 #define SDMA_CHNENBL0_IMX35 0x200 #define SDMA_CHNENBL0_IMX31 0x080 #define SDMA_CHNPRI_0 0x100 /* * Buffer descriptor status values. */ #define BD_DONE 0x01 #define BD_WRAP 0x02 #define BD_CONT 0x04 #define BD_INTR 0x08 #define BD_RROR 0x10 #define BD_LAST 0x20 #define BD_EXTD 0x80 /* * Data Node descriptor status values. */ #define DND_END_OF_FRAME 0x80 #define DND_END_OF_XFER 0x40 #define DND_DONE 0x20 #define DND_UNUSED 0x01 /* * IPCV2 descriptor status values. */ #define BD_IPCV2_END_OF_FRAME 0x40 #define IPCV2_MAX_NODES 50 /* * Error bit set in the CCB status field by the SDMA, * in setbd routine, in case of a transfer error */ #define DATA_ERROR 0x10000000 /* * Buffer descriptor commands. */ #define C0_ADDR 0x01 #define C0_LOAD 0x02 #define C0_DUMP 0x03 #define C0_SETCTX 0x07 #define C0_GETCTX 0x03 #define C0_SETDM 0x01 #define C0_SETPM 0x04 #define C0_GETDM 0x02 #define C0_GETPM 0x08 /* * Change endianness indicator in the BD command field */ #define CHANGE_ENDIANNESS 0x80 /* * p_2_p watermark_level description * Bits Name Description * 0-7 Lower WML Lower watermark level * 8 PS 1: Pad Swallowing * 0: No Pad Swallowing * 9 PA 1: Pad Adding * 0: No Pad Adding * 10 SPDIF If this bit is set both source * and destination are on SPBA * 11 Source Bit(SP) 1: Source on SPBA * 0: Source on AIPS * 12 Destination Bit(DP) 1: Destination on SPBA * 0: Destination on AIPS * 13-15 --------- MUST BE 0 * 16-23 Higher WML HWML * 24-27 N Total number of samples after * which Pad adding/Swallowing * must be done. It must be odd. * 28 Lower WML Event(LWE) SDMA events reg to check for * LWML event mask * 0: LWE in EVENTS register * 1: LWE in EVENTS2 register * 29 Higher WML Event(HWE) SDMA events reg to check for * HWML event mask * 0: HWE in EVENTS register * 1: HWE in EVENTS2 register * 30 --------- MUST BE 0 * 31 CONT 1: Amount of samples to be * transferred is unknown and * script will keep on * transferring samples as long as * both events are detected and * script must be manually stopped * by the application * 0: The amount of samples to be * transferred is equal to the * count field of mode word */ #define SDMA_WATERMARK_LEVEL_LWML 0xFF #define SDMA_WATERMARK_LEVEL_PS BIT(8) #define SDMA_WATERMARK_LEVEL_PA BIT(9) #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10) #define SDMA_WATERMARK_LEVEL_SP BIT(11) #define SDMA_WATERMARK_LEVEL_DP BIT(12) #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16) #define SDMA_WATERMARK_LEVEL_LWE BIT(28) #define SDMA_WATERMARK_LEVEL_HWE BIT(29) #define SDMA_WATERMARK_LEVEL_CONT BIT(31) #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \ BIT(DMA_MEM_TO_DEV) | \ BIT(DMA_DEV_TO_DEV)) /* * Mode/Count of data node descriptors - IPCv2 */ struct sdma_mode_count { u32 count : 16; /* size of the buffer pointed by this BD */ u32 status : 8; /* E,R,I,C,W,D status bits stored here */ u32 command : 8; /* command mostly used for channel 0 */ }; /* * Buffer descriptor */ struct sdma_buffer_descriptor { struct sdma_mode_count mode; u32 buffer_addr; /* address of the buffer described */ u32 ext_buffer_addr; /* extended buffer address */ } __attribute__ ((packed)); /** * struct sdma_channel_control - Channel control Block * * @current_bd_ptr current buffer descriptor processed * @base_bd_ptr first element of buffer descriptor array * @unused padding. The SDMA engine expects an array of 128 byte * control blocks */ struct sdma_channel_control { u32 current_bd_ptr; u32 base_bd_ptr; u32 unused[2]; } __attribute__ ((packed)); /** * struct sdma_state_registers - SDMA context for a channel * * @pc: program counter * @t: test bit: status of arithmetic & test instruction * @rpc: return program counter * @sf: source fault while loading data * @spc: loop start program counter * @df: destination fault while storing data * @epc: loop end program counter * @lm: loop mode */ struct sdma_state_registers { u32 pc :14; u32 unused1: 1; u32 t : 1; u32 rpc :14; u32 unused0: 1; u32 sf : 1; u32 spc :14; u32 unused2: 1; u32 df : 1; u32 epc :14; u32 lm : 2; } __attribute__ ((packed)); /** * struct sdma_context_data - sdma context specific to a channel * * @channel_state: channel state bits * @gReg: general registers * @mda: burst dma destination address register * @msa: burst dma source address register * @ms: burst dma status register * @md: burst dma data register * @pda: peripheral dma destination address register * @psa: peripheral dma source address register * @ps: peripheral dma status register * @pd: peripheral dma data register * @ca: CRC polynomial register * @cs: CRC accumulator register * @dda: dedicated core destination address register * @dsa: dedicated core source address register * @ds: dedicated core status register * @dd: dedicated core data register */ struct sdma_context_data { struct sdma_state_registers channel_state; u32 gReg[8]; u32 mda; u32 msa; u32 ms; u32 md; u32 pda; u32 psa; u32 ps; u32 pd; u32 ca; u32 cs; u32 dda; u32 dsa; u32 ds; u32 dd; u32 scratch0; u32 scratch1; u32 scratch2; u32 scratch3; u32 scratch4; u32 scratch5; u32 scratch6; u32 scratch7; } __attribute__ ((packed)); struct sdma_engine; /** * struct sdma_desc - descriptor structor for one transfer * @vd descriptor for virt dma * @num_bd max NUM_BD. number of descriptors currently handling * @buf_tail ID of the buffer that was processed * @buf_ptail ID of the previous buffer that was processed * @period_len period length, used in cyclic. * @chn_real_count the real count updated from bd->mode.count * @chn_count the transfer count set * @sdmac sdma_channel pointer * @bd pointer of allocate bd */ struct sdma_desc { struct virt_dma_desc vd; unsigned int num_bd; dma_addr_t bd_phys; unsigned int buf_tail; unsigned int buf_ptail; unsigned int period_len; unsigned int chn_real_count; unsigned int chn_count; struct sdma_channel *sdmac; struct sdma_buffer_descriptor *bd; }; /** * struct sdma_channel - housekeeping for a SDMA