/* * CCI cache coherent interconnect driver * * Copyright (C) 2013 ARM Ltd. * Author: Lorenzo Pieralisi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include static void __iomem *cci_ctrl_base; static unsigned long cci_ctrl_phys; #ifdef CONFIG_ARM_CCI400_PORT_CTRL struct cci_nb_ports { unsigned int nb_ace; unsigned int nb_ace_lite; }; static const struct cci_nb_ports cci400_ports = { .nb_ace = 2, .nb_ace_lite = 3 }; #define CCI400_PORTS_DATA (&cci400_ports) #else #define CCI400_PORTS_DATA (NULL) #endif static const struct of_device_id arm_cci_matches[] = { #ifdef CONFIG_ARM_CCI400_COMMON {.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA }, #endif #ifdef CONFIG_ARM_CCI500_PMU { .compatible = "arm,cci-500", }, #endif {}, }; #ifdef CONFIG_ARM_CCI_PMU #define DRIVER_NAME "ARM-CCI" #define DRIVER_NAME_PMU DRIVER_NAME " PMU" #define CCI_PMCR 0x0100 #define CCI_PID2 0x0fe8 #define CCI_PMCR_CEN 0x00000001 #define CCI_PMCR_NCNT_MASK 0x0000f800 #define CCI_PMCR_NCNT_SHIFT 11 #define CCI_PID2_REV_MASK 0xf0 #define CCI_PID2_REV_SHIFT 4 #define CCI_PMU_EVT_SEL 0x000 #define CCI_PMU_CNTR 0x004 #define CCI_PMU_CNTR_CTRL 0x008 #define CCI_PMU_OVRFLW 0x00c #define CCI_PMU_OVRFLW_FLAG 1 #define CCI_PMU_CNTR_SIZE(model) ((model)->cntr_size) #define CCI_PMU_CNTR_BASE(model, idx) ((idx) * CCI_PMU_CNTR_SIZE(model)) #define CCI_PMU_CNTR_MASK ((1ULL << 32) -1) #define CCI_PMU_CNTR_LAST(cci_pmu) (cci_pmu->num_cntrs - 1) #define CCI_PMU_MAX_HW_CNTRS(model) \ ((model)->num_hw_cntrs + (model)->fixed_hw_cntrs) /* Types of interfaces that can generate events */ enum { CCI_IF_SLAVE, CCI_IF_MASTER, #ifdef CONFIG_ARM_CCI500_PMU CCI_IF_GLOBAL, #endif CCI_IF_MAX, }; struct event_range { u32 min; u32 max; }; struct cci_pmu_hw_events { struct perf_event **events; unsigned long *used_mask; raw_spinlock_t pmu_lock; }; struct cci_pmu; /* * struct cci_pmu_model: * @fixed_hw_cntrs - Number of fixed event counters * @num_hw_cntrs - Maximum number of programmable event counters * @cntr_size - Size of an event counter mapping */ struct cci_pmu_model { char *name; u32 fixed_hw_cntrs; u32 num_hw_cntrs; u32 cntr_size; struct attribute **format_attrs; struct attribute **event_attrs; struct event_range event_ranges[CCI_IF_MAX]; int (*validate_hw_event)(struct cci_pmu *, unsigned long); int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long); }; static struct cci_pmu_model cci_pmu_models[]; struct cci_pmu { void __iomem *base; struct pmu pmu; int nr_irqs; int *irqs; unsigned long active_irqs; const struct cci_pmu_model *model; struct cci_pmu_hw_events hw_events; struct platform_device *plat_device; int num_cntrs; atomic_t active_events; struct mutex reserve_mutex; struct notifier_block cpu_nb; cpumask_t cpus; }; #define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu)) enum cci_models { #ifdef CONFIG_ARM_CCI400_PMU CCI400_R0, CCI400_R1, #endif #ifdef CONFIG_ARM_CCI500_PMU CCI500_R0, #endif CCI_MODEL_MAX }; static void pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask); static ssize_t cci_pmu_format_show(struct device *dev, struct device_attribute *attr, char *buf); static ssize_t cci_pmu_event_show(struct device *dev, struct device_attribute *attr, char *buf); #define CCI_EXT_ATTR_ENTRY(_name, _func, _config) \ &((struct dev_ext_attribute[]) { \ { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config } \ })[0].attr.attr #define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \ CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config) #define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \ CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config) /* CCI400 PMU Specific definitions */ #ifdef CONFIG_ARM_CCI400_PMU /* Port ids */ #define CCI400_PORT_S0 0 #define CCI400_PORT_S1 1 #define CCI400_PORT_S2 2 #define CCI400_PORT_S3 3 #define CCI400_PORT_S4 4 #define CCI400_PORT_M0 5 #define CCI400_PORT_M1 6 #define CCI400_PORT_M2 7 #define CCI400_R1_PX 5 /* * Instead of an event id to monitor CCI cycles, a dedicated counter is * provided. Use 0xff to represent CCI cycles and hope that no future revisions * make use of this event in hardware. */ enum cci400_perf_events { CCI400_PMU_CYCLES = 0xff }; #define CCI400_PMU_CYCLE_CNTR_IDX 0 #define CCI400_PMU_CNTR0_IDX 1 /* * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8 * ports and bits 4:0 are event codes. There are different event codes * associated with each port type. * * Additionally, the range of events associated with the port types changed * between Rev0 and Rev1. * * The constants below define the range of valid codes for each port type for * the different revisions and are used to validate the event to be monitored. */ #define CCI400_PMU_EVENT_MASK 0xffUL #define CCI400_PMU_EVENT_SOURCE_SHIFT 5 #define CCI400_PMU_EVENT_SOURCE_MASK 0x7 #define CCI400_PMU_EVENT_CODE_SHIFT 0 #define CCI400_PMU_EVENT_CODE_MASK 0x1f #define CCI400_PMU_EVENT_SOURCE(event) \ ((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \ CCI400_PMU_EVENT_SOURCE_MASK) #define CCI400_PMU_EVENT_CODE(event) \ ((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK) #define CCI400_R0_SLAVE_PORT_MIN_EV 0x00 #define CCI400_R0_SLAVE_PORT_MAX_EV 0x13 #define CCI400_R0_MASTER_PORT_MIN_EV 0x14 #define CCI400_R0_MASTER_PORT_MAX_EV 0x1a #define CCI400_R1_SLAVE_PORT_MIN_EV 0x00 #define CCI400_R1_SLAVE_PORT_MAX_EV 0x14 #define CCI400_R1_MASTER_PORT_MIN_EV 0x00 #define CCI400_R1_MASTER_PORT_MAX_EV 0x11 #define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \ CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \ (unsigned long)_config) static ssize_t cci400_pmu_cycle_event_show(struct device *dev, struct device_attribute *attr, char *buf); static struct attribute *cci400_pmu_format_attrs[] = { CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"), CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"), NULL }; static struct attribute *cci400_r0_pmu_event_attrs[] = { /* Slave events */ CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9), CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA), CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13), /* Master events */ CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18), CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19), CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A), /* Special event for cycles counter */ CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff), NULL }; static struct attribute *cci400_r1_pmu_event_attrs[] = { /* Slave