// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016 Oracle. All Rights Reserved. * Author: Darrick J. Wong */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_shared.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_bmap_item.h" #include "xfs_log.h" #include "xfs_bmap.h" #include "xfs_icache.h" #include "xfs_bmap_btree.h" #include "xfs_trans_space.h" #include "xfs_error.h" kmem_zone_t *xfs_bui_zone; kmem_zone_t *xfs_bud_zone; static inline struct xfs_bui_log_item *BUI_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_bui_log_item, bui_item); } void xfs_bui_item_free( struct xfs_bui_log_item *buip) { kmem_zone_free(xfs_bui_zone, buip); } /* * Freeing the BUI requires that we remove it from the AIL if it has already * been placed there. However, the BUI may not yet have been placed in the AIL * when called by xfs_bui_release() from BUD processing due to the ordering of * committed vs unpin operations in bulk insert operations. Hence the reference * count to ensure only the last caller frees the BUI. */ void xfs_bui_release( struct xfs_bui_log_item *buip) { ASSERT(atomic_read(&buip->bui_refcount) > 0); if (atomic_dec_and_test(&buip->bui_refcount)) { xfs_trans_ail_remove(&buip->bui_item, SHUTDOWN_LOG_IO_ERROR); xfs_bui_item_free(buip); } } STATIC void xfs_bui_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { struct xfs_bui_log_item *buip = BUI_ITEM(lip); *nvecs += 1; *nbytes += xfs_bui_log_format_sizeof(buip->bui_format.bui_nextents); } /* * This is called to fill in the vector of log iovecs for the * given bui log item. We use only 1 iovec, and we point that * at the bui_log_format structure embedded in the bui item. * It is at this point that we assert that all of the extent * slots in the bui item have been filled. */ STATIC void xfs_bui_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_bui_log_item *buip = BUI_ITEM(lip); struct xfs_log_iovec *vecp = NULL; ASSERT(atomic_read(&buip->bui_next_extent) == buip->bui_format.bui_nextents); buip->bui_format.bui_type = XFS_LI_BUI; buip->bui_format.bui_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_BUI_FORMAT, &buip->bui_format, xfs_bui_log_format_sizeof(buip->bui_format.bui_nextents)); } /* * The unpin operation is the last place an BUI is manipulated in the log. It is * either inserted in the AIL or aborted in the event of a log I/O error. In * either case, the BUI transaction has been successfully committed to make it * this far. Therefore, we expect whoever committed the BUI to either construct * and commit the BUD or drop the BUD's reference in the event of error. Simply * drop the log's BUI reference now that the log is done with it. */ STATIC void xfs_bui_item_unpin( struct xfs_log_item *lip, int remove) { struct xfs_bui_log_item *buip = BUI_ITEM(lip); xfs_bui_release(buip); } /* * The BUI has been either committed or aborted if the transaction has been * cancelled. If the transaction was cancelled, an BUD isn't going to be * constructed and thus we free the BUI here directly. */ STATIC void xfs_bui_item_release( struct xfs_log_item *lip) { xfs_bui_release(BUI_ITEM(lip)); } static const struct xfs_item_ops xfs_bui_item_ops = { .iop_size = xfs_bui_item_size, .iop_format = xfs_bui_item_format, .iop_unpin = xfs_bui_item_unpin, .iop_release = xfs_bui_item_release, }; /* * Allocate and initialize an bui item with the given number of extents. */ struct xfs_bui_log_item * xfs_bui_init( struct