channel * * @sdma pointer to the SDMA engine for this channel * @channel the channel number, matches dmaengine chan_id + 1 * @direction transfer type. Needed for setting SDMA script * @peripheral_type Peripheral type. Needed for setting SDMA script * @event_id0 aka dma request line * @event_id1 for channels that use 2 events * @word_size peripheral access size */ struct sdma_channel { struct virt_dma_chan vc; struct sdma_desc *desc; struct sdma_engine *sdma; unsigned int channel; enum dma_transfer_direction direction; enum sdma_peripheral_type peripheral_type; unsigned int event_id0; unsigned int event_id1; enum dma_slave_buswidth word_size; unsigned int pc_from_device, pc_to_device; unsigned int device_to_device; unsigned long flags; dma_addr_t per_address, per_address2; unsigned long event_mask[2]; unsigned long watermark_level; u32 shp_addr, per_addr; enum dma_status status; struct imx_dma_data data; struct dma_pool *bd_pool; }; #define IMX_DMA_SG_LOOP BIT(0) #define MAX_DMA_CHANNELS 32 #define MXC_SDMA_DEFAULT_PRIORITY 1 #define MXC_SDMA_MIN_PRIORITY 1 #define MXC_SDMA_MAX_PRIORITY 7 #define SDMA_FIRMWARE_MAGIC 0x414d4453 /** * struct sdma_firmware_header - Layout of the firmware image * * @magic "SDMA" * @version_major increased whenever layout of struct sdma_script_start_addrs * changes. * @version_minor firmware minor version (for binary compatible changes) * @script_addrs_start offset of struct sdma_script_start_addrs in this image * @num_script_addrs Number of script addresses in this image * @ram_code_start offset of SDMA ram image in this firmware image * @ram_code_size size of SDMA ram image * @script_addrs Stores the start address of the SDMA scripts * (in SDMA memory space) */ struct sdma_firmware_header { u32 magic; u32 version_major; u32 version_minor; u32 script_addrs_start; u32 num_script_addrs; u32 ram_code_start; u32 ram_code_size; }; struct sdma_driver_data { int chnenbl0; int num_events; struct sdma_script_start_addrs *script_addrs; }; struct sdma_engine { struct device *dev; struct device_dma_parameters dma_parms; struct sdma_channel channel[MAX_DMA_CHANNELS]; struct sdma_channel_control *channel_control; void __iomem *regs; struct sdma_context_data *context; dma_addr_t context_phys; struct dma_device dma_device; struct clk *clk_ipg; struct clk *clk_ahb; spinlock_t channel_0_lock; u32 script_number; struct sdma_script_start_addrs *script_addrs; const struct sdma_driver_data *drvdata; u32 spba_start_addr; u32 spba_end_addr; unsigned int irq; dma_addr_t bd0_phys; struct sdma_buffer_descriptor *bd0; }; static struct sdma_driver_data sdma_imx31 = { .chnenbl0 = SDMA_CHNENBL0_IMX31, .num_events = 32, }; static struct sdma_script_start_addrs sdma_script_imx25 = { .ap_2_ap_addr = 729, .uart_2_mcu_addr = 904, .per_2_app_addr = 1255, .mcu_2_app_addr = 834, .uartsh_2_mcu_addr = 1120, .per_2_shp_addr = 1329, .mcu_2_shp_addr = 1048, .ata_2_mcu_addr = 1560, .mcu_2_ata_addr = 1479, .app_2_per_addr = 1189, .app_2_mcu_addr = 770, .shp_2_per_addr = 1407, .shp_2_mcu_addr = 979, }; static struct sdma_driver_data sdma_imx25 = { .chnenbl0 = SDMA_CHNENBL0_IMX35, .num_events = 48, .script_addrs = &sdma_script_imx25, }; static struct sdma_driver_data sdma_imx35 = { .chnenbl0 = SDMA_CHNENBL0_IMX35, .num_events = 48, }; static struct sdma_script_start_addrs sdma_script_imx51 = { .ap_2_ap_addr = 642, .uart_2_mcu_addr = 817, .mcu_2_app_addr = 747, .mcu_2_shp_addr = 961, .ata_2_mcu_addr = 1473, .mcu_2_ata_addr = 1392, .app_2_per_addr = 1033, .app_2_mcu_addr = 683, .shp_2_per_addr = 1251, .shp_2_mcu_addr = 892, }; static struct sdma_driver_data sdma_imx51 = { .chnenbl0 = SDMA_CHNENBL0_IMX35, .num_events = 48, .script_addrs = &sdma_script_imx51, }; static struct sdma_script_start_addrs sdma_script_imx53 = { .ap_2_ap_addr = 642, .app_2_mcu_addr = 683, .mcu_2_app_addr = 747, .uart_2_mcu_addr = 817, .shp_2_mcu_addr = 891, .mcu_2_shp_addr = 960, .uartsh_2_mcu_addr = 1032, .spdif_2_mcu_addr = 1100, .mcu_2_spdif_addr = 1134, .firi_2_mcu_addr = 1193, .mcu_2_firi_addr = 1290, }; static struct sdma_driver_data sdma_imx53 = { .chnenbl0 = SDMA_CHNENBL0_IMX35, .num_events = 48, .script_addrs = &sdma_script_imx53, }; static struct sdma_script_start_addrs sdma_script_imx6q = { .ap_2_ap_addr = 642, .uart_2_mcu_addr = 817, .mcu_2_app_addr = 747, .per_2_per_addr = 6331, .uartsh_2_mcu_addr = 1032, .mcu_2_shp_addr = 960, .app_2_mcu_addr = 683, .shp_2_mcu_addr = 891, .spdif_2_mcu_addr = 1100, .mcu_2_spdif_addr = 1134, }; static struct sdma_driver_data sdma_imx6q = { .chnenbl0 = SDMA_CHNENBL0_IMX35, .num_events = 48, .script_addrs = &sdma_script_imx6q, }; static struct sdma_script_start_addrs sdma_script_imx7d = { .ap_2_ap_addr = 644, .uart_2_mcu_addr = 819, .mcu_2_app_addr = 749, .uartsh_2_mcu_addr = 1034, .mcu_2_shp_addr = 962, .app_2_mcu_addr = 685, .shp_2_mcu_addr = 893, .spdif_2_mcu_addr = 1102, .mcu_2_spdif_addr = 1136, }; static struct sdma_driver_data sdma_imx7d = { .chnenbl0 = SDMA_CHNENBL0_IMX35, .num_events = 48, .script_addrs = &sdma_script_imx7d, }; static const struct platform_device_id sdma_devtypes[] = { { .name = "imx25-sdma", .driver_data = (unsigned long)&sdma_imx25, }, { .name = "imx31-sdma", .driver_data = (unsigned long)&sdma_imx31, }, { .name = "imx35-sdma", .driver_data = (unsigned long)&sdma_imx35, }, { .name = "imx51-sdma", .driver_data = (unsigned long)&sdma_imx51, }, { .name = "imx53-sdma", .driver_data = (unsigned long)&sdma_imx53, }, { .name = "imx6q-sdma", .driver_data = (unsigned long)&sdma_imx6q, }, { .name = "imx7d-sdma", .driver_data = (unsigned long)&sdma_imx7d, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, sdma_devtypes); static const struct of_device_id