events */ CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9), CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA), CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14), /* Master events */ CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0), CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4), CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5), CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC), CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD), CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE), CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF), CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10), CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11), /* Special event for cycles counter */ CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff), NULL }; static ssize_t cci400_pmu_cycle_event_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *eattr = container_of(attr, struct dev_ext_attribute, attr); return snprintf(buf, PAGE_SIZE, "config=0x%lx\n", (unsigned long)eattr->var); } static int cci400_get_event_idx(struct cci_pmu *cci_pmu, struct cci_pmu_hw_events *hw, unsigned long cci_event) { int idx; /* cycles event idx is fixed */ if (cci_event == CCI400_PMU_CYCLES) { if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask)) return -EAGAIN; return CCI400_PMU_CYCLE_CNTR_IDX; } for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx) if (!test_and_set_bit(idx, hw->used_mask)) return idx; /* No counters available */ return -EAGAIN; } static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event) { u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event); u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event); int if_type; if (hw_event & ~CCI400_PMU_EVENT_MASK) return -ENOENT; if (hw_event == CCI400_PMU_CYCLES) return hw_event; switch (ev_source) { case CCI400_PORT_S0: case CCI400_PORT_S1: case CCI400_PORT_S2: case CCI400_PORT_S3: case CCI400_PORT_S4: /* Slave Interface */ if_type = CCI_IF_SLAVE; break; case CCI400_PORT_M0: case CCI400_PORT_M1: case CCI400_PORT_M2: /* Master Interface */ if_type = CCI_IF_MASTER; break; default: return -ENOENT; } if (ev_code >= cci_pmu->model->event_ranges[if_type].min && ev_code <= cci_pmu->model->event_ranges[if_type].max) return hw_event; return -ENOENT; } static int probe_cci400_revision(void) { int rev; rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK; rev >>= CCI_PID2_REV_SHIFT; if (rev < CCI400_R1_PX) return CCI400_R0; else return CCI400_R1; } static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev) { if (platform_has_secure_cci_access()) return &cci_pmu_models[probe_cci400_revision()]; return NULL; } #else /* !CONFIG_ARM_CCI400_PMU */ static inline struct cci_pmu_model *probe_cci_model(struct platform_device *pdev) { return NULL; } #endif /* CONFIG_ARM_CCI400_PMU */ #ifdef CONFIG_ARM_CCI500_PMU /* * CCI500 provides 8 independent event counters that can count * any of the events available. * * CCI500 PMU event id is an 9-bit value made of two parts. * bits [8:5] - Source for the event * 0x0-0x6 - Slave interfaces * 0x8-0xD - Master interfaces * 0xf - Global Events * 0x7,0xe - Reserved * * bits [4:0] - Event code (specific to type of interface) */ /* Port ids */ #define CCI500_PORT_S0 0x0 #define CCI500_PORT_S1 0x1 #define CCI500_PORT_S2 0x2 #define CCI500_PORT_S3 0x3 #define CCI500_PORT_S4 0x4 #define CCI500_PORT_S5 0x5 #define CCI500_PORT_S6 0x6 #define CCI500_PORT_M0 0x8 #define CCI500_PORT_M1 0x9 #define CCI500_PORT_M2 0xa #define CCI500_PORT_M3 0xb #define CCI500_PORT_M4 0xc #define CCI500_PORT_M5 0xd #define CCI500_PORT_GLOBAL 0xf #define CCI500_PMU_EVENT_MASK 0x1ffUL #define CCI500_PMU_EVENT_SOURCE_SHIFT 0x5 #define CCI500_PMU_EVENT_SOURCE_MASK 0xf #define CCI500_PMU_EVENT_CODE_SHIFT 0x0 #define CCI500_PMU_EVENT_CODE_MASK 0x1f #define CCI500_PMU_EVENT_SOURCE(event) \ ((event >> CCI500_PMU_EVENT_SOURCE_SHIFT) & CCI500_PMU_EVENT_SOURCE_MASK) #define CCI500_PMU_EVENT_CODE(event) \ ((event >> CCI500_PMU_EVENT_CODE_SHIFT) & CCI500_PMU_EVENT_CODE_MASK) #define CCI500_SLAVE_PORT_MIN_EV 0x00 #define CCI500_SLAVE_PORT_MAX_EV 0x1f #define CCI500_MASTER_PORT_MIN_EV 0x00 #define CCI500_MASTER_PORT_MAX_EV 0x06 #define CCI500_GLOBAL_PORT_MIN_EV 0x00 #define CCI500_GLOBAL_PORT_MAX_EV 0x0f #define CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \ CCI_EXT_ATTR_ENTRY(_name, cci500_pmu_global_event_show, \ (unsigned long) _config) static ssize_t cci500_pmu_global_event_show(struct device *dev, struct device_attribute *attr, char *buf); static struct attribute *cci500_pmu_format_attrs[] = { CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"), CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"), NULL, }; static struct attribute *cci500_pmu_event_attrs[] = { /* Slave events */ CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11), CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12), CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13), CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14), CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15), CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16), CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17), CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18), CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19), CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A), CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B), CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C), CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D), CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E), CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F), /* Master events */ CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0), CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1), CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2), CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3), CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4), CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5), CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6), /* Global events */ CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snopp_rq_stall_tt_full, 0xE), CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF), NULL }; static ssize_t cci500_pmu_global_event_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *eattr = container_of(attr, struct dev_ext_attribute, attr); /* Global