/* * Copyright (C) 2012 Red Hat. All rights reserved. * * This file is released under the GPL. */ #include "dm.h" #include "dm-bio-prison.h" #include "dm-bio-record.h" #include "dm-cache-metadata.h" #include #include #include #include #include #include #include #define DM_MSG_PREFIX "cache" DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle, "A percentage of time allocated for copying to and/or from cache"); /*----------------------------------------------------------------*/ /* * Glossary: * * oblock: index of an origin block * cblock: index of a cache block * promotion: movement of a block from origin to cache * demotion: movement of a block from cache to origin * migration: movement of a block between the origin and cache device, * either direction */ /*----------------------------------------------------------------*/ static size_t bitset_size_in_bytes(unsigned nr_entries) { return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG); } static unsigned long *alloc_bitset(unsigned nr_entries) { size_t s = bitset_size_in_bytes(nr_entries); return vzalloc(s); } static void clear_bitset(void *bitset, unsigned nr_entries) { size_t s = bitset_size_in_bytes(nr_entries); memset(bitset, 0, s); } static void free_bitset(unsigned long *bits) { vfree(bits); } /*----------------------------------------------------------------*/ #define PRISON_CELLS 1024 #define MIGRATION_POOL_SIZE 128 #define COMMIT_PERIOD HZ #define MIGRATION_COUNT_WINDOW 10 /* * The block size of the device holding cache data must be * between 32KB and 1GB. */ #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT) #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) /* * FIXME: the cache is read/write for the time being. */ enum cache_mode { CM_WRITE, /* metadata may be changed */ CM_READ_ONLY, /* metadata may not be changed */ }; struct cache_features { enum cache_mode mode; bool write_through:1; }; struct cache_stats { atomic_t read_hit; atomic_t read_miss; atomic_t write_hit; atomic_t write_miss; atomic_t demotion; atomic_t promotion; atomic_t copies_avoided; atomic_t cache_cell_clash; atomic_t commit_count; atomic_t discard_count; }; struct cache { struct dm_target *ti; struct dm_target_callbacks callbacks; struct dm_cache_metadata *cmd; /* * Metadata is written to this device. */ struct dm_dev *metadata_dev; /* * The slower of the two data devices. Typically a spindle. */ struct dm_dev *origin_dev; /* * The faster of the two data devices. Typically an SSD. */ struct dm_dev *cache_dev; /* * Size of the origin device in _complete_ blocks and native sectors. */ dm_oblock_t origin_blocks; sector_t origin_sectors; /* * Size of the cache device in blocks. */ dm_cblock_t cache_size; /* * Fields for converting from sectors to blocks. */ uint32_t sectors_per_block; int sectors_per_block_shift; spinlock_t lock; struct bio_list deferred_bios; struct bio_list deferred_flush_bios; struct bio_list deferred_writethrough_bios; struct list_head quiesced_migrations; struct list_head completed_migrations; struct list_head need_commit_migrations; sector_t migration_threshold; wait_queue_head_t migration_wait; atomic_t nr_migrations; wait_queue_head_t quiescing_wait; atomic_t quiescing; atomic_t quiescing_ack; /* * cache_size entries, dirty if set */ dm_cblock_t nr_dirty; unsigned long *dirty_bitset; /* * origin_blocks entries, discarded if set. */ dm_dblock_t discard_nr_blocks; unsigned long *discard_bitset; uint32_t discard_block_size; /* a power of 2 times sectors per block */ /* * Rather than reconstructing the table line for the status we just * save it and regurgitate. */ unsigned nr_ctr_args; const char **ctr_args; struct dm_kcopyd_client *copier; struct workqueue_struct *wq; struct work_struct worker; struct delayed_work waker; unsigned long last_commit_jiffies; struct dm_bio_prison *prison; struct dm_deferred_set *all_io_ds; mempool_t *migration_pool; struct dm_cache_migration *next_migration; struct dm_cache_policy *policy; unsigned policy_nr_args; bool need_tick_bio:1; bool sized:1; bool commit_requested:1; bool loaded_mappings:1; bool loaded_discards:1; /* * Cache features such as write-through. */ struct cache_features features; struct cache_stats stats; }; struct per_bio_data { bool tick:1; unsigned req_nr:2; struct dm_deferred_entry *all_io_entry; /* * writethrough fields. These MUST remain at the end of this * structure and the 'cache' member must be the first as it * is used to determine the offset of the writethrough fields. */ struct cache *cache; dm_cblock_t cblock; bio_end_io_t *saved_bi_end_io; struct dm_bio_details bio_details; }; struct dm_cache_migration { struct list_head list; struct cache *cache; unsigned long start_jiffies; dm_oblock_t old_oblock; dm_oblock_t new_oblock; dm_cblock_t cblock; bool err:1; bool writeback:1; bool demote:1; bool promote:1; struct dm_bio_prison_cell *old_ocell; struct dm_bio_prison_cell *new_ocell; }; /* * Processing a bio in the worker thread may require these memory * allocations. We prealloc to avoid deadlocks (the same worker thread * frees them back to the mempool). */ struct prealloc { struct dm_cache_migration *mg; struct dm_bio_prison_cell *cell1; struct dm_bio_prison_cell *cell2; }; static void wake_worker(struct cache *cache) { queue_work(cache->wq, &cache->worker); } /*----------------------------------------------------------------*/ static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache) { /* FIXME: change to use a local slab. */ return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT); } static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell) { dm_bio_prison_free_cell(cache->prison, cell); } static int prealloc_data_structs(struct cache *cache, struct prealloc *p) { if (!p->mg) { p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT); if (!p->mg) return -ENOMEM; } if (!p->cell1) { p->cell1 = alloc_prison_cell(cache); if (!p->cell1) return -ENOMEM; } if (!p->cell2) { p->cell2 = alloc_prison_cell(cache); if (!p->cell2) return -ENOMEM; } return 0; } static void prealloc_free_structs(struct cache *cache, struct prealloc *p) { if (p->cell2) free_prison_cell(cache, p->cell2); if (p->cell1) free_prison_cell(cache, p->cell1); if (p->mg) mempool_free(p->mg, cache->migration_pool); } static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p) { struct dm_cache_migration *mg = p->mg; BUG_ON(!mg); p->mg = NULL; return mg; } /* * You must have a cell within the prealloc struct to return. If not this * function will BUG() rather than returning NULL. */ static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p) { struct dm_bio_prison_cell *r = NULL; if (p->cell1) { r = p->cell1; p->cell1 = NULL; } else if (p->cell2) { r = p->cell2; p->cell2 = NULL; } else BUG(); return r; } /* * You can't have more than two cells in a prealloc struct. BUG() will be * called if you try and overfill. */ static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell) { if (!p->cell2) p->cell2 = cell; else if (!p->cell1) p->cell1 = cell; else BUG(); } /*----------------------------------------------------------------*/ static void build_key(dm_oblock_t oblock, struct dm_cell_key *key) { key->virtual = 0; key->dev = 0; key->block = from_oblock(oblock); } /* * The caller hands in a preallocated cell, and a free function for it. * The cell will be freed if there's an error, or if it wasn't used because * a cell with that key already exists. */ typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell); static int bio_detain(struct cache *cache, dm_oblock_t oblock, struct bio *bio, struct dm_bio_prison_cell *cell_prealloc, cell_free_fn free_fn, void *free_context, struct dm_bio_prison_cell **cell_result) { int r; struct dm_cell_key