sdma_dt_ids[] = { { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, }, { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, }, { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, }, { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, }, { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, }, { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, }, { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, sdma_dt_ids); #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */ #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */ #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */ #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/ static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event) { u32 chnenbl0 = sdma->drvdata->chnenbl0; return chnenbl0 + event * 4; } static int sdma_config_ownership(struct sdma_channel *sdmac, bool event_override, bool mcu_override, bool dsp_override) { struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; unsigned long evt, mcu, dsp; if (event_override && mcu_override && dsp_override) return -EINVAL; evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR); mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR); dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR); if (dsp_override) __clear_bit(channel, &dsp); else __set_bit(channel, &dsp); if (event_override) __clear_bit(channel, &evt); else __set_bit(channel, &evt); if (mcu_override) __clear_bit(channel, &mcu); else __set_bit(channel, &mcu); writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR); writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR); writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR); return 0; } static void sdma_enable_channel(struct sdma_engine *sdma, int channel) { writel(BIT(channel), sdma->regs + SDMA_H_START); } /* * sdma_run_channel0 - run a channel and wait till it's done */ static int sdma_run_channel0(struct sdma_engine *sdma) { int ret; u32 reg; sdma_enable_channel(sdma, 0); ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP, reg, !(reg & 1), 1, 500); if (ret) dev_err(sdma->dev, "Timeout waiting for CH0 ready\n"); /* Set bits of CONFIG register with dynamic context switching */ if (readl(sdma->regs + SDMA_H_CONFIG) == 0) writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG); return ret; } static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size, u32 address) { struct sdma_buffer_descriptor *bd0 = sdma->bd0; void *buf_virt; dma_addr_t buf_phys; int ret; unsigned long flags; buf_virt = dma_alloc_coherent(NULL, size, &buf_phys, GFP_KERNEL); if (!buf_virt) { return -ENOMEM; } spin_lock_irqsave(&sdma->channel_0_lock, flags); bd0->mode.command = C0_SETPM; bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD; bd0->mode.count = size / 2; bd0->buffer_addr = buf_phys; bd0->ext_buffer_addr = address; memcpy(buf_virt, buf, size); ret = sdma_run_channel0(sdma); spin_unlock_irqrestore(&sdma->channel_0_lock, flags); dma_free_coherent(NULL, size, buf_virt, buf_phys); return ret; } static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event) { struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; unsigned long val; u32 chnenbl = chnenbl_ofs(sdma, event); val = readl_relaxed(sdma->regs + chnenbl); __set_bit(channel, &val); writel_relaxed(val, sdma->regs + chnenbl); } static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event) { struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; u32 chnenbl = chnenbl_ofs(sdma, event); unsigned long val; val = readl_relaxed(sdma->regs + chnenbl); __clear_bit(channel, &val); writel_relaxed(val, sdma->regs + chnenbl); } static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t) { return container_of(t, struct sdma_desc, vd.tx); } static void sdma_start_desc(struct sdma_channel *sdmac) { struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc); struct sdma_desc *desc; struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; if (!vd) { sdmac->desc = NULL; return; } sdmac->desc = desc = to_sdma_desc(&vd->tx); /* * Do not delete the node in desc_issued list in cyclic mode, otherwise * the desc allocated will never be freed in vchan_dma_desc_free_list */ if (!(sdmac->flags & IMX_DMA_SG_LOOP)) list_del(&vd->node); sdma->channel_control[channel].base_bd_ptr = desc->bd_phys; sdma->channel_control[channel].current_bd_ptr = desc->bd_phys; sdma_enable_channel(sdma, sdmac->channel); } static void sdma_update_channel_loop(struct sdma_channel *sdmac) { struct sdma_buffer_descriptor *bd; int error = 0; enum dma_status old_status = sdmac->status; /* * loop mode. Iterate over descriptors, re-setup them and * call callback function. */ while (sdmac->desc) { struct sdma_desc *desc = sdmac->desc; bd = &desc->bd[desc->buf_tail]; if (bd->mode.status & BD_DONE) break; if (bd->mode.status & BD_RROR) { bd->mode.status &= ~BD_RROR; sdmac->status = DMA_ERROR; error = -EIO; } /* * We use bd->mode.count to calculate the residue, since contains * the number of bytes present in the current buffer descriptor. */ desc->chn_real_count = bd->mode.count; bd->mode.status |= BD_DONE; bd->mode.count = desc->period_len; desc->buf_ptail = desc->buf_tail; desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd; /* * The callback is called from the interrupt context in order * to reduce latency and to avoid the risk of altering the * SDMA transaction status by the time the client tasklet is * executed. */ spin_unlock(&sdmac->vc.lock); dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL); spin_lock(&sdmac->vc.lock); if (error) sdmac->status = old_status; } } static void mxc_sdma_handle_channel_normal(struct sdma_channel *data) { struct sdma_channel *sdmac = (struct sdma_channel *) data; struct sdma_buffer_descriptor *bd; int i, error = 0; sdmac->desc->chn_real_count = 0; /* * non loop mode. Iterate over all descriptors, collect * errors and call callback function */ for (i = 0; i < sdmac->desc->num_bd; i++) { bd = &sdmac->desc->bd[i]; if (bd->mode.status & (BD_DONE | BD_RROR)) error = -EIO; sdmac->desc->chn_real_count += bd->mode.count; } if (error) sdmac->status = DMA_ERROR; else sdmac->status = DMA_COMPLETE; } static irqreturn_t