events have single fixed source code */ return snprintf(buf, PAGE_SIZE, "event=0x%lx,source=0x%x\n", (unsigned long)eattr->var, CCI500_PORT_GLOBAL); } static int cci500_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event) { u32 ev_source = CCI500_PMU_EVENT_SOURCE(hw_event); u32 ev_code = CCI500_PMU_EVENT_CODE(hw_event); int if_type; if (hw_event & ~CCI500_PMU_EVENT_MASK) return -ENOENT; switch (ev_source) { case CCI500_PORT_S0: case CCI500_PORT_S1: case CCI500_PORT_S2: case CCI500_PORT_S3: case CCI500_PORT_S4: case CCI500_PORT_S5: case CCI500_PORT_S6: if_type = CCI_IF_SLAVE; break; case CCI500_PORT_M0: case CCI500_PORT_M1: case CCI500_PORT_M2: case CCI500_PORT_M3: case CCI500_PORT_M4: case CCI500_PORT_M5: if_type = CCI_IF_MASTER; break; case CCI500_PORT_GLOBAL: if_type = CCI_IF_GLOBAL; break; default: return -ENOENT; } if (ev_code >= cci_pmu->model->event_ranges[if_type].min && ev_code <= cci_pmu->model->event_ranges[if_type].max) return hw_event; return -ENOENT; } #endif /* CONFIG_ARM_CCI500_PMU */ /* * Program the CCI PMU counters which have PERF_HES_ARCH set * with the event period and mark them ready before we enable * PMU. */ void cci_pmu_sync_counters(struct cci_pmu *cci_pmu) { int i; struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events; DECLARE_BITMAP(mask, cci_pmu->num_cntrs); bitmap_zero(mask, cci_pmu->num_cntrs); for_each_set_bit(i, cci_pmu->hw_events.used_mask, cci_pmu->num_cntrs) { struct perf_event *event = cci_hw->events[i]; if (WARN_ON(!event)) continue; /* Leave the events which are not counting */ if (event->hw.state & PERF_HES_STOPPED) continue; if (event->hw.state & PERF_HES_ARCH) { set_bit(i, mask); event->hw.state &= ~PERF_HES_ARCH; } } pmu_write_counters(cci_pmu, mask); } /* Should be called with cci_pmu->hw_events->pmu_lock held */ static void __cci_pmu_enable(struct cci_pmu *cci_pmu) { u32 val; cci_pmu_sync_counters(cci_pmu); /* Enable all the PMU counters. */ val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN; writel(val, cci_ctrl_base + CCI_PMCR); } /* Should be called with cci_pmu->hw_events->pmu_lock held */ static void __cci_pmu_disable(void) { u32 val; /* Disable all the PMU counters. */ val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN; writel(val, cci_ctrl_base + CCI_PMCR); } static ssize_t cci_pmu_format_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *eattr = container_of(attr, struct dev_ext_attribute, attr); return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var); } static ssize_t cci_pmu_event_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *eattr = container_of(attr, struct dev_ext_attribute, attr); /* source parameter is mandatory for normal PMU events */ return snprintf(buf, PAGE_SIZE, "source=?,event=0x%lx\n", (unsigned long)eattr->var); } static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx) { return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu); } static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset) { return readl_relaxed(cci_pmu->base + CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset); } static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value, int idx, unsigned int offset) { return writel_relaxed(value, cci_pmu->base + CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset); } static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx) { pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL); } static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx) { pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL); } static bool __maybe_unused pmu_counter_is_enabled(struct cci_pmu *cci_pmu, int idx) { return (pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR_CTRL) & 0x1) != 0; } static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event) { pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL); } /* * For all counters on the CCI-PMU, disable any 'enabled' counters, * saving the changed counters in the mask, so that we can restore * it later using pmu_restore_counters. The mask is private to the * caller. We cannot rely on the used_mask maintained by the CCI_PMU * as it only tells us if the counter is assigned to perf_event or not. * The state of the perf_event cannot be locked by the PMU layer, hence * we check the individual counter status (which can be locked by * cci_pm->hw_events->pmu_lock). * * @mask should be initialised to empty by the caller. */ static void __maybe_unused pmu_save_counters(struct cci_pmu *cci_pmu, unsigned long *mask) { int i; for (i = 0; i < cci_pmu->num_cntrs; i++) { if (pmu_counter_is_enabled(cci_pmu, i)) { set_bit(i, mask); pmu_disable_counter(cci_pmu, i); } } } /* * Restore the status of the counters. Reversal of the pmu_save_counters(). * For each counter set in the mask, enable the counter back. */ static void __maybe_unused pmu_restore_counters(struct cci_pmu *cci_pmu, unsigned long *mask) { int i; for_each_set_bit(i, mask, cci_pmu->num_cntrs) pmu_enable_counter(cci_pmu, i); } /* * Returns the number of programmable counters actually implemented * by the cci */ static u32 pmu_get_max_counters(void) { return (readl_relaxed(cci_ctrl_base + CCI_PMCR) & CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT; } static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event) { struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); unsigned long cci_event = event->hw.config_base; int idx; if (cci_pmu->model->get_event_idx) return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event); /* Generic code to find an unused idx from the mask */ for(idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) if (!test_and_set_bit(idx, hw->used_mask)) return idx; /* No counters available */ return -EAGAIN; } static int pmu_map_event(struct perf_event *event) { struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); if (event->attr.type < PERF_TYPE_MAX || !cci_pmu->model->validate_hw_event) return -ENOENT; return cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config); } static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler) { int i; struct platform_device *pmu_device = cci_pmu->plat_device; if (unlikely(!pmu_device)) return -ENODEV; if (cci_pmu->nr_irqs < 1) { dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n"); return -ENODEV; } /* * Register all available CCI PMU interrupts. In the interrupt handler * we iterate over the counters checking for interrupt source (the * overflowing counter) and clear it. * * This should