key; build_key(oblock, &key); r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result); if (r) free_fn(free_context, cell_prealloc); return r; } static int get_cell(struct cache *cache, dm_oblock_t oblock, struct prealloc *structs, struct dm_bio_prison_cell **cell_result) { int r; struct dm_cell_key key; struct dm_bio_prison_cell *cell_prealloc; cell_prealloc = prealloc_get_cell(structs); build_key(oblock, &key); r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result); if (r) prealloc_put_cell(structs, cell_prealloc); return r; } /*----------------------------------------------------------------*/ static bool is_dirty(struct cache *cache, dm_cblock_t b) { return test_bit(from_cblock(b), cache->dirty_bitset); } static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock) { if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) { cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1); policy_set_dirty(cache->policy, oblock); } } static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock) { if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) { policy_clear_dirty(cache->policy, oblock); cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1); if (!from_cblock(cache->nr_dirty)) dm_table_event(cache->ti->table); } } /*----------------------------------------------------------------*/ static bool block_size_is_power_of_two(struct cache *cache) { return cache->sectors_per_block_shift >= 0; } /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */ #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6 __always_inline #endif static dm_block_t block_div(dm_block_t b, uint32_t n) { do_div(b, n); return b; } static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock) { uint32_t discard_blocks = cache->discard_block_size; dm_block_t b = from_oblock(oblock); if (!block_size_is_power_of_two(cache)) discard_blocks = discard_blocks / cache->sectors_per_block; else discard_blocks >>= cache->sectors_per_block_shift; b = block_div(b, discard_blocks); return to_dblock(b); } static void set_discard(struct cache *cache, dm_dblock_t b) { unsigned long flags; atomic_inc(&cache->stats.discard_count); spin_lock_irqsave(&cache->lock, flags); set_bit(from_dblock(b), cache->discard_bitset); spin_unlock_irqrestore(&cache->lock, flags); } static void clear_discard(struct cache *cache, dm_dblock_t b) { unsigned long flags; spin_lock_irqsave(&cache->lock, flags); clear_bit(from_dblock(b), cache->discard_bitset); spin_unlock_irqrestore(&cache->lock, flags); } static bool is_discarded(struct cache *cache, dm_dblock_t b) { int r; unsigned long flags; spin_lock_irqsave(&cache->lock, flags); r = test_bit(from_dblock(b), cache->discard_bitset); spin_unlock_irqrestore(&cache->lock, flags); return r; } static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b) { int r; unsigned long flags; spin_lock_irqsave(&cache->lock, flags); r = test_bit(from_dblock(oblock_to_dblock(cache, b)), cache->discard_bitset); spin_unlock_irqrestore(&cache->lock, flags); return r; } /*----------------------------------------------------------------*/ static void load_stats(struct cache *cache) { struct dm_cache_statistics stats; dm_cache_metadata_get_stats(cache->cmd, &stats); atomic_set(&cache->stats.read_hit, stats.read_hits); atomic_set(&cache->stats.read_miss, stats.read_misses); atomic_set(&cache->stats.write_hit, stats.write_hits); atomic_set(&cache->stats.write_miss, stats.write_misses); } static void save_stats(struct cache *cache) { struct dm_cache_statistics stats; stats.read_hits = atomic_read(&cache->stats.read_hit); stats.read_misses = atomic_read(&cache->stats.read_miss); stats.write_hits = atomic_read(&cache->stats.write_hit); stats.write_misses = atomic_read(&cache->stats.write_miss); dm_cache_metadata_set_stats(cache->cmd, &stats); } /*---------------------------------------------------------------- * Per bio data *--------------------------------------------------------------*/ /* * If using writeback, leave out struct per_bio_data's writethrough fields. */ #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache)) #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data)) static size_t get_per_bio_data_size(struct cache *cache) { return cache->features.write_through ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB; } static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size) { struct per_bio_data *pb = dm_per_bio_data(bio, data_size); BUG_ON(!pb); return pb; } static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size) { struct per_bio_data *pb = get_per_bio_data(bio, data_size); pb->tick = false; pb->req_nr = dm_bio_get_target_bio_nr(bio); pb->all_io_entry = NULL; return pb; } /*---------------------------------------------------------------- * Remapping *--------------------------------------------------------------*/ static void remap_to_origin(struct cache *cache, struct bio *bio) { bio->bi_bdev = cache->origin_dev->bdev; } static void remap_to_cache(struct cache *cache, struct bio *bio, dm_cblock_t cblock) { sector_t bi_sector = bio->bi_sector; bio->bi_bdev = cache->cache_dev->bdev; if (!block_size_is_power_of_two(cache)) bio->bi_sector = (from_cblock(cblock) * cache->sectors_per_block) + sector_div(bi_sector, cache->sectors_per_block); else bio->bi_sector = (from_cblock(cblock) << cache->sectors_per_block_shift) | (bi_sector & (cache->sectors_per_block - 1)); } static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio) { unsigned long flags; size_t pb_data_size = get_per_bio_data_size(cache); struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); spin_lock_irqsave(&cache->lock, flags); if (cache->need_tick_bio && !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) { pb->tick = true; cache->need_tick_bio = false; } spin_unlock_irqrestore(&cache->lock, flags); } static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, dm_oblock_t oblock) { check_if_tick_bio_needed(cache, bio); remap_to_origin(cache, bio); if (bio_data_dir(bio) == WRITE) clear_discard(cache, oblock_to_dblock(cache, oblock)); } static void remap_to_cache_dirty(struct cache *cache, struct bio *bio, dm_oblock_t oblock, dm_cblock_t cblock) { check_if_tick_bio_needed(cache, bio); remap_to_cache(cache, bio, cblock); if (bio_data_dir(bio) == WRITE) { set_dirty(cache, oblock, cblock); clear_discard(cache, oblock_to_dblock(cache, oblock)); } } static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio) { sector_t block_nr = bio->bi_sector; if (!block_size_is_power_of_two(cache)) (void) sector_div(block_nr, cache->sectors_per_block); else block_nr >>= cache->sectors_per_block_shift; return to_oblock(block_nr); } static int bio_triggers_commit(struct cache *cache, struct bio *bio) { return bio->bi_rw & (REQ_FLUSH | REQ_FUA); } static void issue(struct cache *cache, struct bio *bio) { unsigned long flags; if (!bio_triggers_commit(cache, bio)) { generic_make_request(bio); return; } /* * Batch together any bios that trigger commits and then issue a * single commit for them in do_worker(). */ spin_lock_irqsave(&cache->lock, flags); cache->commit_requested = true; bio_list_add(&cache->deferred_flush_bios, bio); spin_unlock_irqrestore(&cache->lock, flags); } static void defer_writethrough_bio(struct cache *cache, struct bio *bio) { unsigned long flags; spin_lock_irqsave(&cache->lock, flags); bio_list_add(&cache->deferred_writethrough_bios, bio); spin_unlock_irqrestore(&cache->lock, flags); wake_worker(cache); } static void writethrough_endio(struct bio *bio, int err) { struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT); bio->bi_end_io = pb->saved_bi_end_io; if (err) { bio_endio(bio, err); return; } dm_bio_restore(&pb->bio_details, bio); remap_to_cache(pb->cache, bio, pb->cblock); /* * We can't issue this bio