sdma_int_handler(int irq, void *dev_id) { struct sdma_engine *sdma = dev_id; unsigned long stat; stat = readl_relaxed(sdma->regs + SDMA_H_INTR); writel_relaxed(stat, sdma->regs + SDMA_H_INTR); /* channel 0 is special and not handled here, see run_channel0() */ stat &= ~1; while (stat) { int channel = fls(stat) - 1; struct sdma_channel *sdmac = &sdma->channel[channel]; struct sdma_desc *desc; spin_lock(&sdmac->vc.lock); desc = sdmac->desc; if (desc) { if (sdmac->flags & IMX_DMA_SG_LOOP) { sdma_update_channel_loop(sdmac); } else { mxc_sdma_handle_channel_normal(sdmac); vchan_cookie_complete(&desc->vd); sdma_start_desc(sdmac); } } spin_unlock(&sdmac->vc.lock); __clear_bit(channel, &stat); } return IRQ_HANDLED; } /* * sets the pc of SDMA script according to the peripheral type */ static void sdma_get_pc(struct sdma_channel *sdmac, enum sdma_peripheral_type peripheral_type) { struct sdma_engine *sdma = sdmac->sdma; int per_2_emi = 0, emi_2_per = 0; /* * These are needed once we start to support transfers between * two peripherals or memory-to-memory transfers */ int per_2_per = 0; sdmac->pc_from_device = 0; sdmac->pc_to_device = 0; sdmac->device_to_device = 0; switch (peripheral_type) { case IMX_DMATYPE_MEMORY: break; case IMX_DMATYPE_DSP: emi_2_per = sdma->script_addrs->bp_2_ap_addr; per_2_emi = sdma->script_addrs->ap_2_bp_addr; break; case IMX_DMATYPE_FIRI: per_2_emi = sdma->script_addrs->firi_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_firi_addr; break; case IMX_DMATYPE_UART: per_2_emi = sdma->script_addrs->uart_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_app_addr; break; case IMX_DMATYPE_UART_SP: per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_shp_addr; break; case IMX_DMATYPE_ATA: per_2_emi = sdma->script_addrs->ata_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_ata_addr; break; case IMX_DMATYPE_CSPI: case IMX_DMATYPE_EXT: case IMX_DMATYPE_SSI: case IMX_DMATYPE_SAI: per_2_emi = sdma->script_addrs->app_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_app_addr; break; case IMX_DMATYPE_SSI_DUAL: per_2_emi = sdma->script_addrs->ssish_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_ssish_addr; break; case IMX_DMATYPE_SSI_SP: case IMX_DMATYPE_MMC: case IMX_DMATYPE_SDHC: case IMX_DMATYPE_CSPI_SP: case IMX_DMATYPE_ESAI: case IMX_DMATYPE_MSHC_SP: per_2_emi = sdma->script_addrs->shp_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_shp_addr; break; case IMX_DMATYPE_ASRC: per_2_emi = sdma->script_addrs->asrc_2_mcu_addr; emi_2_per = sdma->script_addrs->asrc_2_mcu_addr; per_2_per = sdma->script_addrs->per_2_per_addr; break; case IMX_DMATYPE_ASRC_SP: per_2_emi = sdma->script_addrs->shp_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_shp_addr; per_2_per = sdma->script_addrs->per_2_per_addr; break; case IMX_DMATYPE_MSHC: per_2_emi = sdma->script_addrs->mshc_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_mshc_addr; break; case IMX_DMATYPE_CCM: per_2_emi = sdma->script_addrs->dptc_dvfs_addr; break; case IMX_DMATYPE_SPDIF: per_2_emi = sdma->script_addrs->spdif_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_spdif_addr; break; case IMX_DMATYPE_IPU_MEMORY: emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr; break; default: break; } sdmac->pc_from_device = per_2_emi; sdmac->pc_to_device = emi_2_per; sdmac->device_to_device = per_2_per; } static int sdma_load_context(struct sdma_channel *sdmac) { struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; int load_address; struct sdma_context_data *context = sdma->context; struct sdma_buffer_descriptor *bd0 = sdma->bd0; int ret; unsigned long flags; if (sdmac->direction == DMA_DEV_TO_MEM) load_address = sdmac->pc_from_device; else if (sdmac->direction == DMA_DEV_TO_DEV) load_address = sdmac->device_to_device; else load_address = sdmac->pc_to_device; if (load_address < 0) return load_address; dev_dbg(sdma->dev, "load_address = %d\n", load_address); dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level); dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr); dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr); dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]); dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]); spin_lock_irqsave(&sdma->channel_0_lock, flags); memset(context, 0, sizeof(*context)); context->channel_state.pc = load_address; /* Send by context the event mask,base address for peripheral * and watermark level */ context->gReg[0] = sdmac->event_mask[1]; context->gReg[1] = sdmac->event_mask[0]; context->gReg[2] = sdmac->per_addr; context->gReg[6] = sdmac->shp_addr; context->gReg[7] = sdmac->watermark_level; bd0->mode.command = C0_SETDM; bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD; bd0->mode.count = sizeof(*context) / 4; bd0->buffer_addr = sdma->context_phys; bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel; ret = sdma_run_channel0(sdma); spin_unlock_irqrestore(&sdma->channel_0_lock, flags); return ret; } static struct sdma_channel *to_sdma_chan(struct dma_chan *chan) { return container_of(chan, struct sdma_channel, vc.chan); } static int sdma_disable_channel(struct dma_chan *chan) { struct sdma_channel *sdmac = to_sdma_chan(chan); struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP); sdmac->status = DMA_ERROR; return 0; } static int sdma_disable_channel_with_delay(struct dma_chan *chan) { struct sdma_channel *sdmac = to_sdma_chan(chan); unsigned long flags; LIST_HEAD(head); sdma_disable_channel(chan); spin_lock_irqsave(&sdmac->vc.lock, flags); vchan_get_all_descriptors(&sdmac->vc, &head); sdmac->desc = NULL; spin_unlock_irqrestore(&sdmac->vc.lock, flags); vchan_dma_desc_free_list(&sdmac->vc, &head); /* * According to NXP R&D team a delay of one BD SDMA cost time * (maximum is 1ms) should be added after disable of the channel * bit, to ensure SDMA core has really been stopped after SDMA * clients call .device_terminate_all. */ mdelay(1); return 