allow handling of non-unique interrupt for the counters. */ for (i = 0; i < cci_pmu->nr_irqs; i++) { int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED, "arm-cci-pmu", cci_pmu); if (err) { dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n", cci_pmu->irqs[i]); return err; } set_bit(i, &cci_pmu->active_irqs); } return 0; } static void pmu_free_irq(struct cci_pmu *cci_pmu) { int i; for (i = 0; i < cci_pmu->nr_irqs; i++) { if (!test_and_clear_bit(i, &cci_pmu->active_irqs)) continue; free_irq(cci_pmu->irqs[i], cci_pmu); } } static u32 pmu_read_counter(struct perf_event *event) { struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); struct hw_perf_event *hw_counter = &event->hw; int idx = hw_counter->idx; u32 value; if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); return 0; } value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR); return value; } static void pmu_write_counter(struct cci_pmu *cci_pmu, u32 value, int idx) { pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR); } static void pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask) { int i; struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events; for_each_set_bit(i, mask, cci_pmu->num_cntrs) { struct perf_event *event = cci_hw->events[i]; if (WARN_ON(!event)) continue; pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i); } } static u64 pmu_event_update(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; u64 delta, prev_raw_count, new_raw_count; do { prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = pmu_read_counter(event); } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count); delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK; local64_add(delta, &event->count); return new_raw_count; } static void pmu_read(struct perf_event *event) { pmu_event_update(event); } void pmu_event_set_period(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; /* * The CCI PMU counters have a period of 2^32. To account for the * possiblity of extreme interrupt latency we program for a period of * half that. Hopefully we can handle the interrupt before another 2^31 * events occur and the counter overtakes its previous value. */ u64 val = 1ULL << 31; local64_set(&hwc->prev_count, val); /* * CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose * values needs to be sync-ed with the s/w state before the PMU is * enabled. * Mark this counter for sync. */ hwc->state |= PERF_HES_ARCH; } static irqreturn_t pmu_handle_irq(int irq_num, void *dev) { unsigned long flags; struct cci_pmu *cci_pmu = dev; struct cci_pmu_hw_events *events = &cci_pmu->hw_events; int idx, handled = IRQ_NONE; raw_spin_lock_irqsave(&events->pmu_lock, flags); /* Disable the PMU while we walk through the counters */ __cci_pmu_disable(); /* * Iterate over counters and update the corresponding perf events. * This should work regardless of whether we have per-counter overflow * interrupt or a combined overflow interrupt. */ for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) { struct perf_event *event = events->events[idx]; struct hw_perf_event *hw_counter; if (!event) continue; hw_counter = &event->hw; /* Did this counter overflow? */ if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) & CCI_PMU_OVRFLW_FLAG)) continue; pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW); pmu_event_update(event); pmu_event_set_period(event); handled = IRQ_HANDLED; } /* Enable the PMU and sync possibly overflowed counters */ __cci_pmu_enable(cci_pmu); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); return IRQ_RETVAL(handled); } static int cci_pmu_get_hw(struct cci_pmu *cci_pmu) { int ret = pmu_request_irq(cci_pmu, pmu_handle_irq); if (ret) { pmu_free_irq(cci_pmu); return ret; } return 0; } static void cci_pmu_put_hw(struct cci_pmu *cci_pmu) { pmu_free_irq(cci_pmu); } static void hw_perf_event_destroy(struct perf_event *event) { struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); atomic_t *active_events = &cci_pmu->active_events; struct mutex *reserve_mutex = &cci_pmu->reserve_mutex; if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) { cci_pmu_put_hw(cci_pmu); mutex_unlock(reserve_mutex); } } static void cci_pmu_enable(struct pmu *pmu) { struct cci_pmu *cci_pmu = to_cci_pmu(pmu); struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_cntrs); unsigned long flags; if (!enabled) return; raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); __cci_pmu_enable(cci_pmu); raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); } static void cci_pmu_disable(struct pmu *pmu) { struct cci_pmu *cci_pmu = to_cci_pmu(pmu); struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; unsigned long flags; raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); __cci_pmu_disable(); raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); } /* * Check if the idx represents a non-programmable counter. * All the fixed event counters are mapped before the programmable * counters. */ static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx) { return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs); } static void cci_pmu_start(struct perf_event *event, int pmu_flags) { struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; unsigned long flags; /* * To handle interrupt latency, we always reprogram the period * regardlesss of PERF_EF_RELOAD. */ if (pmu_flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); hwc->state = 0; if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); return; } raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); /* Configure the counter unless you are counting a fixed event */ if (!pmu_fixed_hw_idx(cci_pmu, idx)) pmu_set_event(cci_pmu, idx, hwc->config_base); pmu_event_set_period(event); pmu_enable_counter(cci_pmu, idx); raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); } static void cci_pmu_stop(struct perf_event *event, int pmu_flags) { struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; if (hwc->state & PERF_HES_STOPPED) return; if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); return; } /* * We always reprogram the counter, so ignore PERF_EF_UPDATE. See * cci_pmu_start() */ pmu_disable_counter(cci_pmu, idx); pmu_event_update(event); hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; } static int cci_pmu_add(struct perf_event *event, int flags) { struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; struct hw_perf_event *hwc = &event->hw; int idx; int err = 