/* * Copyright (C) 2010-2011 Neil Brown * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved. * * This file is released under the GPL. */ #include #include #include "md.h" #include "raid1.h" #include "raid5.h" #include "raid10.h" #include "bitmap.h" #include #define DM_MSG_PREFIX "raid" #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ /* * Minimum sectors of free reshape space per raid device */ #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096) static bool devices_handle_discard_safely = false; /* * The following flags are used by dm-raid.c to set up the array state. * They must be cleared before md_run is called. */ #define FirstUse 10 /* rdev flag */ struct raid_dev { /* * Two DM devices, one to hold metadata and one to hold the * actual data/parity. The reason for this is to not confuse * ti->len and give more flexibility in altering size and * characteristics. * * While it is possible for this device to be associated * with a different physical device than the data_dev, it * is intended for it to be the same. * |--------- Physical Device ---------| * |- meta_dev -|------ data_dev ------| */ struct dm_dev *meta_dev; struct dm_dev *data_dev; struct md_rdev rdev; }; /* * Bits for establishing rs->ctr_flags * * 1 = no flag value * 2 = flag with value */ #define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */ #define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */ #define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */ #define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */ #define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */ #define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */ #define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */ #define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */ #define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */ #define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */ #define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */ #define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */ /* New for v1.9.0 */ #define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid4/5/6/10! */ #define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */ #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */ /* * Flags for rs->ctr_flags field. */ #define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC) #define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC) #define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD) #define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP) #define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE) #define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE) #define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND) #define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY) #define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE) #define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE) #define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES) #define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT) #define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS) #define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET) #define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS) /* * Definitions of various constructor flags to * be used in checks of valid / invalid flags * per raid level. */ /* Define all any sync flags */ #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) /* Define flags for options without argument (e.g. 'nosync') */ #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ CTR_FLAG_RAID10_USE_NEAR_SETS) /* Define flags for options with one argument (e.g. 'delta_disks +2') */ #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ CTR_FLAG_WRITE_MOSTLY | \ CTR_FLAG_DAEMON_SLEEP | \ CTR_FLAG_MIN_RECOVERY_RATE | \ CTR_FLAG_MAX_RECOVERY_RATE | \ CTR_FLAG_MAX_WRITE_BEHIND | \ CTR_FLAG_STRIPE_CACHE | \ CTR_FLAG_REGION_SIZE | \ CTR_FLAG_RAID10_COPIES | \ CTR_FLAG_RAID10_FORMAT | \ CTR_FLAG_DELTA_DISKS | \ CTR_FLAG_DATA_OFFSET) /* Valid options definitions per raid level... */ /* "raid0" does only accept data offset */ #define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET) /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */ #define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ CTR_FLAG_REBUILD | \ CTR_FLAG_WRITE_MOSTLY | \ CTR_FLAG_DAEMON_SLEEP | \ CTR_FLAG_MIN_RECOVERY_RATE | \ CTR_FLAG_MAX_RECOVERY_RATE | \ CTR_FLAG_MAX_WRITE_BEHIND | \ CTR_FLAG_REGION_SIZE | \ CTR_FLAG_DATA_OFFSET) /* "raid10" does not accept any raid1 or stripe cache options */ #define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ CTR_FLAG_REBUILD | \ CTR_FLAG_DAEMON_SLEEP | \ CTR_FLAG_MIN_RECOVERY_RATE | \ CTR_FLAG_MAX_RECOVERY_RATE | \ CTR_FLAG_REGION_SIZE | \ CTR_FLAG_RAID10_COPIES | \ CTR_FLAG_RAID10_FORMAT | \ CTR_FLAG_DELTA_DISKS | \ CTR_FLAG_DATA_OFFSET | \ CTR_FLAG_RAID10_USE_NEAR_SETS) /* * "raid4/5/6" do not accept any raid1 or raid10 specific options * * "raid6" does not accept "nosync", because it is not guaranteed * that both parity and q-syndrome are being written properly with * any writes */ #define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \ CTR_FLAG_REBUILD | \ CTR_FLAG_DAEMON_SLEEP | \ CTR_FLAG_MIN_RECOVERY_RATE | \ CTR_FLAG_MAX_RECOVERY_RATE | \ CTR_FLAG_MAX_WRITE_BEHIND | \ CTR_FLAG_STRIPE_CACHE | \ CTR_FLAG_REGION_SIZE | \ CTR_FLAG_DELTA_DISKS | \ CTR_FLAG_DATA_OFFSET) #define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \ CTR_FLAG_REBUILD | \ CTR_FLAG_DAEMON_SLEEP | \ CTR_FLAG_MIN_RECOVERY_RATE | \ CTR_FLAG_MAX_RECOVERY_RATE | \ CTR_FLAG_MAX_WRITE_BEHIND | \ CTR_FLAG_STRIPE_CACHE | \ CTR_FLAG_REGION_SIZE | \ CTR_FLAG_DELTA_DISKS | \ CTR_FLAG_DATA_OFFSET) /* ...valid options definitions per raid level */ /* * Flags for rs->runtime_flags field * (RT_FLAG prefix meaning "runtime flag") * * These are all internal and used to define runtime state, * e.g. to prevent another resume from preresume processing * the raid set all over again. */ #define RT_FLAG_RS_PRERESUMED 0 #define RT_FLAG_RS_RESUMED 1 #define RT_FLAG_RS_BITMAP_LOADED 2 #define RT_FLAG_UPDATE_SBS 3 #define RT_FLAG_RESHAPE_RS 4 /* Array elements of 64 bit needed for rebuild/write_mostly bits */ #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) /* * raid set level, layout and chunk sectors backup/restore */ struct rs_layout { int new_level; int new_layout; int new_chunk_sectors; }; struct raid_set { struct dm_target *ti; uint32_t bitmap_loaded; uint32_t stripe_cache_entries; unsigned long ctr_flags; unsigned long runtime_flags; uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; int raid_disks; int delta_disks; int data_offset; int raid10_copies; struct mddev md; struct raid_type *raid_type; struct dm_target_callbacks callbacks; struct raid_dev dev[0]; }; static void rs_config_backup(struct raid_set *rs, struct rs_layout *l) { struct mddev *mddev = &rs->md; l->new_level = mddev->new_level; l->new_layout = mddev->new_layout; l->new_chunk_sectors = mddev->new_chunk_sectors; } static void rs_config_restore(struct raid_set *rs, struct rs_layout *l) { struct mddev *mddev = &rs->md; mddev->new_level = l->new_level; mddev->new_layout = l->new_layout; mddev->new_chunk_sectors = l->new_chunk_sectors; } /* raid10 algorithms (i.e. formats) */ #define ALGORITHM_RAID10_DEFAULT 0 #define ALGORITHM_RAID10_NEAR 1 #define ALGORITHM_RAID10_OFFSET 2 #define ALGORITHM_RAID10_FAR 3 /* Supported raid types and properties. */ static struct raid_type { const char *name; /* RAID algorithm. */ const char *descr; /* Descriptor text for logging. */ const unsigned parity_devs; /* # of parity devices. */ const unsigned minimal_devs; /* minimal # of devices in set. */ const unsigned level; /* RAID level. */ const unsigned algorithm; /* RAID algorithm. */ } raid_types[] = { {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, {"raid4", "raid4 (dedicated last parity disk)", 1, 2, 4, ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */ {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} }; /* True, if @v is in inclusive range [@min, @max] */ static bool __within_range(long v, long min, long max) { return v >= min && v <= max; } /* All table line arguments are defined here */ static struct arg_name_flag { const unsigned long flag; const char *name; } __arg_name_flags[] = { { CTR_FLAG_SYNC, "sync"}, { CTR_FLAG_NOSYNC, "nosync"}, { CTR_FLAG_REBUILD, "rebuild"}, { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, { CTR_FLAG_WRITE_MOSTLY, "writemostly"}, { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, { CTR_FLAG_REGION_SIZE, "region_size"}, { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, { CTR_FLAG_DATA_OFFSET, "data_offset"}, { CTR_FLAG_DELTA_DISKS, "delta_disks"}, { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, }; /* Return argument name string for given @flag */ static const char *dm_raid_arg_name_by_flag(const uint32_t flag) { if (hweight32(flag) == 1) { struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags); while (anf-- > __arg_name_flags) if (flag & anf->flag) return anf->name; } else DMERR("%s called with more than one flag!", __func__); return NULL; } /* * bool helpers to test for various raid levels of a raid set, * is. it's level as reported by the superblock rather than * the