0; } static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac) { struct sdma_engine *sdma = sdmac->sdma; int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML; int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16; set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]); set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]); if (sdmac->event_id0 > 31) sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE; if (sdmac->event_id1 > 31) sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE; /* * If LWML(src_maxburst) > HWML(dst_maxburst), we need * swap LWML and HWML of INFO(A.3.2.5.1), also need swap * r0(event_mask[1]) and r1(event_mask[0]). */ if (lwml > hwml) { sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML | SDMA_WATERMARK_LEVEL_HWML); sdmac->watermark_level |= hwml; sdmac->watermark_level |= lwml << 16; swap(sdmac->event_mask[0], sdmac->event_mask[1]); } if (sdmac->per_address2 >= sdma->spba_start_addr && sdmac->per_address2 <= sdma->spba_end_addr) sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP; if (sdmac->per_address >= sdma->spba_start_addr && sdmac->per_address <= sdma->spba_end_addr) sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP; sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT; } static int sdma_config_channel(struct dma_chan *chan) { struct sdma_channel *sdmac = to_sdma_chan(chan); int ret; sdma_disable_channel(chan); sdmac->event_mask[0] = 0; sdmac->event_mask[1] = 0; sdmac->shp_addr = 0; sdmac->per_addr = 0; if (sdmac->event_id0) { if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events) return -EINVAL; sdma_event_enable(sdmac, sdmac->event_id0); } if (sdmac->event_id1) { if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events) return -EINVAL; sdma_event_enable(sdmac, sdmac->event_id1); } switch (sdmac->peripheral_type) { case IMX_DMATYPE_DSP: sdma_config_ownership(sdmac, false, true, true); break; case IMX_DMATYPE_MEMORY: sdma_config_ownership(sdmac, false, true, false); break; default: sdma_config_ownership(sdmac, true, true, false); break; } sdma_get_pc(sdmac, sdmac->peripheral_type); if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) && (sdmac->peripheral_type != IMX_DMATYPE_DSP)) { /* Handle multiple event channels differently */ if (sdmac->event_id1) { if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP || sdmac->peripheral_type == IMX_DMATYPE_ASRC) sdma_set_watermarklevel_for_p2p(sdmac); } else __set_bit(sdmac->event_id0, sdmac->event_mask); /* Address */ sdmac->shp_addr = sdmac->per_address; sdmac->per_addr = sdmac->per_address2; } else { sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */ } ret = sdma_load_context(sdmac); return ret; } static int sdma_set_channel_priority(struct sdma_channel *sdmac, unsigned int priority) { struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; if (priority < MXC_SDMA_MIN_PRIORITY || priority > MXC_SDMA_MAX_PRIORITY) { return -EINVAL; } writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel); return 0; } static int sdma_request_channel0(struct sdma_engine *sdma) { int ret = -EBUSY; sdma->bd0 = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdma->bd0_phys, GFP_NOWAIT); if (!sdma->bd0) { ret = -ENOMEM; goto out; } sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys; sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys; sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY); return 0; out: return ret; } static int sdma_alloc_bd(struct sdma_desc *desc) { int ret = 0; desc->bd = dma_pool_alloc(desc->sdmac->bd_pool, GFP_NOWAIT, &desc->bd_phys); if (!desc->bd) { ret = -ENOMEM; goto out; } out: return ret; } static void sdma_free_bd(struct sdma_desc *desc) { dma_pool_free(desc->sdmac->bd_pool, desc->bd, desc->bd_phys); } static void sdma_desc_free(struct virt_dma_desc *vd) { struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd); sdma_free_bd(desc); kfree(desc); } static int sdma_alloc_chan_resources(struct dma_chan *chan) { struct sdma_channel *sdmac = to_sdma_chan(chan); struct imx_dma_data *data = chan->private; int prio, ret; if (!data) return -EINVAL; switch (data->priority) { case DMA_PRIO_HIGH: prio = 3; break; case DMA_PRIO_MEDIUM: prio = 2; break; case DMA_PRIO_LOW: default: prio = 1; break; } sdmac->peripheral_type = data->peripheral_type; sdmac->event_id0 = data->dma_request; sdmac->event_id1 = data->dma_request2; ret = clk_enable(sdmac->sdma->clk_ipg); if (ret) return ret; ret = clk_enable(sdmac->sdma->clk_ahb); if (ret) goto disable_clk_ipg; ret = sdma_set_channel_priority(sdmac, prio); if (ret) goto disable_clk_ahb; sdmac->bd_pool = dma_pool_create("bd_pool", chan->device->dev, sizeof(struct sdma_buffer_descriptor), 32, 0); return 0; disable_clk_ahb: clk_disable(sdmac->sdma->clk_ahb); disable_clk_ipg: clk_disable(sdmac->sdma->clk_ipg); return ret; } static void sdma_free_chan_resources(struct dma_chan *chan) { struct sdma_channel *sdmac = to_sdma_chan(chan); struct sdma_engine *sdma = sdmac->sdma; sdma_disable_channel_with_delay(chan); if (sdmac->event_id0) sdma_event_disable(sdmac, sdmac->event_id0); if (sdmac->event_id1) sdma_event_disable(sdmac, sdmac->event_id1); sdmac->event_id0 = 0; sdmac->event_id1 = 0; sdma_set_channel_priority(sdmac, 0); clk_disable(sdma->clk_ipg); clk_disable(sdma->clk_ahb); dma_pool_destroy(sdmac->bd_pool); sdmac->bd_pool = NULL; } static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac, enum dma_transfer_direction direction, u32 bds) { struct sdma_desc *desc; desc = kzalloc((sizeof(*desc)), GFP_NOWAIT); if (!desc) goto err_out; sdmac->status = DMA_IN_PROGRESS; sdmac->direction = direction; sdmac->flags = 0; desc->chn_count = 0; desc->chn_real_count = 0; desc->buf_tail = 0; desc->buf_ptail = 0; desc->sdmac = sdmac; desc->num_bd = bds; if (sdma_alloc_bd(desc)) goto err_desc_out; if (sdma_load_context(sdmac)) goto err_desc_out; return desc; err_desc_out: kfree(desc); err_out: return NULL; } static struct