0; perf_pmu_disable(event->pmu); /* If we don't have a space for the counter then finish early. */ idx = pmu_get_event_idx(hw_events, event); if (idx < 0) { err = idx; goto out; } event->hw.idx = idx; hw_events->events[idx] = event; hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; if (flags & PERF_EF_START) cci_pmu_start(event, PERF_EF_RELOAD); /* Propagate our changes to the userspace mapping. */ perf_event_update_userpage(event); out: perf_pmu_enable(event->pmu); return err; } static void cci_pmu_del(struct perf_event *event, int flags) { struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; cci_pmu_stop(event, PERF_EF_UPDATE); hw_events->events[idx] = NULL; clear_bit(idx, hw_events->used_mask); perf_event_update_userpage(event); } static int validate_event(struct pmu *cci_pmu, struct cci_pmu_hw_events *hw_events, struct perf_event *event) { if (is_software_event(event)) return 1; /* * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The * core perf code won't check that the pmu->ctx == leader->ctx * until after pmu->event_init(event). */ if (event->pmu != cci_pmu) return 0; if (event->state < PERF_EVENT_STATE_OFF) return 1; if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) return 1; return pmu_get_event_idx(hw_events, event) >= 0; } static int validate_group(struct perf_event *event) { struct perf_event *sibling, *leader = event->group_leader; struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); unsigned long mask[BITS_TO_LONGS(cci_pmu->num_cntrs)]; struct cci_pmu_hw_events fake_pmu = { /* * Initialise the fake PMU. We only need to populate the * used_mask for the purposes of validation. */ .used_mask = mask, }; memset(mask, 0, BITS_TO_LONGS(cci_pmu->num_cntrs) * sizeof(unsigned long)); if (!validate_event(event->pmu, &fake_pmu, leader)) return -EINVAL; list_for_each_entry(sibling, &leader->sibling_list, group_entry) { if (!validate_event(event->pmu, &fake_pmu, sibling)) return -EINVAL; } if (!validate_event(event->pmu, &fake_pmu, event)) return -EINVAL; return 0; } static int __hw_perf_event_init(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; int mapping; mapping = pmu_map_event(event); if (mapping < 0) { pr_debug("event %x:%llx not supported\n", event->attr.type, event->attr.config); return mapping; } /* * We don't assign an index until we actually place the event onto * hardware. Use -1 to signify that we haven't decided where to put it * yet. */ hwc->idx = -1; hwc->config_base = 0; hwc->config = 0; hwc->event_base = 0; /* * Store the event encoding into the config_base field. */ hwc->config_base |= (unsigned long)mapping; /* * Limit the sample_period to half of the counter width. That way, the * new counter value is far less likely to overtake the previous one * unless you have some serious IRQ latency issues. */ hwc->sample_period = CCI_PMU_CNTR_MASK >> 1; hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); if (event->group_leader != event) { if (validate_group(event) != 0) return -EINVAL; } return 0; } static int cci_pmu_event_init(struct perf_event *event) { struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); atomic_t *active_events = &cci_pmu->active_events; int err = 0; int cpu; if (event->attr.type != event->pmu->type) return -ENOENT; /* Shared by all CPUs, no meaningful state to sample */ if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) return -EOPNOTSUPP; /* We have no filtering of any kind */ if (event->attr.exclude_user || event->attr.exclude_kernel || event->attr.exclude_hv || event->attr.exclude_idle || event->attr.exclude_host || event->attr.exclude_guest) return -EINVAL; /* * Following the example set by other "uncore" PMUs, we accept any CPU * and rewrite its affinity dynamically rather than having perf core * handle cpu == -1 and pid == -1 for this case. * * The perf core will pin online CPUs for the duration of this call and * the event being installed into its context, so the PMU's CPU can't * change under our feet. */ cpu = cpumask_first(&cci_pmu->cpus); if (event->cpu < 0 || cpu < 0) return -EINVAL; event->cpu = cpu; event->destroy = hw_perf_event_destroy; if (!atomic_inc_not_zero(active_events)) { mutex_lock(&cci_pmu->reserve_mutex); if (atomic_read(active_events) == 0) err = cci_pmu_get_hw(cci_pmu); if (!err) atomic_inc(active_events); mutex_unlock(&cci_pmu->reserve_mutex); } if (err) return err; err = __hw_perf_event_init(event); if (err) hw_perf_event_destroy(event); return err; } static ssize_t pmu_cpumask_attr_show(struct device *dev, struct device_attribute *attr, char *buf) { struct pmu *pmu = dev_get_drvdata(dev); struct cci_pmu *cci_pmu = to_cci_pmu(pmu); int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl", cpumask_pr_args(&cci_pmu->cpus)); buf[n++] = '\n'; buf[n] = '\0'; return n; } static struct device_attribute pmu_cpumask_attr = __ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL); static struct attribute *pmu_attrs[] = { &pmu_cpumask_attr.attr, NULL, }; static struct attribute_group pmu_attr_group = { .attrs = pmu_attrs, }; static struct attribute_group pmu_format_attr_group = { .name = "format", .attrs = NULL, /* Filled in cci_pmu_init_attrs */ }; static struct attribute_group pmu_event_attr_group = { .name = "events", .attrs = NULL, /* Filled in cci_pmu_init_attrs */ }; static const struct attribute_group *pmu_attr_groups[] = { &pmu_attr_group, &pmu_format_attr_group, &pmu_event_attr_group, NULL }; static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev) { const struct cci_pmu_model *model = cci_pmu->model; char *name = model->name; u32 num_cntrs; pmu_event_attr_group.attrs = model->event_attrs; pmu_format_attr_group.attrs = model->format_attrs; cci_pmu->pmu = (struct pmu) { .name = cci_pmu->model->name, .task_ctx_nr = perf_invalid_context, .pmu_enable = cci_pmu_enable, .pmu_disable = cci_pmu_disable, .event_init = cci_pmu_event_init, .add = cci_pmu_add, .del = cci_pmu_del, .start = cci_pmu_start, .stop = cci_pmu_stop, .read = pmu_read, .attr_groups = pmu_attr_groups, }; cci_pmu->plat_device = pdev; num_cntrs = pmu_get_max_counters(); if (num_cntrs > cci_pmu->model->num_hw_cntrs) { dev_warn(&pdev->dev, "PMU implements more counters(%d) than supported by" " the model(%d), truncated.", num_cntrs, cci_pmu->model->num_hw_cntrs); num_cntrs = cci_pmu->model->num_hw_cntrs; } cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs; return perf_pmu_register(&cci_pmu->pmu, name, -1); } static int cci_pmu_cpu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) { struct