xfs_mount *mp) { struct xfs_bui_log_item *buip; buip = kmem_zone_zalloc(xfs_bui_zone, 0); xfs_log_item_init(mp, &buip->bui_item, XFS_LI_BUI, &xfs_bui_item_ops); buip->bui_format.bui_nextents = XFS_BUI_MAX_FAST_EXTENTS; buip->bui_format.bui_id = (uintptr_t)(void *)buip; atomic_set(&buip->bui_next_extent, 0); atomic_set(&buip->bui_refcount, 2); return buip; } static inline struct xfs_bud_log_item *BUD_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_bud_log_item, bud_item); } STATIC void xfs_bud_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { *nvecs += 1; *nbytes += sizeof(struct xfs_bud_log_format); } /* * This is called to fill in the vector of log iovecs for the * given bud log item. We use only 1 iovec, and we point that * at the bud_log_format structure embedded in the bud item. * It is at this point that we assert that all of the extent * slots in the bud item have been filled. */ STATIC void xfs_bud_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_bud_log_item *budp = BUD_ITEM(lip); struct xfs_log_iovec *vecp = NULL; budp->bud_format.bud_type = XFS_LI_BUD; budp->bud_format.bud_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_BUD_FORMAT, &budp->bud_format, sizeof(struct xfs_bud_log_format)); } /* * The BUD is either committed or aborted if the transaction is cancelled. If * the transaction is cancelled, drop our reference to the BUI and free the * BUD. */ STATIC void xfs_bud_item_release( struct xfs_log_item *lip) { struct xfs_bud_log_item *budp = BUD_ITEM(lip); xfs_bui_release(budp->bud_buip); kmem_zone_free(xfs_bud_zone, budp); } static const struct xfs_item_ops xfs_bud_item_ops = { .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, .iop_size = xfs_bud_item_size, .iop_format = xfs_bud_item_format, .iop_release = xfs_bud_item_release, }; static struct xfs_bud_log_item * xfs_trans_get_bud( struct xfs_trans *tp, struct xfs_bui_log_item *buip) { struct xfs_bud_log_item *budp; budp = kmem_zone_zalloc(xfs_bud_zone, 0); xfs_log_item_init(tp->t_mountp, &budp->bud_item, XFS_LI_BUD, &xfs_bud_item_ops); budp->bud_buip = buip; budp->bud_format.bud_bui_id = buip->bui_format.bui_id; xfs_trans_add_item(tp, &budp->bud_item); return budp; } /* * Finish an bmap update and log it to the BUD. Note that the * transaction is marked dirty regardless of whether the bmap update * succeeds or fails to support the BUI/BUD lifecycle rules. */ static int xfs_trans_log_finish_bmap_update( struct xfs_trans *tp, struct xfs_bud_log_item *budp, enum xfs_bmap_intent_type type, struct xfs_inode *ip, int whichfork, xfs_fileoff_t startoff, xfs_fsblock_t startblock, xfs_filblks_t *blockcount, xfs_exntst_t state) { int error; error = xfs_bmap_finish_one(tp, ip, type, whichfork, startoff, startblock, blockcount, state); /* * Mark the transaction dirty, even on error. This ensures the * transaction is aborted, which: * * 1.) releases the BUI and frees the BUD * 2.) shuts down the filesystem */ tp->t_flags |= XFS_TRANS_DIRTY; set_bit(XFS_LI_DIRTY, &budp->bud_item.li_flags); return error; } /* Sort bmap intents by inode. */ static int xfs_bmap_update_diff_items( void *priv, struct list_head *a, struct list_head *b) { struct xfs_bmap_intent *ba; struct xfs_bmap_intent *bb; ba = container_of(a, struct xfs_bmap_intent, bi_list); bb = container_of(b, struct xfs_bmap_intent, bi_list); return ba->bi_owner->i_ino - bb->bi_owner->i_ino; } /* Get an BUI. */ STATIC void * xfs_bmap_update_create_intent( struct