dma_async_tx_descriptor *sdma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct sdma_channel *sdmac = to_sdma_chan(chan); struct sdma_engine *sdma = sdmac->sdma; int ret, i, count; int channel = sdmac->channel; struct scatterlist *sg; struct sdma_desc *desc; desc = sdma_transfer_init(sdmac, direction, sg_len); if (!desc) goto err_out; dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n", sg_len, channel); for_each_sg(sgl, sg, sg_len, i) { struct sdma_buffer_descriptor *bd = &desc->bd[i]; int param; bd->buffer_addr = sg->dma_address; count = sg_dma_len(sg); if (count > 0xffff) { dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n", channel, count, 0xffff); ret = -EINVAL; goto err_bd_out; } bd->mode.count = count; desc->chn_count += count; if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) { ret = -EINVAL; goto err_bd_out; } switch (sdmac->word_size) { case DMA_SLAVE_BUSWIDTH_4_BYTES: bd->mode.command = 0; if (count & 3 || sg->dma_address & 3) goto err_bd_out; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: bd->mode.command = 2; if (count & 1 || sg->dma_address & 1) goto err_bd_out; break; case DMA_SLAVE_BUSWIDTH_1_BYTE: bd->mode.command = 1; break; default: goto err_bd_out; } param = BD_DONE | BD_EXTD | BD_CONT; if (i + 1 == sg_len) { param |= BD_INTR; param |= BD_LAST; param &= ~BD_CONT; } dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n", i, count, (u64)sg->dma_address, param & BD_WRAP ? "wrap" : "", param & BD_INTR ? " intr" : ""); bd->mode.status = param; } return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); err_bd_out: sdma_free_bd(desc); kfree(desc); err_out: sdmac->status = DMA_ERROR; return NULL; } static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct sdma_channel *sdmac = to_sdma_chan(chan); struct sdma_engine *sdma = sdmac->sdma; int num_periods = buf_len / period_len; int channel = sdmac->channel; int i = 0, buf = 0; struct sdma_desc *desc; dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel); desc = sdma_transfer_init(sdmac, direction, num_periods); if (!desc) goto err_out; desc->period_len = period_len; sdmac->flags |= IMX_DMA_SG_LOOP; if (period_len > 0xffff) { dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n", channel, period_len, 0xffff); goto err_bd_out; } while (buf < buf_len) { struct sdma_buffer_descriptor *bd = &desc->bd[i]; int param; bd->buffer_addr = dma_addr; bd->mode.count = period_len; if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) goto err_bd_out; if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES) bd->mode.command = 0; else bd->mode.command = sdmac->word_size; param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR; if (i + 1 == num_periods) param |= BD_WRAP; dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n", i, period_len, (u64)dma_addr, param & BD_WRAP ? "wrap" : "", param & BD_INTR ? " intr" : ""); bd->mode.status = param; dma_addr += period_len; buf += period_len; i++; } return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); err_bd_out: sdma_free_bd(desc); kfree(desc); err_out: sdmac->status = DMA_ERROR; return NULL; } static int sdma_config(struct dma_chan *chan, struct dma_slave_config *dmaengine_cfg) { struct sdma_channel *sdmac = to_sdma_chan(chan); if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) { sdmac->per_address = dmaengine_cfg->src_addr; sdmac->watermark_level = dmaengine_cfg->src_maxburst * dmaengine_cfg->src_addr_width; sdmac->word_size = dmaengine_cfg->src_addr_width; } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) { sdmac->per_address2 = dmaengine_cfg->src_addr; sdmac->per_address = dmaengine_cfg->dst_addr; sdmac->watermark_level = dmaengine_cfg->src_maxburst & SDMA_WATERMARK_LEVEL_LWML; sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) & SDMA_WATERMARK_LEVEL_HWML; sdmac->word_size = dmaengine_cfg->dst_addr_width; } else { sdmac->per_address = dmaengine_cfg->dst_addr; sdmac->watermark_level = dmaengine_cfg->dst_maxburst * dmaengine_cfg->dst_addr_width; sdmac->word_size = dmaengine_cfg->dst_addr_width; } sdmac->direction = dmaengine_cfg->direction; return sdma_config_channel(chan); } static enum dma_status sdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct sdma_channel *sdmac = to_sdma_chan(chan); struct sdma_desc *desc; u32 residue; struct virt_dma_desc *vd; enum dma_status ret; unsigned long flags; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_COMPLETE || !txstate) return ret; spin_lock_irqsave(&sdmac->vc.lock, flags); vd = vchan_find_desc(&sdmac->vc, cookie); if (vd) { desc = to_sdma_desc(&vd->tx); if (sdmac->flags & IMX_DMA_SG_LOOP) residue = (desc->num_bd - desc->buf_ptail) * desc->period_len - desc->chn_real_count; else residue = desc->chn_count - desc->chn_real_count; } else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) { residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count; } else { residue = 0; } spin_unlock_irqrestore(&sdmac->vc.lock, flags); dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, residue); return sdmac->status; } static void sdma_issue_pending(struct dma_chan *chan) { struct sdma_channel *sdmac = to_sdma_chan(chan); unsigned long flags; spin_lock_irqsave(&sdmac->vc.lock, flags); if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc) sdma_start_desc(sdmac); spin_unlock_irqrestore(&sdmac->vc.lock, flags); } #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42 static void sdma_add_scripts(struct sdma_engine *sdma, const struct sdma_script_start_addrs *addr) { s32 *addr_arr = (u32 *)addr; s32 *saddr_arr = (u32 *)sdma->script_addrs; int i; /* use the default firmware in ROM if missing external firmware */ if (!sdma->script_number) sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; for (i = 0; i < sdma->script_number; i++) if (addr_arr[i] > 0) saddr_arr[i] = addr_arr[i]; } static void sdma_load_firmware(const struct firmware *fw, void *context) { struct sdma_engine *sdma = context; const struct sdma_firmware_header *header; const struct sdma_script_start_addrs *addr; unsigned short *ram_code; if (!fw) { dev_info(sdma->dev, "external firmware not found, using ROM firmware\n"); /* In this case we just use the ROM firmware. */ return; } if (fw->size < sizeof(*header)) goto err_firmware; header = (struct sdma_firmware_header *)fw->data; if (header->magic != SDMA_FIRMWARE_MAGIC) goto err_firmware; if (header->ram_code_start + header->ram_code_size > fw->size) goto err_firmware; switch (header->version_major) { case 1: sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; break; case 2: sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2; break; case 3: sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3; break; case 4: sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4; break; default: dev_err(sdma->dev, "unknown firmware version\n"); goto err_firmware; } addr = (void *)header + header->script_addrs_start; ram_code = (void *)header + header->ram_code_start; clk_enable(sdma->clk_ipg); clk_enable(sdma->clk_ahb); /* download the RAM image for SDMA */ sdma_load_script(sdma, ram_code, header->ram_code_size, addr->ram_code_start_addr); clk_disable(sdma->clk_ipg); clk_disable(sdma->clk_ahb); sdma_add_scripts(sdma, addr); dev_info(sdma->dev, "loaded firmware %d.%d\n", header->version_major, header->version_minor); err_firmware: release_firmware(fw); } #define EVENT_REMAP_CELLS 3 static int sdma_event_remap(struct sdma_engine *sdma) { struct device_node *np = sdma->dev->of_node; struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0); struct property *event_remap; struct regmap *gpr; char propname[] = "fsl,sdma-event-remap"; u32 reg, val, shift, num_map, i; int ret = 0; if (IS_ERR(np) || IS_ERR(gpr_np)) goto out; event_remap = of_find_property(np, propname, NULL); num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0; if (!num_map) { dev_dbg(sdma->dev, "no event needs to be remapped\n"); goto out; } else if (num_map % EVENT_REMAP_CELLS) { dev_err(sdma->dev, "the property %s must modulo %d\n", propname, EVENT_REMAP_CELLS); ret = -EINVAL; goto out; } gpr = syscon_node_to_regmap(gpr_np); if (IS_ERR(gpr)) { dev_err(sdma->dev, "failed to get gpr regmap\n"); ret = PTR_ERR(gpr); goto out; } for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) { ret = of_property_read_u32_index(np, propname, i, ®); if (ret) { dev_err(sdma->dev, "failed to read property %s index %d\n", propname, i); goto out; } ret = of_property_read_u32_index(np, propname, i + 1, &shift); if (ret) { dev_err(sdma->dev, "failed to read property %s index %d\n", propname, i + 1); goto out; } ret = of_property_read_u32_index(np, propname, i + 2, &val); if (ret) { dev_err(sdma->dev, "failed to read property %s index %d\n", propname, i + 2); goto out; } regmap_update_bits(gpr, reg, BIT(shift), val << shift); } out: if (!IS_ERR(gpr_np)) of_node_put(gpr_np); return ret; } static int sdma_get_firmware(struct sdma_engine *sdma, const char *fw_name) { int ret; ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, fw_name, sdma->dev, GFP_KERNEL, sdma, sdma_load_firmware); return ret; } static int sdma_init(struct sdma_engine *sdma) { int i, ret; dma_addr_t ccb_phys; ret = clk_enable(sdma->clk_ipg); if (ret) return ret; ret = clk_enable(sdma->clk_ahb); if (ret) goto disable_clk_ipg; /* Be sure SDMA has not started yet */ writel_relaxed(0, sdma->regs + SDMA_H_C0PTR); sdma->channel_control = dma_alloc_coherent(NULL, MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) + sizeof(struct sdma_context_data), &ccb_phys, GFP_KERNEL); if (!sdma->channel_control) { ret = -ENOMEM; goto err_dma_alloc; } sdma->context = (void *)sdma->channel_control + MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control); sdma->context_phys = ccb_phys + MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control); /* Zero-out the CCB structures array just allocated */ memset(sdma->channel_control, 0, MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control)); /* disable all channels */ for (i = 0; i < sdma->drvdata->num_events; i++) writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i)); /* All channels have priority 0 */ for (i = 0; i < MAX_DMA_CHANNELS; i++) writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4); ret = sdma_request_channel0(sdma); if (ret) goto err_dma_alloc; sdma_config_ownership(&sdma->channel[0], false, true, false); /* Set Command Channel (Channel Zero) */ writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR); /* Set bits of CONFIG register but with static context switching */ /* FIXME: Check whether to set ACR bit depending on clock ratios */ writel_relaxed(0, sdma->regs + SDMA_H_CONFIG); writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR); /* Initializes channel's priorities */ sdma_set_channel_priority(&sdma->channel[0], 7); clk_disable(sdma->clk_ipg); clk_disable(sdma->clk_ahb); return 0; err_dma_alloc: clk_disable(sdma->clk_ahb); disable_clk_ipg: clk_disable(sdma->clk_ipg); dev_err(sdma->dev, "initialisation failed with %d\n", ret); return ret; } static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param) { struct sdma_channel *sdmac = to_sdma_chan(chan); struct imx_dma_data *data = fn_param; if (!imx_dma_is_general_purpose(chan)) return false; sdmac->data = *data; chan->private = &sdmac->data; return true; } static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct sdma_engine *sdma = ofdma->of_dma_data; dma_cap_mask_t mask = sdma->dma_device.cap_mask; struct imx_dma_data data; if (dma_spec->args_count != 3) return NULL; data.dma_request = dma_spec->args[0]; data.peripheral_type = dma_spec->args[1]; data.priority = dma_spec->args[2]; /* * init dma_request2 to zero, which is not used by the dts. * For P2P, dma_request2 is init from dma_request_channel(), * chan->private will point to the imx_dma_data, and in * device_alloc_chan_resources(), imx_dma_data.dma_request2 