cci_pmu *cci_pmu = container_of(self, struct cci_pmu, cpu_nb); unsigned int cpu = (long)hcpu; unsigned int target; switch (action & ~CPU_TASKS_FROZEN) { case CPU_DOWN_PREPARE: if (!cpumask_test_and_clear_cpu(cpu, &cci_pmu->cpus)) break; target = cpumask_any_but(cpu_online_mask, cpu); if (target >= nr_cpu_ids) // UP, last CPU break; /* * TODO: migrate context once core races on event->ctx have * been fixed. */ cpumask_set_cpu(target, &cci_pmu->cpus); default: break; } return NOTIFY_OK; } static struct cci_pmu_model cci_pmu_models[] = { #ifdef CONFIG_ARM_CCI400_PMU [CCI400_R0] = { .name = "CCI_400", .fixed_hw_cntrs = 1, /* Cycle counter */ .num_hw_cntrs = 4, .cntr_size = SZ_4K, .format_attrs = cci400_pmu_format_attrs, .event_attrs = cci400_r0_pmu_event_attrs, .event_ranges = { [CCI_IF_SLAVE] = { CCI400_R0_SLAVE_PORT_MIN_EV, CCI400_R0_SLAVE_PORT_MAX_EV, }, [CCI_IF_MASTER] = { CCI400_R0_MASTER_PORT_MIN_EV, CCI400_R0_MASTER_PORT_MAX_EV, }, }, .validate_hw_event = cci400_validate_hw_event, .get_event_idx = cci400_get_event_idx, }, [CCI400_R1] = { .name = "CCI_400_r1", .fixed_hw_cntrs = 1, /* Cycle counter */ .num_hw_cntrs = 4, .cntr_size = SZ_4K, .format_attrs = cci400_pmu_format_attrs, .event_attrs = cci400_r1_pmu_event_attrs, .event_ranges = { [CCI_IF_SLAVE] = { CCI400_R1_SLAVE_PORT_MIN_EV, CCI400_R1_SLAVE_PORT_MAX_EV, }, [CCI_IF_MASTER] = { CCI400_R1_MASTER_PORT_MIN_EV, CCI400_R1_MASTER_PORT_MAX_EV, }, }, .validate_hw_event = cci400_validate_hw_event, .get_event_idx = cci400_get_event_idx, }, #endif #ifdef CONFIG_ARM_CCI500_PMU [CCI500_R0] = { .name = "CCI_500", .fixed_hw_cntrs = 0, .num_hw_cntrs = 8, .cntr_size = SZ_64K, .format_attrs = cci500_pmu_format_attrs, .event_attrs = cci500_pmu_event_attrs, .event_ranges = { [CCI_IF_SLAVE] = { CCI500_SLAVE_PORT_MIN_EV, CCI500_SLAVE_PORT_MAX_EV, }, [CCI_IF_MASTER] = { CCI500_MASTER_PORT_MIN_EV, CCI500_MASTER_PORT_MAX_EV, }, [CCI_IF_GLOBAL] = { CCI500_GLOBAL_PORT_MIN_EV, CCI500_GLOBAL_PORT_MAX_EV, }, }, .validate_hw_event = cci500_validate_hw_event, }, #endif }; static const struct of_device_id arm_cci_pmu_matches[] = { #ifdef CONFIG_ARM_CCI400_PMU { .compatible = "arm,cci-400-pmu", .data = NULL, }, { .compatible = "arm,cci-400-pmu,r0", .data = &cci_pmu_models[CCI400_R0], }, { .compatible = "arm,cci-400-pmu,r1", .data = &cci_pmu_models[CCI400_R1], }, #endif #ifdef CONFIG_ARM_CCI500_PMU { .compatible = "arm,cci-500-pmu,r0", .data = &cci_pmu_models[CCI500_R0], }, #endif {}, }; static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev) { const struct of_device_id *match = of_match_node(arm_cci_pmu_matches, pdev->dev.of_node); if (!match) return NULL; if (match->data) return match->data; dev_warn(&pdev->dev, "DEPRECATED compatible property," "requires secure access to CCI registers"); return probe_cci_model(pdev); } static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs) { int i; for (i = 0; i < nr_irqs; i++) if (irq == irqs[i]) return true; return false; } static struct cci_pmu *cci_pmu_alloc(struct platform_device *pdev) { struct cci_pmu *cci_pmu; const struct cci_pmu_model *model; /* * All allocations are devm_* hence we don't have to free * them explicitly on an error, as it would end up in driver * detach. */ model = get_cci_model(pdev); if (!model) { dev_warn(&pdev->dev, "CCI PMU version not supported\n"); return ERR_PTR(-ENODEV); } cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*cci_pmu), GFP_KERNEL); if (!cci_pmu) return ERR_PTR(-ENOMEM); cci_pmu->model = model; cci_pmu->irqs = devm_kcalloc(&pdev->dev, CCI_PMU_MAX_HW_CNTRS(model), sizeof(*cci_pmu->irqs), GFP_KERNEL); if (!cci_pmu->irqs) return ERR_PTR(-ENOMEM); cci_pmu->hw_events.events = devm_kcalloc(&pdev->dev, CCI_PMU_MAX_HW_CNTRS(model), sizeof(*cci_pmu->hw_events.events), GFP_KERNEL); if (!cci_pmu->hw_events.events) return ERR_PTR(-ENOMEM); cci_pmu->hw_events.used_mask = devm_kcalloc(&pdev->dev, BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model)), sizeof(*cci_pmu->hw_events.used_mask), GFP_KERNEL); if (!cci_pmu->hw_events.used_mask) return ERR_PTR(-ENOMEM); return cci_pmu; } static int cci_pmu_probe(struct platform_device *pdev) { struct resource *res; struct cci_pmu *cci_pmu; int i, ret, irq; cci_pmu = cci_pmu_alloc(pdev); if (IS_ERR(cci_pmu)) return PTR_ERR(cci_pmu); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); cci_pmu->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(cci_pmu->base)) return -ENOMEM; /* * CCI PMU has one overflow interrupt per counter; but some may be tied * together to a common interrupt. */ cci_pmu->nr_irqs = 0; for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) { irq = platform_get_irq(pdev, i); if (irq < 0) break; if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs)) continue; cci_pmu->irqs[cci_pmu->nr_irqs++] = irq; } /* * Ensure that the device tree has as many interrupts as the number * of counters. */ if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) { dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n", i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)); return -EINVAL; } raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock); mutex_init(&cci_pmu->reserve_mutex); atomic_set(&cci_pmu->active_events, 0); cpumask_set_cpu(smp_processor_id(), &cci_pmu->cpus); cci_pmu->cpu_nb = (struct notifier_block) { .notifier_call = cci_pmu_cpu_notifier, /* * to migrate uncore events, our notifier should be executed * before perf core's notifier. */ .priority = CPU_PRI_PERF + 1, }; ret = register_cpu_notifier(&cci_pmu->cpu_nb); if (ret) return ret; ret = cci_pmu_init(cci_pmu, pdev); if (ret) { unregister_cpu_notifier(&cci_pmu->cpu_nb); return ret; } pr_info("ARM %s PMU driver probed", cci_pmu->model->name); return 0; } static int cci_platform_probe(struct platform_device *pdev) { if (!cci_probed()) return -ENODEV; return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev); } static struct platform_driver cci_pmu_driver = { .driver = { .name = DRIVER_NAME_PMU, .of_match_table = arm_cci_pmu_matches, }, .probe = cci_pmu_probe, }; static struct platform_driver cci_platform_driver = { .driver = { .name = DRIVER_NAME, .of_match_table = arm_cci_matches, }, .probe = cci_platform_probe, }; static int __init cci_platform_init(void) { int ret; ret = platform_driver_register(&cci_pmu_driver); if (ret) return ret; return platform_driver_register(&cci_platform_driver); } #else /* !CONFIG_ARM_CCI_PMU */ static int __init