xfs_trans *tp, unsigned int count) { struct xfs_bui_log_item *buip; ASSERT(count == XFS_BUI_MAX_FAST_EXTENTS); ASSERT(tp != NULL); buip = xfs_bui_init(tp->t_mountp); ASSERT(buip != NULL); /* * Get a log_item_desc to point at the new item. */ xfs_trans_add_item(tp, &buip->bui_item); return buip; } /* Set the map extent flags for this mapping. */ static void xfs_trans_set_bmap_flags( struct xfs_map_extent *bmap, enum xfs_bmap_intent_type type, int whichfork, xfs_exntst_t state) { bmap->me_flags = 0; switch (type) { case XFS_BMAP_MAP: case XFS_BMAP_UNMAP: bmap->me_flags = type; break; default: ASSERT(0); } if (state == XFS_EXT_UNWRITTEN) bmap->me_flags |= XFS_BMAP_EXTENT_UNWRITTEN; if (whichfork == XFS_ATTR_FORK) bmap->me_flags |= XFS_BMAP_EXTENT_ATTR_FORK; } /* Log bmap updates in the intent item. */ STATIC void xfs_bmap_update_log_item( struct xfs_trans *tp, void *intent, struct list_head *item) { struct xfs_bui_log_item *buip = intent; struct xfs_bmap_intent *bmap; uint next_extent; struct xfs_map_extent *map; bmap = container_of(item, struct xfs_bmap_intent, bi_list); tp->t_flags |= XFS_TRANS_DIRTY; set_bit(XFS_LI_DIRTY, &buip->bui_item.li_flags); /* * atomic_inc_return gives us the value after the increment; * we want to use it as an array index so we need to subtract 1 from * it. */ next_extent = atomic_inc_return(&buip->bui_next_extent) - 1; ASSERT(next_extent < buip->bui_format.bui_nextents); map = &buip->bui_format.bui_extents[next_extent]; map->me_owner = bmap->bi_owner->i_ino; map->me_startblock = bmap->bi_bmap.br_startblock; map->me_startoff = bmap->bi_bmap.br_startoff; map->me_len = bmap->bi_bmap.br_blockcount; xfs_trans_set_bmap_flags(map, bmap->bi_type, bmap->bi_whichfork, bmap->bi_bmap.br_state); } /* Get an BUD so we can process all the deferred rmap updates. */ STATIC void * xfs_bmap_update_create_done( struct xfs_trans *tp, void *intent, unsigned int count) { return xfs_trans_get_bud(tp, intent); } /* Process a deferred rmap update. */ STATIC int xfs_bmap_update_finish_item( struct xfs_trans *tp, struct list_head *item, void *done_item, void **state) { struct xfs_bmap_intent *bmap; xfs_filblks_t count; int error; bmap = container_of(item, struct xfs_bmap_intent, bi_list); count = bmap->bi_bmap.br_blockcount; error = xfs_trans_log_finish_bmap_update(tp, done_item, bmap->bi_type, bmap->bi_owner, bmap->bi_whichfork, bmap->bi_bmap.br_startoff, bmap->bi_bmap.br_startblock, &count, bmap->bi_bmap.br_state); if (!error && count > 0) { ASSERT(bmap->bi_type == XFS_BMAP_UNMAP); bmap->bi_bmap.br_blockcount = count; return -EAGAIN; } kmem_free(bmap); return error; } /* Abort all pending BUIs. */ STATIC void xfs_bmap_update_abort_intent( void *intent) { xfs_bui_release(intent); } /* Cancel a deferred rmap update. */ STATIC void xfs_bmap_update_cancel_item( struct list_head *item) { struct xfs_bmap_intent *bmap; bmap = container_of(item, struct xfs_bmap_intent, bi_list); kmem_free(bmap); } const struct xfs_defer_op_type xfs_bmap_update_defer_type = { .max_items = XFS_BUI_MAX_FAST_EXTENTS, .diff_items = xfs_bmap_update_diff_items, .create_intent = xfs_bmap_update_create_intent, .abort_intent = xfs_bmap_update_abort_intent, .log_item = xfs_bmap_update_log_item, .create_done = xfs_bmap_update_create_done, .finish_item = xfs_bmap_update_finish_item, .cancel_item = xfs_bmap_update_cancel_item, }; /* * Process a bmap update intent item that was recovered