directly, since we're in interrupt * context. So it gets put on a bio list for processing by the * worker thread. */ defer_writethrough_bio(pb->cache, bio); } /* * When running in writethrough mode we need to send writes to clean blocks * to both the cache and origin devices. In future we'd like to clone the * bio and send them in parallel, but for now we're doing them in * series as this is easier. */ static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio, dm_oblock_t oblock, dm_cblock_t cblock) { struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT); pb->cache = cache; pb->cblock = cblock; pb->saved_bi_end_io = bio->bi_end_io; dm_bio_record(&pb->bio_details, bio); bio->bi_end_io = writethrough_endio; remap_to_origin_clear_discard(pb->cache, bio, oblock); } /*---------------------------------------------------------------- * Migration processing * * Migration covers moving data from the origin device to the cache, or * vice versa. *--------------------------------------------------------------*/ static void free_migration(struct dm_cache_migration *mg) { mempool_free(mg, mg->cache->migration_pool); } static void inc_nr_migrations(struct cache *cache) { atomic_inc(&cache->nr_migrations); } static void dec_nr_migrations(struct cache *cache) { atomic_dec(&cache->nr_migrations); /* * Wake the worker in case we're suspending the target. */ wake_up(&cache->migration_wait); } static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder) { (holder ? dm_cell_release : dm_cell_release_no_holder) (cache->prison, cell, &cache->deferred_bios); free_prison_cell(cache, cell); } static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder) { unsigned long flags; spin_lock_irqsave(&cache->lock, flags); __cell_defer(cache, cell, holder); spin_unlock_irqrestore(&cache->lock, flags); wake_worker(cache); } static void cleanup_migration(struct dm_cache_migration *mg) { struct cache *cache = mg->cache; free_migration(mg); dec_nr_migrations(cache); } static void migration_failure(struct dm_cache_migration *mg) { struct cache *cache = mg->cache; if (mg->writeback) { DMWARN_LIMIT("writeback failed; couldn't copy block"); set_dirty(cache, mg->old_oblock, mg->cblock); cell_defer(cache, mg->old_ocell, false); } else if (mg->demote) { DMWARN_LIMIT("demotion failed; couldn't copy block"); policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock); cell_defer(cache, mg->old_ocell, mg->promote ? false : true); if (mg->promote) cell_defer(cache, mg->new_ocell, true); } else { DMWARN_LIMIT("promotion failed; couldn't copy block"); policy_remove_mapping(cache->policy, mg->new_oblock); cell_defer(cache, mg->new_ocell, true); } cleanup_migration(mg); } static void migration_success_pre_commit(struct dm_cache_migration *mg) { unsigned long flags; struct cache *cache = mg->cache; if (mg->writeback) { cell_defer(cache, mg->old_ocell, false); clear_dirty(cache, mg->old_oblock, mg->cblock); cleanup_migration(mg); return; } else if (mg->demote) { if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) { DMWARN_LIMIT("demotion failed; couldn't update on disk metadata"); policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock); if (mg->promote) cell_defer(cache, mg->new_ocell, true); cleanup_migration(mg); return; } } else { if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) { DMWARN_LIMIT("promotion failed; couldn't update on disk metadata"); policy_remove_mapping(cache->policy, mg->new_oblock); cleanup_migration(mg); return; } } spin_lock_irqsave(&cache->lock, flags); list_add_tail(&mg->list, &cache->need_commit_migrations); cache->commit_requested = true; spin_unlock_irqrestore(&cache->lock, flags); } static void migration_success_post_commit(struct dm_cache_migration *mg) { unsigned long flags; struct cache *cache = mg->cache; if (mg->writeback) { DMWARN("writeback unexpectedly triggered commit"); return; } else if (mg->demote) { cell_defer(cache, mg->old_ocell, mg->promote ? false : true); if (mg->promote) { mg->demote = false; spin_lock_irqsave(&cache->lock, flags); list_add_tail(&mg->list, &cache->quiesced_migrations); spin_unlock_irqrestore(&cache->lock, flags); } else cleanup_migration(mg); } else { cell_defer(cache, mg->new_ocell, true); clear_dirty(cache, mg->new_oblock, mg->cblock); cleanup_migration(mg); } } static void copy_complete(int read_err, unsigned long write_err, void *context) { unsigned long flags; struct dm_cache_migration *mg = (struct dm_cache_migration *) context; struct cache *cache = mg->cache; if (read_err || write_err) mg->err = true; spin_lock_irqsave(&cache->lock, flags); list_add_tail(&mg->list, &cache->completed_migrations); spin_unlock_irqrestore(&cache->lock, flags); wake_worker(cache); } static void issue_copy_real(struct dm_cache_migration *mg) { int r; struct dm_io_region o_region, c_region; struct cache *cache = mg->cache; o_region.bdev = cache->origin_dev->bdev; o_region.count = cache->sectors_per_block; c_region.bdev = cache->cache_dev->bdev; c_region.sector = from_cblock(mg->cblock) * cache->sectors_per_block; c_region.count = cache->sectors_per_block; if (mg->writeback || mg->demote) { /* demote */ o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block; r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg); } else { /* promote */ o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block; r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg); } if (r < 0) { DMERR_LIMIT("issuing migration failed"); migration_failure(mg); } } static void avoid_copy(struct dm_cache_migration *mg) { atomic_inc(&mg->cache->stats.copies_avoided); migration_success_pre_commit(mg); } static void issue_copy(struct dm_cache_migration *mg) { bool avoid; struct cache *cache = mg->cache; if (mg->writeback || mg->demote) avoid = !is_dirty(cache, mg->cblock) || is_discarded_oblock(cache, mg->old_oblock); else avoid = is_discarded_oblock(cache, mg->new_oblock); avoid ? avoid_copy(mg) : issue_copy_real(mg); } static void complete_migration(struct dm_cache_migration *mg) { if (mg->err) migration_failure(mg); else migration_success_pre_commit(mg); } static void process_migrations(struct cache *cache, struct list_head *head, void (*fn)(struct dm_cache_migration *)) { unsigned long flags; struct list_head list; struct dm_cache_migration *mg, *tmp; INIT_LIST_HEAD(&list); spin_lock_irqsave(&cache->lock, flags); list_splice_init(head, &list); spin_unlock_irqrestore(&cache->lock, flags); list_for_each_entry_safe(mg, tmp, &list, list) fn(mg); } static void __queue_quiesced_migration(struct dm_cache_migration *mg) { list_add_tail(&mg->list, &mg->cache->quiesced_migrations); } static void queue_quiesced_migration(struct dm_cache_migration *mg) { unsigned long flags; struct cache *cache = mg->cache; spin_lock_irqsave(&cache->lock, flags); __queue_quiesced_migration(mg); spin_unlock_irqrestore(&cache->lock, flags); wake_worker(cache); } static void queue_quiesced_migrations(struct cache *cache, struct list_head *work) { unsigned long flags; struct dm_cache_migration *mg, *tmp; spin_lock_irqsave(&cache->lock, flags); list_for_each_entry_safe(mg, tmp, work, list) __queue_quiesced_migration(mg); spin_unlock_irqrestore(&cache->lock, flags); wake_worker(cache); } static void check_for_quiesced_migrations(struct cache *cache, struct per_bio_data *pb) { struct list_head work; if (!pb->all_io_entry) return; INIT_LIST_HEAD(&work); if (pb->all_io_entry) dm_deferred_entry_dec(pb->all_io_entry, &work); if (!list_empty(&work)) queue_quiesced_migrations(cache, &work); } static void quiesce_migration(struct dm_cache_migration *mg) { if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list)) queue_quiesced_migration(mg); } static void promote(struct cache *cache, struct prealloc *structs, dm_oblock_t