cci_platform_init(void) { return 0; } #endif /* CONFIG_ARM_CCI_PMU */ #ifdef CONFIG_ARM_CCI400_PORT_CTRL #define CCI_PORT_CTRL 0x0 #define CCI_CTRL_STATUS 0xc #define CCI_ENABLE_SNOOP_REQ 0x1 #define CCI_ENABLE_DVM_REQ 0x2 #define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ) enum cci_ace_port_type { ACE_INVALID_PORT = 0x0, ACE_PORT, ACE_LITE_PORT, }; struct cci_ace_port { void __iomem *base; unsigned long phys; enum cci_ace_port_type type; struct device_node *dn; }; static struct cci_ace_port *ports; static unsigned int nb_cci_ports; struct cpu_port { u64 mpidr; u32 port; }; /* * Use the port MSB as valid flag, shift can be made dynamic * by computing number of bits required for port indexes. * Code disabling CCI cpu ports runs with D-cache invalidated * and SCTLR bit clear so data accesses must be kept to a minimum * to improve performance; for now shift is left static to * avoid one more data access while disabling the CCI port. */ #define PORT_VALID_SHIFT 31 #define PORT_VALID (0x1 << PORT_VALID_SHIFT) static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr) { port->port = PORT_VALID | index; port->mpidr = mpidr; } static inline bool cpu_port_is_valid(struct cpu_port *port) { return !!(port->port & PORT_VALID); } static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr) { return port->mpidr == (mpidr & MPIDR_HWID_BITMASK); } static struct cpu_port cpu_port[NR_CPUS]; /** * __cci_ace_get_port - Function to retrieve the port index connected to * a cpu or device. * * @dn: device node of the device to look-up * @type: port type * * Return value: * - CCI port index if success * - -ENODEV if failure */ static int __cci_ace_get_port(struct device_node *dn, int type) { int i; bool ace_match; struct device_node *cci_portn; cci_portn = of_parse_phandle(dn, "cci-control-port", 0); for (i = 0; i < nb_cci_ports; i++) { ace_match = ports[i].type == type; if (ace_match && cci_portn == ports[i].dn) return i; } return -ENODEV; } int cci_ace_get_port(struct device_node *dn) { return __cci_ace_get_port(dn, ACE_LITE_PORT); } EXPORT_SYMBOL_GPL(cci_ace_get_port); static void cci_ace_init_ports(void) { int port, cpu; struct device_node *cpun; /* * Port index look-up speeds up the function disabling ports by CPU, * since the logical to port index mapping is done once and does * not change after system boot. * The stashed index array is initialized for all possible CPUs * at probe time. */ for_each_possible_cpu(cpu) { /* too early to use cpu->of_node */ cpun = of_get_cpu_node(cpu, NULL); if (WARN(!cpun, "Missing cpu device node\n")) continue; port = __cci_ace_get_port(cpun, ACE_PORT); if (port < 0) continue; init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu)); } for_each_possible_cpu(cpu) { WARN(!cpu_port_is_valid(&cpu_port[cpu]), "CPU %u does not have an associated CCI port\n", cpu); } } /* * Functions to enable/disable a CCI interconnect slave port * * They are called by low-level power management code to disable slave * interfaces snoops and DVM broadcast. * Since they may execute with cache data allocation disabled and * after the caches have been cleaned and invalidated the functions provide * no explicit locking since they may run with D-cache disabled, so normal * cacheable kernel locks based on ldrex/strex may not work. * Locking has to be provided by BSP implementations to ensure proper * operations. */ /** * cci_port_control() - function to control a CCI port * * @port: index of the port to setup * @enable: if true enables the port, if false disables it */ static void notrace cci_port_control(unsigned int port, bool enable) { void __iomem *base = ports[port].base; writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL); /* * This function is called from power down procedures * and must not execute any instruction that might * cause the processor to be put in a quiescent state * (eg wfi). Hence, cpu_relax() can not be added to this * read loop to optimize power, since it might hide possibly * disruptive operations. */ while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1) ; } /** * cci_disable_port_by_cpu() - function to disable a CCI port by CPU * reference * * @mpidr: mpidr of the CPU whose CCI port should be disabled * * Disabling a CCI port for a CPU implies disabling the CCI port * controlling that CPU cluster. Code disabling CPU CCI ports * must make sure that the CPU running the code is the last active CPU * in the cluster ie all other CPUs are quiescent in a low power state. * * Return: * 0 on success * -ENODEV on port look-up failure */ int notrace cci_disable_port_by_cpu(u64 mpidr) { int cpu; bool is_valid; for (cpu = 0; cpu < nr_cpu_ids; cpu++) { is_valid = cpu_port_is_valid(&cpu_port[cpu]); if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) { cci_port_control(cpu_port[cpu].port, false); return 0; } } return -ENODEV; } EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu); /** * cci_enable_port_for_self() - enable a CCI port for calling CPU * * Enabling a CCI port for the calling CPU implies enabling the CCI * port controlling that CPU's cluster. Caller must make sure that the * CPU running the code is the first active CPU in the cluster and all * other CPUs are quiescent in a low power state or waiting for this CPU * to complete the CCI initialization. * * Because this is called when the MMU is still off and with no stack, * the code must be position independent and ideally rely on callee * clobbered registers only. To achieve this we must code this function * entirely in assembler. * * On success this returns with the proper CCI port enabled. In case of * any failure this never returns as the inability to enable the CCI is * fatal and there is no possible recovery at this stage. */ asmlinkage void __naked cci_enable_port_for_self(void) { asm volatile ("\n" " .arch armv7-a\n" " mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n" " and r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n" " adr r1, 5f \n" " ldr r2, [r1] \n" " add r1, r1, r2 @ &cpu_port \n" " add ip, r1, %[sizeof_cpu_port] \n" /* Loop over the cpu_port array looking for a matching MPIDR */ "1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n" " cmp r2, r0 @ compare MPIDR \n" " bne 2f \n" /* Found a match, now test port validity */ " ldr r3, [r1, %[offsetof_cpu_port_port]] \n" " tst r3, #"__stringify(PORT_VALID)" \n" " bne 3f \n" /* no match, loop with the next cpu_port entry */ "2: add r1, r1, %[sizeof_struct_cpu_port] \n" " cmp