requested raid_type passed to the constructor. */ /* Return true, if raid set in @rs is raid0 */ static bool rs_is_raid0(struct raid_set *rs) { return !rs->md.level; } /* Return true, if raid set in @rs is raid1 */ static bool rs_is_raid1(struct raid_set *rs) { return rs->md.level == 1; } /* Return true, if raid set in @rs is raid10 */ static bool rs_is_raid10(struct raid_set *rs) { return rs->md.level == 10; } /* Return true, if raid set in @rs is level 4, 5 or 6 */ static bool rs_is_raid456(struct raid_set *rs) { return __within_range(rs->md.level, 4, 6); } /* Return true, if raid set in @rs is reshapable */ static unsigned int __is_raid10_far(int layout); static bool rs_is_reshapable(struct raid_set *rs) { return rs_is_raid456(rs) || (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout)); } /* Return true, if raid set in @rs is recovering */ static bool rs_is_recovering(struct raid_set *rs) { smp_rmb(); return rs->md.recovery_cp != MaxSector; } /* Return true, if raid set in @rs is reshaping */ static bool rs_is_reshaping(struct raid_set *rs) { smp_rmb(); return rs->md.reshape_position != MaxSector; } /* * bool helpers to test for various raid levels of a raid type */ /* Return true, if raid type in @rt is raid0 */ static bool rt_is_raid0(struct raid_type *rt) { return !rt->level; } /* Return true, if raid type in @rt is raid1 */ static bool rt_is_raid1(struct raid_type *rt) { return rt->level == 1; } /* Return true, if raid type in @rt is raid10 */ static bool rt_is_raid10(struct raid_type *rt) { return rt->level == 10; } /* Return true, if raid type in @rt is raid4/5 */ static bool rt_is_raid45(struct raid_type *rt) { return __within_range(rt->level, 4, 5); } /* Return true, if raid type in @rt is raid6 */ static bool rt_is_raid6(struct raid_type *rt) { return rt->level == 6; } /* Return true, if raid type in @rt is raid4/5/6 */ static bool rt_is_raid456(struct raid_type *rt) { return __within_range(rt->level, 4, 6); } /* END: raid level bools */ /* Return valid ctr flags for the raid level of @rs */ static unsigned long __valid_flags(struct raid_set *rs) { if (rt_is_raid0(rs->raid_type)) return RAID0_VALID_FLAGS; else if (rt_is_raid1(rs->raid_type)) return RAID1_VALID_FLAGS; else if (rt_is_raid10(rs->raid_type)) return RAID10_VALID_FLAGS; else if (rt_is_raid45(rs->raid_type)) return RAID45_VALID_FLAGS; else if (rt_is_raid6(rs->raid_type)) return RAID6_VALID_FLAGS; return ~0; } /* * Check for valid flags set on @rs * * Has to be called after parsing of the ctr flags! */ static int rs_check_for_valid_flags(struct raid_set *rs) { if (rs->ctr_flags & ~__valid_flags(rs)) { rs->ti->error = "Invalid flags combination"; return -EINVAL; } return 0; } /* MD raid10 bit definitions and helpers */ #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ /* Return md raid10 near copies for @layout */ static unsigned int __raid10_near_copies(int layout) { return layout & 0xFF; } /* Return md raid10 far copies for @layout */ static unsigned int __raid10_far_copies(int layout) { return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); } /* Return true if md raid10 offset for @layout */ static unsigned int __is_raid10_offset(int layout) { return layout & RAID10_OFFSET; } /* Return true if md raid10 near for @layout */ static unsigned int __is_raid10_near(int layout) { return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1; } /* Return true if md raid10 far for @layout */ static unsigned int __is_raid10_far(int layout) { return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1; } /* Return md raid10 layout string for @layout */ static const char *raid10_md_layout_to_format(int layout) { /* * Bit 16 stands for "offset" * (i.e. adjacent stripes hold copies) * * Refer to MD's raid10.c for details */ if (__is_raid10_offset(layout)) return "offset"; if (__raid10_near_copies(layout) > 1) return "near"; WARN_ON(__raid10_far_copies(layout) < 2); return "far"; } /* Return md raid10 algorithm for @name */ static const int raid10_name_to_format(const char *name) { if (!strcasecmp(name, "near")) return ALGORITHM_RAID10_NEAR; else if (!strcasecmp(name, "offset")) return ALGORITHM_RAID10_OFFSET; else if (!strcasecmp(name, "far")) return ALGORITHM_RAID10_FAR; return -EINVAL; } /* Return md raid10 copies for @layout */ static unsigned int raid10_md_layout_to_copies(int layout) { return __raid10_near_copies(layout) > 1 ? __raid10_near_copies(layout) : __raid10_far_copies(layout); } /* Return md raid10 format id for @format string */ static int raid10_format_to_md_layout(struct raid_set *rs, unsigned int algorithm, unsigned int copies) { unsigned int n = 1, f = 1, r = 0; /* * MD