oblock, dm_cblock_t cblock, struct dm_bio_prison_cell *cell) { struct dm_cache_migration *mg = prealloc_get_migration(structs); mg->err = false; mg->writeback = false; mg->demote = false; mg->promote = true; mg->cache = cache; mg->new_oblock = oblock; mg->cblock = cblock; mg->old_ocell = NULL; mg->new_ocell = cell; mg->start_jiffies = jiffies; inc_nr_migrations(cache); quiesce_migration(mg); } static void writeback(struct cache *cache, struct prealloc *structs, dm_oblock_t oblock, dm_cblock_t cblock, struct dm_bio_prison_cell *cell) { struct dm_cache_migration *mg = prealloc_get_migration(structs); mg->err = false; mg->writeback = true; mg->demote = false; mg->promote = false; mg->cache = cache; mg->old_oblock = oblock; mg->cblock = cblock; mg->old_ocell = cell; mg->new_ocell = NULL; mg->start_jiffies = jiffies; inc_nr_migrations(cache); quiesce_migration(mg); } static void demote_then_promote(struct cache *cache, struct prealloc *structs, dm_oblock_t old_oblock, dm_oblock_t new_oblock, dm_cblock_t cblock, struct dm_bio_prison_cell *old_ocell, struct dm_bio_prison_cell *new_ocell) { struct dm_cache_migration *mg = prealloc_get_migration(structs); mg->err = false; mg->writeback = false; mg->demote = true; mg->promote = true; mg->cache = cache; mg->old_oblock = old_oblock; mg->new_oblock = new_oblock; mg->cblock = cblock; mg->old_ocell = old_ocell; mg->new_ocell = new_ocell; mg->start_jiffies = jiffies; inc_nr_migrations(cache); quiesce_migration(mg); } /*---------------------------------------------------------------- * bio processing *--------------------------------------------------------------*/ static void defer_bio(struct cache *cache, struct bio *bio) { unsigned long flags; spin_lock_irqsave(&cache->lock, flags); bio_list_add(&cache->deferred_bios, bio); spin_unlock_irqrestore(&cache->lock, flags); wake_worker(cache); } static void process_flush_bio(struct cache *cache, struct bio *bio) { size_t pb_data_size = get_per_bio_data_size(cache); struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); BUG_ON(bio->bi_size); if (!pb->req_nr) remap_to_origin(cache, bio); else remap_to_cache(cache, bio, 0); issue(cache, bio); } /* * People generally discard large parts of a device, eg, the whole device * when formatting. Splitting these large discards up into cache block * sized ios and then quiescing (always neccessary for discard) takes too * long. * * We keep it simple, and allow any size of discard to come in, and just * mark off blocks on the discard bitset. No passdown occurs! * * To implement passdown we need to change the bio_prison such that a cell * can have a key that spans many blocks. */ static void process_discard_bio(struct cache *cache, struct bio *bio) { dm_block_t start_block = dm_sector_div_up(bio->bi_sector, cache->discard_block_size); dm_block_t end_block = bio->bi_sector + bio_sectors(bio); dm_block_t b; end_block = block_div(end_block, cache->discard_block_size); for (b = start_block; b < end_block; b++) set_discard(cache, to_dblock(b)); bio_endio(bio, 0); } static bool spare_migration_bandwidth(struct cache *cache) { sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) * cache->sectors_per_block; return current_volume < cache->migration_threshold; } static bool is_writethrough_io(struct cache *cache, struct bio *bio, dm_cblock_t cblock) { return bio_data_dir(bio) == WRITE && cache->features.write_through && !is_dirty(cache, cblock); } static void inc_hit_counter(struct cache *cache, struct bio *bio) { atomic_inc(bio_data_dir(bio) == READ ? &cache->stats.read_hit : &cache->stats.write_hit); } static void inc_miss_counter(struct cache *cache, struct bio *bio) { atomic_inc(bio_data_dir(bio) == READ ? &cache->stats.read_miss : &cache->stats.write_miss); } static void process_bio(struct cache *cache, struct prealloc *structs, struct bio *bio) { int r; bool release_cell = true; dm_oblock_t block = get_bio_block(cache, bio); struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell; struct policy_result lookup_result; size_t pb_data_size = get_per_bio_data_size(cache); struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); bool discarded_block = is_discarded_oblock(cache, block); bool can_migrate = discarded_block || spare_migration_bandwidth(cache); /* * Check to see if that block is currently migrating. */ cell_prealloc = prealloc_get_cell(structs); r = bio_detain(cache, block, bio, cell_prealloc, (cell_free_fn) prealloc_put_cell, structs, &new_ocell); if (r > 0) return; r = policy_map(cache->policy, block, true, can_migrate, discarded_block, bio, &lookup_result); if (r == -EWOULDBLOCK) /* migration has been denied */ lookup_result.op = POLICY_MISS; switch (lookup_result.op) { case POLICY_HIT: inc_hit_counter(cache, bio); pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); if (is_writethrough_io(cache, bio, lookup_result.cblock)) remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock); else remap_to_cache_dirty(cache, bio, block, lookup_result.cblock); issue(cache, bio); break; case POLICY_MISS: inc_miss_counter(cache, bio); pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); remap_to_origin_clear_discard(cache, bio, block); issue(cache, bio); break; case POLICY_NEW: atomic_inc(&cache->stats.promotion); promote(cache, structs, block, lookup_result.cblock, new_ocell); release_cell = false; break; case POLICY_REPLACE: cell_prealloc = prealloc_get_cell(structs); r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc, (cell_free_fn) prealloc_put_cell, structs, &old_ocell); if (r > 0) { /* * We have to be careful to avoid lock inversion of * the cells. So we back off, and wait for the * old_ocell to become free. */ policy_force_mapping(cache->policy, block, lookup_result.old_oblock); atomic_inc(&cache->stats.cache_cell_clash); break; } atomic_inc(&cache->stats.demotion); atomic_inc(&cache->stats.promotion); demote_then_promote(cache, structs, lookup_result.old_oblock, block, lookup_result.cblock, old_ocell, new_ocell); release_cell = false; break; default: DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__, (unsigned) lookup_result.op); bio_io_error(bio); } if (release_cell) cell_defer(cache, new_ocell, false); } static int need_commit_due_to_time(struct cache *cache) { return jiffies < cache->last_commit_jiffies || jiffies > cache->last_commit_jiffies + COMMIT_PERIOD; } static int commit_if_needed(struct cache *cache) { int r = 0; if ((cache->commit_requested || need_commit_due_to_time(cache)) && dm_cache_changed_this_transaction(cache->cmd)) { atomic_inc(&cache->stats.commit_count); cache->commit_requested = false; r = dm_cache_commit(cache->cmd, false); cache->last_commit_jiffies = jiffies; } return r; } static void process_deferred_bios(struct cache *cache) { unsigned long flags; struct bio_list bios; struct bio *bio; struct prealloc structs; memset(&structs, 0, sizeof(structs)); bio_list_init(&bios); spin_lock_irqsave(&cache->lock, flags); bio_list_merge(&bios, &cache->deferred_bios); bio_list_init(&cache->deferred_bios); spin_unlock_irqrestore(&cache->lock, flags); while (!bio_list_empty(&bios)) { /* * If we've got no free migration structs, and processing * this bio might require one, we pause until there are some * prepared mappings to process. */ if (prealloc_data_structs(cache, &structs)) { spin_lock_irqsave(&cache->lock, flags); bio_list_merge(&cache->deferred_bios, &bios); spin_unlock_irqrestore(&cache->lock, flags); break; } bio = bio_list_pop(&bios); if (bio->bi_rw & REQ_FLUSH) process_flush_bio(cache, bio); else if (bio->bi_rw & REQ_DISCARD) process_discard_bio(cache, bio); else process_bio(cache, &structs, bio); } prealloc_free_structs(cache, &structs); } static void process_deferred_flush_bios(struct cache *cache, bool