r1, ip @ done? \n" " blo 1b \n" /* CCI port not found -- cheaply try to stall this CPU */ "cci_port_not_found: \n" " wfi \n" " wfe \n" " b cci_port_not_found \n" /* Use matched port index to look up the corresponding ports entry */ "3: bic r3, r3, #"__stringify(PORT_VALID)" \n" " adr r0, 6f \n" " ldmia r0, {r1, r2} \n" " sub r1, r1, r0 @ virt - phys \n" " ldr r0, [r0, r2] @ *(&ports) \n" " mov r2, %[sizeof_struct_ace_port] \n" " mla r0, r2, r3, r0 @ &ports[index] \n" " sub r0, r0, r1 @ virt_to_phys() \n" /* Enable the CCI port */ " ldr r0, [r0, %[offsetof_port_phys]] \n" " mov r3, %[cci_enable_req]\n" " str r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n" /* poll the status reg for completion */ " adr r1, 7f \n" " ldr r0, [r1] \n" " ldr r0, [r0, r1] @ cci_ctrl_base \n" "4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n" " tst r1, %[cci_control_status_bits] \n" " bne 4b \n" " mov r0, #0 \n" " bx lr \n" " .align 2 \n" "5: .word cpu_port - . \n" "6: .word . \n" " .word ports - 6b \n" "7: .word cci_ctrl_phys - . \n" : : [sizeof_cpu_port] "i" (sizeof(cpu_port)), [cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ), [cci_control_status_bits] "i" cpu_to_le32(1), #ifndef __ARMEB__ [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)), #else [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4), #endif [offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)), [sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)), [sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)), [offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) ); unreachable(); } /** * __cci_control_port_by_device() - function to control a CCI port by device * reference * * @dn: device node pointer of the device whose CCI port should be * controlled * @enable: if true enables the port, if false disables it * * Return: * 0 on success * -ENODEV on port look-up failure */ int notrace __cci_control_port_by_device(struct device_node *dn, bool enable) { int port; if (!dn) return -ENODEV; port = __cci_ace_get_port(dn, ACE_LITE_PORT); if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n", dn->full_name)) return -ENODEV; cci_port_control(port, enable); return 0; } EXPORT_SYMBOL_GPL(__cci_control_port_by_device); /** * __cci_control_port_by_index() - function to control a CCI port by port index * * @port: port index previously retrieved with cci_ace_get_port() * @enable: if true enables the port, if false disables it * * Return: * 0 on success * -ENODEV on port index out of range * -EPERM if operation carried out on an ACE PORT */ int notrace __cci_control_port_by_index(u32 port, bool enable) { if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT) return -ENODEV; /* * CCI control for ports connected to CPUS is extremely fragile * and must be made to go through a specific and controlled * interface (ie cci_disable_port_by_cpu(); control by general purpose * indexing is therefore disabled for ACE ports. */ if (ports[port].type == ACE_PORT) return -EPERM; cci_port_control(port, enable); return 0; } EXPORT_SYMBOL_GPL(__cci_control_port_by_index); static const struct of_device_id arm_cci_ctrl_if_matches[] = { {.compatible = "arm,cci-400-ctrl-if", }, {}, }; static int cci_probe_ports(struct device_node *np) { struct cci_nb_ports const *cci_config; int ret, i, nb_ace = 0, nb_ace_lite = 0; struct device_node *cp; struct resource res; const char *match_str; bool is_ace; cci_config = of_match_node(arm_cci_matches, np)->data; if (!cci_config) return -ENODEV; nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite; ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL); if (!ports) return -ENOMEM; for_each_child_of_node(np, cp) { if (!of_match_node(arm_cci_ctrl_if_matches, cp)) continue; i = nb_ace + nb_ace_lite; if (i >= nb_cci_ports) break; if (of_property_read_string(cp, "interface-type", &match_str)) { WARN(1, "node %s missing interface-type property\n", cp->full_name); continue; } is_ace = strcmp(match_str, "ace") == 0; if (!is_ace && strcmp(match_str, "ace-lite")) { WARN(1, "node %s containing invalid interface-type property, skipping it\n", cp->full_name); continue; } ret = of_address_to_resource(cp, 0, &res); if (!ret) { ports[i].base = ioremap(res.start, resource_size(&res)); ports[i].phys = res.start; } if (ret || !ports[i].base) { WARN(1, "unable to ioremap CCI port %d\n", i); continue; } if (is_ace) { if (WARN_ON(nb_ace >= cci_config->nb_ace)) continue; ports[i].type = ACE_PORT; ++nb_ace; } else { if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite)) continue; ports[i].type = ACE_LITE_PORT; ++nb_ace_lite; } ports[i].dn = cp; } /* initialize a stashed array of ACE ports to speed-up look-up */ cci_ace_init_ports(); /* * Multi-cluster systems may need this data when non-coherent, during * cluster power-up/power-down. Make sure it reaches main memory. */ sync_cache_w(&cci_ctrl_base); sync_cache_w(&cci_ctrl_phys); sync_cache_w(&ports); sync_cache_w(&cpu_port); __sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports); pr_info("ARM CCI driver probed\n"); return 0; } #else /* !CONFIG_ARM_CCI400_PORT_CTRL */ static inline int cci_probe_ports(struct device_node *np) { return 0; } #endif /* CONFIG_ARM_CCI400_PORT_CTRL */ static int cci_probe(void) { int ret; struct device_node *np; struct resource res; np = of_find_matching_node(NULL, arm_cci_matches); if(!np || !of_device_is_available(np)) return -ENODEV; ret = of_address_to_resource(np, 0, &res); if (!ret) { cci_ctrl_base = ioremap(res.start, resource_size(&res)); cci_ctrl_phys = res.start; } if (ret || !cci_ctrl_base) { WARN(1, "unable to ioremap CCI ctrl\n"); return -ENXIO; } return cci_probe_ports(np); } static int cci_init_status = -EAGAIN; static DEFINE_MUTEX(cci_probing); static int cci_init(void) { if (cci_init_status != -EAGAIN) return cci_init_status; mutex_lock(&cci_probing); if (cci_init_status == -EAGAIN) cci_init_status = cci_probe(); mutex_unlock(&cci_probing); return cci_init_status; } /* * To sort out early init calls ordering a helper function is provided to * check if the CCI driver has beed initialized. Function check if the driver * has been initialized, if not it calls the init function that probes * the driver and updates the return value. */ bool cci_probed(void) { return cci_init() == 0; } EXPORT_SYMBOL_GPL(cci_probed); early_initcall(cci_init); core_initcall(cci_platform_init); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ARM CCI support");