will * be set to sdmac->event_id1. */ data.dma_request2 = 0; return dma_request_channel(mask, sdma_filter_fn, &data); } static int sdma_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(sdma_dt_ids, &pdev->dev); struct device_node *np = pdev->dev.of_node; struct device_node *spba_bus; const char *fw_name; int ret; int irq; struct resource *iores; struct resource spba_res; struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev); int i; struct sdma_engine *sdma; s32 *saddr_arr; const struct sdma_driver_data *drvdata = NULL; if (of_id) drvdata = of_id->data; else if (pdev->id_entry) drvdata = (void *)pdev->id_entry->driver_data; if (!drvdata) { dev_err(&pdev->dev, "unable to find driver data\n"); return -EINVAL; } ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (ret) return ret; sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL); if (!sdma) return -ENOMEM; spin_lock_init(&sdma->channel_0_lock); sdma->dev = &pdev->dev; sdma->drvdata = drvdata; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); sdma->regs = devm_ioremap_resource(&pdev->dev, iores); if (IS_ERR(sdma->regs)) return PTR_ERR(sdma->regs); sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); if (IS_ERR(sdma->clk_ipg)) return PTR_ERR(sdma->clk_ipg); sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); if (IS_ERR(sdma->clk_ahb)) return PTR_ERR(sdma->clk_ahb); ret = clk_prepare(sdma->clk_ipg); if (ret) return ret; ret = clk_prepare(sdma->clk_ahb); if (ret) goto err_clk; ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma", sdma); if (ret) goto err_irq; sdma->irq = irq; sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL); if (!sdma->script_addrs) { ret = -ENOMEM; goto err_irq; } /* initially no scripts available */ saddr_arr = (s32 *)sdma->script_addrs; for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++) saddr_arr[i] = -EINVAL; dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask); dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask); INIT_LIST_HEAD(&sdma->dma_device.channels); /* Initialize channel parameters */ for (i = 0; i < MAX_DMA_CHANNELS; i++) { struct sdma_channel *sdmac = &sdma->channel[i]; sdmac->sdma = sdma; sdmac->channel = i; sdmac->vc.desc_free = sdma_desc_free; /* * Add the channel to the DMAC list. Do not add channel 0 though * because we need it internally in the SDMA driver. This also means * that channel 0 in dmaengine counting matches sdma channel 1. */ if (i) vchan_init(&sdmac->vc, &sdma->dma_device); } ret = sdma_init(sdma); if (ret) goto err_init; ret = sdma_event_remap(sdma); if (ret) goto err_init; if (sdma->drvdata->script_addrs) sdma_add_scripts(sdma, sdma->drvdata->script_addrs); if (pdata && pdata->script_addrs) sdma_add_scripts(sdma, pdata->script_addrs); if (pdata) { ret = sdma_get_firmware(sdma, pdata->fw_name); if (ret) dev_warn(&pdev->dev, "failed to get firmware from platform data\n"); } else { /* * Because that device tree does not encode ROM script address, * the RAM script in firmware is mandatory for device tree * probe, otherwise it fails. */ ret = of_property_read_string(np, "fsl,sdma-ram-script-name", &fw_name); if (ret) dev_warn(&pdev->dev, "failed to get firmware name\n"); else { ret = sdma_get_firmware(sdma, fw_name); if (ret) dev_warn(&pdev->dev, "failed to get firmware from device tree\n"); } } sdma->dma_device.dev = &pdev->dev; sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources; sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources; sdma->dma_device.device_tx_status = sdma_tx_status; sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg; sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic; sdma->dma_device.device_config = sdma_config; sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay; sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS; sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS; sdma->dma_device.directions = SDMA_DMA_DIRECTIONS; sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; sdma->dma_device.device_issue_pending = sdma_issue_pending; sdma->dma_device.dev->dma_parms = &sdma->dma_parms; dma_set_max_seg_size(sdma->dma_device.dev, 65535); platform_set_drvdata(pdev, sdma); ret = dma_async_device_register(&sdma->dma_device); if (ret) { dev_err(&pdev->dev, "unable to register\n"); goto err_init; } if (np) { ret = of_dma_controller_register(np, sdma_xlate, sdma); if (ret) { dev_err(&pdev->dev, "failed to register controller\n"); goto err_register; } spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus"); ret = of_address_to_resource(spba_bus, 0, &spba_res); if (!ret) { sdma->spba_start_addr = spba_res.start; sdma->spba_end_addr = spba_res.end; } of_node_put(spba_bus); } return 0; err_register: dma_async_device_unregister(&sdma->dma_device); err_init: kfree(sdma->script_addrs); err_irq: clk_unprepare(sdma->clk_ahb); err_clk: clk_unprepare(sdma->clk_ipg); return ret; } static int sdma_remove(struct platform_device *pdev) { struct sdma_engine *sdma = platform_get_drvdata(pdev); int i; devm_free_irq(&pdev->dev, sdma->irq, sdma); dma_async_device_unregister(&sdma->dma_device); kfree(sdma->script_addrs); clk_unprepare(sdma->clk_ahb); clk_unprepare(sdma->clk_ipg); /* Kill the tasklet */ for (i = 0; i < MAX_DMA_CHANNELS; i++) { struct sdma_channel *sdmac = &sdma->channel[i]; tasklet_kill(&sdmac->vc.task); sdma_free_chan_resources(&sdmac->vc.chan); } platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver sdma_driver = { .driver = { .name = "imx-sdma", .of_match_table = sdma_dt_ids, }, .id_table = sdma_devtypes, .remove = sdma_remove, .probe = sdma_probe, }; module_platform_driver(sdma_driver); MODULE_AUTHOR("Sascha Hauer, Pengutronix "); MODULE_DESCRIPTION("i.MX SDMA driver"); #if IS_ENABLED(CONFIG_SOC_IMX6Q) MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin"); #endif #if IS_ENABLED(CONFIG_SOC_IMX7D) MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin"); #endif MODULE_LICENSE("GPL");