submit_bios) { unsigned long flags; struct bio_list bios; struct bio *bio; bio_list_init(&bios); spin_lock_irqsave(&cache->lock, flags); bio_list_merge(&bios, &cache->deferred_flush_bios); bio_list_init(&cache->deferred_flush_bios); spin_unlock_irqrestore(&cache->lock, flags); while ((bio = bio_list_pop(&bios))) submit_bios ? generic_make_request(bio) : bio_io_error(bio); } static void process_deferred_writethrough_bios(struct cache *cache) { unsigned long flags; struct bio_list bios; struct bio *bio; bio_list_init(&bios); spin_lock_irqsave(&cache->lock, flags); bio_list_merge(&bios, &cache->deferred_writethrough_bios); bio_list_init(&cache->deferred_writethrough_bios); spin_unlock_irqrestore(&cache->lock, flags); while ((bio = bio_list_pop(&bios))) generic_make_request(bio); } static void writeback_some_dirty_blocks(struct cache *cache) { int r = 0; dm_oblock_t oblock; dm_cblock_t cblock; struct prealloc structs; struct dm_bio_prison_cell *old_ocell; memset(&structs, 0, sizeof(structs)); while (spare_migration_bandwidth(cache)) { if (prealloc_data_structs(cache, &structs)) break; r = policy_writeback_work(cache->policy, &oblock, &cblock); if (r) break; r = get_cell(cache, oblock, &structs, &old_ocell); if (r) { policy_set_dirty(cache->policy, oblock); break; } writeback(cache, &structs, oblock, cblock, old_ocell); } prealloc_free_structs(cache, &structs); } /*---------------------------------------------------------------- * Main worker loop *--------------------------------------------------------------*/ static bool is_quiescing(struct cache *cache) { return atomic_read(&cache->quiescing); } static void ack_quiescing(struct cache *cache) { if (is_quiescing(cache)) { atomic_inc(&cache->quiescing_ack); wake_up(&cache->quiescing_wait); } } static void wait_for_quiescing_ack(struct cache *cache) { wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack)); } static void start_quiescing(struct cache *cache) { atomic_inc(&cache->quiescing); wait_for_quiescing_ack(cache); } static void stop_quiescing(struct cache *cache) { atomic_set(&cache->quiescing, 0); atomic_set(&cache->quiescing_ack, 0); } static void wait_for_migrations(struct cache *cache) { wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations)); } static void stop_worker(struct cache *cache) { cancel_delayed_work(&cache->waker); flush_workqueue(cache->wq); } static void requeue_deferred_io(struct cache *cache) { struct bio *bio; struct bio_list bios; bio_list_init(&bios); bio_list_merge(&bios, &cache->deferred_bios); bio_list_init(&cache->deferred_bios); while ((bio = bio_list_pop(&bios))) bio_endio(bio, DM_ENDIO_REQUEUE); } static int more_work(struct cache *cache) { if (is_quiescing(cache)) return !list_empty(&cache->quiesced_migrations) || !list_empty(&cache->completed_migrations) || !list_empty(&cache->need_commit_migrations); else return !bio_list_empty(&cache->deferred_bios) || !bio_list_empty(&cache->deferred_flush_bios) || !bio_list_empty(&cache->deferred_writethrough_bios) || !list_empty(&cache->quiesced_migrations) || !list_empty(&cache->completed_migrations) || !list_empty(&cache->need_commit_migrations); } static void do_worker(struct work_struct *ws) { struct cache *cache = container_of(ws, struct cache, worker); do { if (!is_quiescing(cache)) { writeback_some_dirty_blocks(cache); process_deferred_writethrough_bios(cache); process_deferred_bios(cache); } process_migrations(cache, &cache->quiesced_migrations, issue_copy); process_migrations(cache, &cache->completed_migrations, complete_migration); if (commit_if_needed(cache)) { process_deferred_flush_bios(cache, false); /* * FIXME: rollback metadata or just go into a * failure mode and error everything */ } else { process_deferred_flush_bios(cache, true); process_migrations(cache, &cache->need_commit_migrations, migration_success_post_commit); } ack_quiescing(cache); } while (more_work(cache)); } /* * We want to commit periodically so that not too much * unwritten metadata builds up. */ static void do_waker(struct work_struct *ws) { struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker); policy_tick(cache->policy); wake_worker(cache); queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD); } /*----------------------------------------------------------------*/ static int is_congested(struct dm_dev *dev, int bdi_bits) { struct request_queue *q = bdev_get_queue(dev->bdev); return bdi_congested(&q->backing_dev_info, bdi_bits); } static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits) { struct cache *cache = container_of(cb, struct cache, callbacks); return is_congested(cache->origin_dev, bdi_bits) || is_congested(cache->cache_dev, bdi_bits); } /*---------------------------------------------------------------- * Target methods *--------------------------------------------------------------*/ /* * This function gets called on the error paths of the constructor, so we * have to cope with a partially initialised struct. */ static void destroy(struct cache *cache) { unsigned i; if (cache->next_migration) mempool_free(cache->next_migration, cache->migration_pool); if (cache->migration_pool) mempool_destroy(cache->migration_pool); if (cache->all_io_ds) dm_deferred_set_destroy(cache->all_io_ds); if (cache->prison) dm_bio_prison_destroy(cache->prison); if (cache->wq) destroy_workqueue(cache->wq); if (cache->dirty_bitset) free_bitset(cache->dirty_bitset); if (cache->discard_bitset) free_bitset(cache->discard_bitset); if (cache->copier) dm_kcopyd_client_destroy(cache->copier); if (cache->cmd) dm_cache_metadata_close(cache->cmd); if (cache->metadata_dev) dm_put_device(cache->ti, cache->metadata_dev); if (cache->origin_dev) dm_put_device(cache->ti, cache->origin_dev); if (cache->cache_dev) dm_put_device(cache->ti, cache->cache_dev); if (cache->policy) dm_cache_policy_destroy(cache->policy); for (i = 0; i < cache->nr_ctr_args ; i++) kfree(cache->ctr_args[i]); kfree(cache->ctr_args); kfree(cache); } static void cache_dtr(struct dm_target *ti) { struct cache *cache = ti->private; destroy(cache); } static sector_t get_dev_size(struct dm_dev *dev) { return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT; } /*----------------------------------------------------------------*/ /* * Construct a cache device mapping. * * cache * <#feature args> []* * <#policy args> []* * * metadata dev : fast device holding the persistent metadata * cache dev : fast device holding cached data blocks * origin dev : slow device holding original data blocks * block size : cache unit size in sectors * * #feature args : number of feature arguments passed * feature args : writethrough. (The default is writeback.) * * policy : the replacement policy to use * #policy args : an even number of policy arguments corresponding * to key/value pairs passed to the policy * policy args : key/value pairs passed to the policy * E.g. 