from the log. * We need to update some inode's bmbt. */ int xfs_bui_recover( struct xfs_trans *parent_tp, struct xfs_bui_log_item *buip) { int error = 0; unsigned int bui_type; struct xfs_map_extent *bmap; xfs_fsblock_t startblock_fsb; xfs_fsblock_t inode_fsb; xfs_filblks_t count; bool op_ok; struct xfs_bud_log_item *budp; enum xfs_bmap_intent_type type; int whichfork; xfs_exntst_t state; struct xfs_trans *tp; struct xfs_inode *ip = NULL; struct xfs_bmbt_irec irec; struct xfs_mount *mp = parent_tp->t_mountp; ASSERT(!test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)); /* Only one mapping operation per BUI... */ if (buip->bui_format.bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) { set_bit(XFS_BUI_RECOVERED, &buip->bui_flags); xfs_bui_release(buip); return -EIO; } /* * First check the validity of the extent described by the * BUI. If anything is bad, then toss the BUI. */ bmap = &buip->bui_format.bui_extents[0]; startblock_fsb = XFS_BB_TO_FSB(mp, XFS_FSB_TO_DADDR(mp, bmap->me_startblock)); inode_fsb = XFS_BB_TO_FSB(mp, XFS_FSB_TO_DADDR(mp, XFS_INO_TO_FSB(mp, bmap->me_owner))); switch (bmap->me_flags & XFS_BMAP_EXTENT_TYPE_MASK) { case XFS_BMAP_MAP: case XFS_BMAP_UNMAP: op_ok = true; break; default: op_ok = false; break; } if (!op_ok || startblock_fsb == 0 || bmap->me_len == 0 || inode_fsb == 0 || startblock_fsb >= mp->m_sb.sb_dblocks || bmap->me_len >= mp->m_sb.sb_agblocks || inode_fsb >= mp->m_sb.sb_dblocks || (bmap->me_flags & ~XFS_BMAP_EXTENT_FLAGS)) { /* * This will pull the BUI from the AIL and * free the memory associated with it. */ set_bit(XFS_BUI_RECOVERED, &buip->bui_flags); xfs_bui_release(buip); return -EIO; } error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK), 0, 0, &tp); if (error) return error; /* * Recovery stashes all deferred ops during intent processing and * finishes them on completion. Transfer current dfops state to this * transaction and transfer the result back before we return. */ xfs_defer_move(tp, parent_tp); budp = xfs_trans_get_bud(tp, buip); /* Grab the inode. */ error = xfs_iget(mp, tp, bmap->me_owner, 0, XFS_ILOCK_EXCL, &ip); if (error) goto err_inode; if (VFS_I(ip)->i_nlink == 0) xfs_iflags_set(ip, XFS_IRECOVERY); /* Process deferred bmap item. */ state = (bmap->me_flags & XFS_BMAP_EXTENT_UNWRITTEN) ? XFS_EXT_UNWRITTEN : XFS_EXT_NORM; whichfork = (bmap->me_flags & XFS_BMAP_EXTENT_ATTR_FORK) ? XFS_ATTR_FORK : XFS_DATA_FORK; bui_type = bmap->me_flags & XFS_BMAP_EXTENT_TYPE_MASK; switch (bui_type) { case XFS_BMAP_MAP: case XFS_BMAP_UNMAP: type = bui_type; break; default: XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp); error = -EFSCORRUPTED; goto err_inode; } xfs_trans_ijoin(tp, ip, 0); count = bmap->me_len; error = xfs_trans_log_finish_bmap_update(tp, budp, type, ip, whichfork, bmap->me_startoff, bmap->me_startblock, &count, state); if (error) goto err_inode; if (count > 0) { ASSERT(type == XFS_BMAP_UNMAP); irec.br_startblock = bmap->me_startblock; irec.br_blockcount = count; irec.br_startoff = bmap->me_startoff; irec.br_state = state; xfs_bmap_unmap_extent(tp, ip, &irec); } set_bit(XFS_BUI_RECOVERED, &buip->bui_flags); xfs_defer_move(parent_tp, tp); error = xfs_trans_commit(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_irele(ip); return error; err_inode: xfs_defer_move(parent_tp, tp); xfs_trans_cancel(tp); if (ip) { xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_irele(ip); } return error; }