'sequential_threshold 1024' * See cache-policies.txt for details. * * Optional feature arguments are: * writethrough : write through caching that prohibits cache block * content from being different from origin block content. * Without this argument, the default behaviour is to write * back cache block contents later for performance reasons, * so they may differ from the corresponding origin blocks. */ struct cache_args { struct dm_target *ti; struct dm_dev *metadata_dev; struct dm_dev *cache_dev; sector_t cache_sectors; struct dm_dev *origin_dev; sector_t origin_sectors; uint32_t block_size; const char *policy_name; int policy_argc; const char **policy_argv; struct cache_features features; }; static void destroy_cache_args(struct cache_args *ca) { if (ca->metadata_dev) dm_put_device(ca->ti, ca->metadata_dev); if (ca->cache_dev) dm_put_device(ca->ti, ca->cache_dev); if (ca->origin_dev) dm_put_device(ca->ti, ca->origin_dev); kfree(ca); } static bool at_least_one_arg(struct dm_arg_set *as, char **error) { if (!as->argc) { *error = "Insufficient args"; return false; } return true; } static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as, char **error) { int r; sector_t metadata_dev_size; char b[BDEVNAME_SIZE]; if (!at_least_one_arg(as, error)) return -EINVAL; r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, &ca->metadata_dev); if (r) { *error = "Error opening metadata device"; return r; } metadata_dev_size = get_dev_size(ca->metadata_dev); if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING) DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); return 0; } static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as, char **error) { int r; if (!at_least_one_arg(as, error)) return -EINVAL; r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, &ca->cache_dev); if (r) { *error = "Error opening cache device"; return r; } ca->cache_sectors = get_dev_size(ca->cache_dev); return 0; } static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as, char **error) { int r; if (!at_least_one_arg(as, error)) return -EINVAL; r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, &ca->origin_dev); if (r) { *error = "Error opening origin device"; return r; } ca->origin_sectors = get_dev_size(ca->origin_dev); if (ca->ti->len > ca->origin_sectors) { *error = "Device size larger than cached device"; return -EINVAL; } return 0; } static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as, char **error) { unsigned long block_size; if (!at_least_one_arg(as, error)) return -EINVAL; if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size || block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { *error = "Invalid data block size"; return -EINVAL; } if (block_size > ca->cache_sectors) { *error = "Data block size is larger than the cache device"; return -EINVAL; } ca->block_size = block_size; return 0; } static void init_features(struct cache_features *cf) { cf->mode = CM_WRITE; cf->write_through = false; } static int parse_features(struct cache_args *ca, struct dm_arg_set *as, char **error) { static struct dm_arg _args[] = { {0, 1, "Invalid number of cache feature arguments"}, }; int r; unsigned argc; const char *arg; struct cache_features *cf = &ca->features; init_features(cf); r = dm_read_arg_group(_args, as, &argc, error); if (r) return -EINVAL; while (argc--) { arg = dm_shift_arg(as); if (!strcasecmp(arg, "writeback")) cf->write_through = false; else if (!strcasecmp(arg, "writethrough")) cf->write_through = true; else { *error = "Unrecognised cache feature requested"; return -EINVAL; } } return 0; } static int parse_policy(struct cache_args *ca, struct dm_arg_set *as, char **error) { static struct dm_arg _args[] = { {0, 1024, "Invalid number of policy arguments"}, }; int r; if (!at_least_one_arg(as, error)) return -EINVAL; ca->policy_name = dm_shift_arg(as); r = dm_read_arg_group(_args, as, &ca->policy_argc, error); if (r) return -EINVAL; ca->policy_argv = (const char **)as->argv; dm_consume_args(as, ca->policy_argc); return 0; } static int parse_cache_args(struct cache_args *ca, int argc, char **argv, char **error) { int r; struct dm_arg_set as; as.argc = argc; as.argv = argv; r = parse_metadata_dev(ca, &as, error); if (r) return r; r = parse_cache_dev(ca, &as, error); if (r) return r; r = parse_origin_dev(ca, &as, error); if (r) return r; r = parse_block_size(ca, &as, error); if (r) return r; r = parse_features(ca, &as, error); if (r) return r; r = parse_policy(ca, &as, error); if (r) return r; return 0; } /*----------------------------------------------------------------*/ static struct kmem_cache *migration_cache; #define NOT_CORE_OPTION 1 static int process_config_option(struct cache *cache, const char *key, const char *value) { unsigned long tmp; if (!strcasecmp(key, "migration_threshold")) { if (kstrtoul(value, 10, &tmp)) return -EINVAL; cache->migration_threshold = tmp; return 0; } return NOT_CORE_OPTION; } static int set_config_value(struct cache *cache, const char *key, const char *value) { int r = process_config_option(cache, key, value); if (r == NOT_CORE_OPTION) r = policy_set_config_value(cache->policy, key, value); if (r) DMWARN("bad config value for %s: %s", key, value); return r; } static int set_config_values(struct cache *cache, int argc, const char **argv) { int r = 0; if (argc & 1) { DMWARN("Odd number of policy arguments given but they should be pairs."); return -EINVAL; } while (argc) { r = set_config_value(cache, argv[0], argv[1]); if (r) break; argc -= 2; argv += 2; } return r; } static int create_cache_policy(struct cache *cache, struct cache_args *ca, char **error) { struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name, cache->cache_size, cache->origin_sectors, cache->sectors_per_block); if (IS_ERR(p)) { *error = "Error creating cache's policy"; return PTR_ERR(p); } cache->policy = p; return 0; } /* * We want the discard block size to be a power of two, at least the size * of the cache block size, and have no more than 2^14 discard blocks * across the origin. */ #define MAX_DISCARD_BLOCKS (1 << 14) static bool too_many_discard_blocks(sector_t discard_block_size, sector_t origin_size) { (void) sector_div(origin_size, discard_block_size); return origin_size > MAX_DISCARD_BLOCKS; } static sector_t calculate_discard_block_size(sector_t cache_block_size, sector_t origin_size) { sector_t discard_block_size; discard_block_size = roundup_pow_of_two(cache_block_size); if (origin_size) while (too_many_discard_blocks(discard_block_size, origin_size)) discard_block_size *= 2; return discard_block_size; } #define DEFAULT_MIGRATION_THRESHOLD 2048 static int cache_create(struct cache_args *ca, struct cache **result) { int r = 0; char **error = &ca->ti->error; struct cache *cache; struct dm_target *ti = ca->ti; dm_block_t origin_blocks; struct dm_cache_metadata *cmd; bool may_format = ca->features.mode == CM_WRITE; cache = kzalloc(sizeof(*cache), GFP_KERNEL); if (!cache) return -ENOMEM; cache->ti = ca->ti; ti->private = cache; ti->num_flush_bios = 2; ti->flush_supported = true; ti->num_discard_bios = 1; ti->discards_supported = true; ti->discard_zeroes_data_unsupported = true; cache->features = ca->features; ti->per_bio_data_size = get_per_bio_data_size(cache); cache->callbacks.congested_fn = cache_is_congested; dm_table_add_target_callbacks(ti->table, &cache->callbacks); cache->metadata_dev = ca->metadata_dev; cache->origin_dev = ca->origin_dev; cache->cache_dev = ca->cache_dev; ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL; /* FIXME: factor out this whole section */ origin_blocks = cache->origin_sectors = ca->origin_sectors; origin_blocks = block_div(origin_blocks, ca->block_size); cache->origin_blocks = to_oblock(origin_blocks); cache->sectors_per_block = ca->block_size; if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) { r = -EINVAL; goto bad; } if (ca->block_size & (ca->block_size - 1)) { dm_block_t cache_size = ca->cache_sectors; cache->sectors_per_block_shift = -1; cache_size = block_div(cache_size, ca->block_size); cache->cache_size = to_cblock(cache_size); } else { cache->sectors_per_block_shift = __ffs(ca->block_size); cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift); } r = create_cache_policy(cache, ca, error); if (r) goto bad; cache->policy_nr_args = ca->policy_argc; cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD; r = set_config_values(cache, ca->policy_argc, ca->policy_argv); if (r) { *error = "Error setting cache policy's config values"; goto bad; } cmd = dm_cache_metadata_open(cache->metadata_dev->bdev, ca->block_size, may_format, dm_cache_policy_get_hint_size(cache->policy)); if (IS_ERR(cmd)) { *error = "Error creating metadata object"; r = PTR_ERR(cmd); goto bad; } cache->cmd = cmd; spin_lock_init(&cache->lock); bio_list_init(&cache->deferred_bios); bio_list_init(&cache->deferred_flush_bios); bio_list_init(&cache->deferred_writethrough_bios); INIT_LIST_HEAD(&cache->quiesced_migrations); INIT_LIST_HEAD(&cache->completed_migrations); INIT_LIST_HEAD(&cache->need_commit_migrations); atomic_set(&cache->nr_migrations, 0); init_waitqueue_head(&cache->migration_wait); init_waitqueue_head(&cache->quiescing_wait); atomic_set(&cache->quiescing, 0); atomic_set(&cache->quiescing_ack, 0); r = -ENOMEM; cache->nr_dirty = 0; cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size)); if (!cache->dirty_bitset) { *error = "could not allocate dirty bitset"; goto bad; } clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size)); cache->discard_block_size = calculate_discard_block_size(cache->sectors_per_block, cache->origin_sectors); cache->discard_nr_blocks = oblock_to_dblock(cache, cache->origin_blocks); cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks)); if (!cache->discard_bitset) { *error = "could not allocate discard bitset"; goto bad; } clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); if (IS_ERR(cache->copier)) { *error = "could not create kcopyd client"; r = PTR_ERR(cache->copier); goto bad; } cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); if (!cache->wq) { *error = "could not create workqueue for metadata object"; goto bad; } INIT_WORK(&cache->worker, do_worker); INIT_DELAYED_WORK(&cache->waker, do_waker); cache->last_commit_jiffies = jiffies; cache->prison = dm_bio_prison_create(PRISON_CELLS); if (!cache->prison) { *error = "could not create bio prison"; goto bad; } cache->all_io_ds = dm_deferred_set_create(); if (!cache->all_io_ds) { *error = "could not create all_io deferred set"; goto bad; } cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE, migration_cache); if (!cache->migration_pool) { *error = "Error creating cache's migration mempool"; goto bad; } cache->next_migration = NULL; cache->need_tick_bio = true; cache->sized = false; cache->commit_requested = false; cache->loaded_mappings = false; cache->loaded_discards = false; load_stats(cache); atomic_set(&cache->stats.demotion, 0); atomic_set(&cache->stats.promotion, 0); atomic_set(&cache->stats.copies_avoided, 0); atomic_set(&cache->stats.cache_cell_clash, 0); atomic_set(&cache->stats.commit_count, 0); atomic_set(&cache->stats.discard_count, 0); *result = cache; return 0; bad: destroy(cache); return r; } static int copy_ctr_args(struct cache *cache, int argc, const char **argv) { unsigned i; const char **copy; copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL); if (!copy) return -ENOMEM; for (i = 0; i < argc; i++) { copy[i] = kstrdup(argv[i], GFP_KERNEL); if (!copy[i]) { while (i--) kfree(copy[i]); kfree(copy); return -ENOMEM; } } cache->nr_ctr_args = argc; cache->ctr_args = copy; return 0; } static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv) { int r = -EINVAL; struct cache_args *ca; struct cache *cache = NULL; ca = kzalloc(sizeof(*ca), GFP_KERNEL); if (!ca) { ti->error = "Error allocating memory for cache"; return -ENOMEM; } ca->ti = ti; r = parse_cache_args(ca, argc, argv, &ti->error); if (r) goto out; r = cache_create(ca, &cache); if (r) goto out; r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3); if (r) { destroy(cache); goto out; } ti->private = cache; out: destroy_cache_args(ca); return r; } static int cache_map(struct dm_target *ti, struct bio *bio) { struct cache *cache = ti->private; int r; dm_oblock_t block = get_bio_block(cache, bio); size_t pb_data_size = get_per_bio_data_size(cache); bool can_migrate = false; bool discarded_block; struct dm_bio_prison_cell *cell; struct policy_result lookup_result; struct per_bio_data *pb; if (from_oblock(block) > from_oblock(cache->origin_blocks)) { /* * This can only occur if the io goes to a partial block at * the end of the origin device. We don't cache these. * Just remap to the origin and carry on. */ remap_to_origin_clear_discard(cache, bio, block); return DM_MAPIO_REMAPPED; } pb = init_per_bio_data(bio, pb_data_size); if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) { defer_bio(cache, bio); return DM_MAPIO_SUBMITTED; } /* * Check to see if that block is currently migrating. */ cell = alloc_prison_cell(cache); if (!cell) { defer_bio(cache, bio); return DM_MAPIO_SUBMITTED; } r = bio_detain(cache, block, bio, cell, (cell_free_fn) free_prison_cell, cache, &cell); if (r) { if (r < 0) defer_bio(cache, bio); return DM_MAPIO_SUBMITTED; } discarded_block = is_discarded_oblock(cache, block); r = policy_map(cache->policy, block, false, can_migrate, discarded_block, bio, &lookup_result); if (r == -EWOULDBLOCK) { cell_defer(cache, cell, true); return DM_MAPIO_SUBMITTED; } else if (r) { DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r); bio_io_error(bio); return DM_MAPIO_SUBMITTED; } switch (lookup_result.op) { case POLICY_HIT: inc_hit_counter(cache, bio); pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); if (is_writethrough_io(cache, bio, lookup_result.cblock)) remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock); else remap_to_cache_dirty(cache, bio, block, lookup_result.cblock); cell_defer(cache, cell, false); break; case POLICY_MISS: inc_miss_counter(cache, bio); pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds); if (pb->req_nr != 0) { /* * This is a duplicate writethrough io that is no * longer needed because the block has been demoted. */ bio_endio(bio, 0); cell_defer(cache, cell, false); return DM_MAPIO_SUBMITTED; } else { remap_to_origin_clear_discard(cache, bio, block); cell_defer(cache, cell, false); } break; default: DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__, (unsigned) lookup_result.op); bio_io_error(bio); return DM_MAPIO_SUBMITTED; } return DM_MAPIO_REMAPPED; } static int cache_end_io(struct dm_target *ti, struct bio *bio, int error) { struct cache *cache = ti->private; unsigned long flags; size_t pb_data_size = get_per_bio_data_size(cache); struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size); if (pb->tick) { policy_tick(cache->policy); spin_lock_irqsave(&cache->lock, flags); cache->need_tick_bio = true; spin_unlock_irqrestore(&cache->lock, flags); } check_for_quiesced_migrations(cache, pb); return 0; } static int write_dirty_bitset(struct cache *cache) { unsigned i, r; for (i = 0; i < from_cblock(cache->cache_size); i++) { r = dm_cache_set_dirty(cache->cmd, to_cblock(i), is_dirty(cache, to_cblock(i))); if (r) return r; } return 0; } static int write_discard_bitset(struct cache *cache) { unsigned i, r; r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size, cache->discard_nr_blocks); if (r) { DMERR("could not resize on-disk discard bitset"); return r; } for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) { r = dm_cache_set_discard(cache->cmd, to_dblock(i), is_discarded(cache, to_dblock(i))); if (r) return r; } return 0; } static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock, uint32_t hint) { struct cache *cache = context; return dm_cache_save_hint(cache->cmd, cblock, hint); } static int write_hints(struct cache *cache) { int r; r = dm_cache_begin_hints(cache->cmd, cache->policy); if (r) { DMERR("dm_cache_begin_hints failed"); return r; } r = policy_walk_mappings(cache->policy, save_hint, cache); if (r) DMERR("policy_walk_mappings failed"); return r; } /* * returns true on success */ static bool sync_metadata(struct cache *cache) { int r1, r2, r3, r4; r1 = write_dirty_bitset(cache); if (r1) DMERR("could not write dirty bitset"); r2 = write_discard_bitset(cache); if (r2) DMERR("could not write discard bitset"); save_stats(cache); r3 = write_hints(cache); if (r3) DMERR("could not write hints"); /* * If writing the above metadata failed, we still commit, but don't * set the clean shutdown flag. This will effectively force every * dirty bit to be set on reload. */ r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3); if (r4) DMERR("could not write cache metadata. Data loss may occur."); return !r1 && !r2 && !r3 && !r4; } static void cache_postsuspend(struct dm_target *ti) { struct cache *cache = ti->private; start_quiescing(cache); wait_for_migrations(cache); stop_worker(cache); requeue_deferred_io(cache); stop_quiescing(cache); (void) sync_metadata(cache); } static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock, bool dirty, uint32_t hint, bool hint_valid) { int r; struct cache *cache = context; r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid); if (r) return r; if (dirty) set_dirty(cache, oblock, cblock); else clear_dirty(cache, oblock, cblock); return 0; } static int load_discard(void *context, sector_t discard_block_size, dm_dblock_t dblock, bool discard) { struct cache *cache = context; /* FIXME: handle mis-matched block size */ if (discard) set_discard(cache, dblock); else clear_discard(cache, dblock); return 0; } static int cache_preresume(struct dm_target *ti) { int r = 0; struct cache *cache = ti->private; sector_t actual_cache_size = get_dev_size(cache->cache_dev); (void) sector_div(actual_cache_size, cache->sectors_per_block); /* * Check to see if the cache has resized. */ if (from_cblock(cache->cache_size) != actual_cache_size || !cache->sized) { cache->cache_size = to_cblock(actual_cache_size); r = dm_cache_resize(cache->cmd, cache->cache_size); if (r) { DMERR("could not resize cache metadata"); return r; } cache->sized = true; } if (!cache->loaded_mappings) { r = dm_cache_load_mappings(cache->cmd, cache->policy, load_mapping, cache); if (r) { DMERR("could not load cache mappings"); return r; } cache->loaded_mappings = true; } if (!cache->loaded_discards) { r = dm_cache_load_discards(cache->cmd, load_discard, cache); if (r) { DMERR("could not load origin discards"); return r; } cache->loaded_discards = true; } return r; } static void cache_resume(struct dm_target *ti) { struct cache *cache = ti->private; cache->need_tick_bio = true; do_waker(&cache->waker.work); } /* * Status format: * * <#used metadata blocks>/<#total metadata blocks> * <#read hits> <#read misses> <#write hits> <#write misses> * <#demotions> <#promotions> <#blocks in cache> <#dirty> * <#features> * * <#core args> * <#policy args> * */ static void cache_status(struct dm_target *ti, status_type_t type, unsigned status_flags, char *result, unsigned maxlen) { int r = 0; unsigned i; ssize_t sz = 0; dm_block_t nr_free_blocks_metadata = 0; dm_block_t nr_blocks_metadata = 0; char buf[BDEVNAME_SIZE]; struct cache *cache = ti->private; dm_cblock_t residency; switch (type) { case STATUSTYPE_INFO: /* Commit to ensure statistics aren't out-of-date */ if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) { r = dm_cache_commit(cache->cmd, false); if (r) DMERR("could not commit metadata for accurate status"); } r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata); if (r) { DMERR("could not get metadata free block count"); goto err; } r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata); if (r) { DMERR("could not get metadata device size"); goto err; } residency = policy_residency(cache->policy); DMEMIT("%llu/%llu %u %u %u %u %u %u %llu %u ", (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), (unsigned long long)nr_blocks_metadata, (unsigned) atomic_read(&cache->stats.read_hit), (unsigned) atomic_read(&cache->stats.read_miss), (unsigned) atomic_read(&cache->stats.write_hit), (unsigned) atomic_read(&cache->stats.write_miss), (unsigned) atomic_read(&cache->stats.demotion), (unsigned) atomic_read(&cache->stats.promotion), (unsigned long long) from_cblock(residency), cache->nr_dirty); if (cache->features.write_through) DMEMIT("1 writethrough "); else DMEMIT("0 "); DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold); if (sz < maxlen) { r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz); if (r) DMERR("policy_emit_config_values returned %d", r); } break; case STATUSTYPE_TABLE: format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); DMEMIT("%s ", buf); format_dev_t(buf, cache->cache_dev->bdev->bd_dev); DMEMIT("%s ", buf); format_dev_t(buf, cache->origin_dev->bdev->bd_dev); DMEMIT("%s", buf); for (i = 0; i < cache->nr_ctr_args - 1; i++) DMEMIT(" %s", cache->ctr_args[i]); if (cache->nr_ctr_args) DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]); } return; err: DMEMIT("Error"); } /* * Supports . * * The key migration_threshold is supported by the cache target core. */ static int cache_message(struct dm_target *ti, unsigned argc, char **argv) { struct cache *cache = ti->private; if (argc != 2) return -EINVAL; return set_config_value(cache, argv[0], argv[1]); } static int cache_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) { int r = 0; struct cache *cache = ti->private; r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data); if (!r) r = fn(ti, cache->origin_dev, 0, ti->len, data); return r; } /* * We assume I/O is going to the origin (which is the volume * more likely to have restrictions e.g. by being striped). * (Looking up the exact location of the data would be expensive * and could always be out of date by the time the bio is submitted.) */ static int cache_bvec_merge(struct dm_target *ti, struct bvec_merge_data *bvm, struct bio_vec *biovec, int max_size) { struct cache *cache = ti->private; struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev); if (!q->merge_bvec_fn) return max_size; bvm->bi_bdev = cache->origin_dev->bdev; return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); } static void set_discard_limits(struct cache *cache, struct queue_limits *limits) { /* * FIXME: these limits may be incompatible with the cache device */ limits->max_discard_sectors = cache->discard_block_size * 1024; limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT; } static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits) { struct cache *cache = ti->private; uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; /* * If the system-determined stacked limits are compatible with the * cache's blocksize (io_opt is a factor) do not override them. */ if (io_opt_sectors < cache->sectors_per_block || do_div(io_opt_sectors, cache->sectors_per_block)) { blk_limits_io_min(limits, 0); blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT); } set_discard_limits(cache, limits); } /*----------------------------------------------------------------*/ static struct target_type cache_target = { .name = "cache", .version = {1, 1, 1}, .module = THIS_MODULE, .ctr = cache_ctr, .dtr = cache_dtr, .map = cache_map, .end_io = cache_end_io, .postsuspend = cache_postsuspend, .preresume = cache_preresume, .resume = cache_resume, .status = cache_status, .message = cache_message, .iterate_devices = cache_iterate_devices, .merge = cache_bvec_merge, .io_hints = cache_io_hints, }; static int __init dm_cache_init(void) { int r; r = dm_register_target(&cache_target); if (r) { DMERR("cache target registration failed: %d", r); return r; } migration_cache = KMEM_CACHE(dm_cache_migration, 0); if (!migration_cache) { dm_unregister_target(&cache_target); return -ENOMEM; } return 0; } static void __exit dm_cache_exit(void) { dm_unregister_target(&cache_target); kmem_cache_destroy(migration_cache); } module_init(dm_cache_init); module_exit(dm_cache_exit); MODULE_DESCRIPTION(DM_NAME " cache target"); MODULE_AUTHOR("Joe Thornber "); MODULE_LICENSE("GPL");