resilienece flaw: * * enabling use_far_sets for far/offset formats causes copies * to be colocated on the same devs together with their origins! * * -> disable it for now in the definition above */ if (algorithm == ALGORITHM_RAID10_DEFAULT || algorithm == ALGORITHM_RAID10_NEAR) n = copies; else if (algorithm == ALGORITHM_RAID10_OFFSET) { f = copies; r = RAID10_OFFSET; if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) r |= RAID10_USE_FAR_SETS; } else if (algorithm == ALGORITHM_RAID10_FAR) { f = copies; r = !RAID10_OFFSET; if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) r |= RAID10_USE_FAR_SETS; } else return -EINVAL; return r | (f << RAID10_FAR_COPIES_SHIFT) | n; } /* END: MD raid10 bit definitions and helpers */ /* Check for any of the raid10 algorithms */ static int __got_raid10(struct raid_type *rtp, const int layout) { if (rtp->level == 10) { switch (rtp->algorithm) { case ALGORITHM_RAID10_DEFAULT: case ALGORITHM_RAID10_NEAR: return __is_raid10_near(layout); case ALGORITHM_RAID10_OFFSET: return __is_raid10_offset(layout); case ALGORITHM_RAID10_FAR: return __is_raid10_far(layout); default: break; } } return 0; } /* Return raid_type for @name */ static struct raid_type *get_raid_type(const char *name) { struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); while (rtp-- > raid_types) if (!strcasecmp(rtp->name, name)) return rtp; return NULL; } /* Return raid_type for @name based derived from @level and @layout */ static struct raid_type *get_raid_type_by_ll(const int level, const int layout) { struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); while (rtp-- > raid_types) { /* RAID10 special checks based on @layout flags/properties */ if (rtp->level == level && (__got_raid10(rtp, layout) || rtp->algorithm == layout)) return rtp; } return NULL; } /* * Conditionally change bdev capacity of @rs * in case of a disk add/remove reshape */ static void rs_set_capacity(struct raid_set *rs) { struct mddev *mddev = &rs->md; /* Make sure we access most actual mddev properties */ smp_rmb(); if (rs->ti->len != mddev->array_sectors && !rs_is_reshaping(rs)) { struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table)); set_capacity(gendisk, mddev->array_sectors); revalidate_disk(gendisk); } } /* * Set the mddev properties in @rs to the current * ones retrieved from the freshest superblock */ static void rs_set_cur(struct raid_set *rs) { struct mddev *mddev = &rs->md; mddev->new_level = mddev->level; mddev->new_layout = mddev->layout; mddev->new_chunk_sectors = mddev->chunk_sectors; } /* * Set the mddev properties in @rs to the new * ones requested by the ctr */ static void rs_set_new(struct raid_set *rs) { struct mddev *mddev = &rs->md; mddev->level = mddev->new_level; mddev->layout = mddev->new_layout; mddev->chunk_sectors = mddev->new_chunk_sectors; mddev->raid_disks = rs->raid_disks; mddev->delta_disks = 0; } static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs) { unsigned i; struct raid_set *rs; if (raid_devs <= raid_type->parity_devs) { ti->error = "Insufficient number of devices"; return ERR_PTR(-EINVAL); } rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL); if (!rs) { ti->error = "Cannot allocate raid context"; return ERR_PTR(-ENOMEM); } mddev_init(&rs->md); rs->raid_disks = raid_devs; rs->delta_disks = 0; rs->ti = ti; rs->raid_type = raid_type; rs->stripe_cache_entries = 256; rs->md.raid_disks = raid_devs; rs->md.level = raid_type->level; rs->md.new_level = rs->md.level; rs->md.layout = raid_type->algorithm; rs->md.new_layout = rs->md.layout; rs->md.delta_disks = 0; rs->md.recovery_cp = rs_is_raid0(rs) ? MaxSector : 0; for (i = 0; i < raid_devs; i++) md_rdev_init(&rs->dev[i].rdev); /* * Remaining items to be initialized by further RAID params: * rs->md.persistent * rs->md.external * rs->md.chunk_sectors * rs->md.new_chunk_sectors * rs->md.dev_sectors */ return rs; } static void raid_set_free(struct raid_set *rs) { int i; for (i = 0; i < rs->md.raid_disks; i++) { if (rs->dev[i].meta_dev) dm_put_device(rs->ti, rs->dev[i].meta_dev); md_rdev_clear(&rs->dev[i].rdev); if (rs->dev[i].data_dev) dm_put_device(rs->ti, rs->dev[i].data_dev); } kfree(rs); } /* * For every device we have two words * : meta device name or '-' if missing * : data device name or '-' if missing * * The following are permitted: * - - * - * * * The following is not allowed: * - * * This code parses those words. If there is a failure, * the caller must use raid_set_free() to unwind the operations. */ static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) { int i; int rebuild = 0; int metadata_available = 0; int r = 0; const char *arg; /* Put off the number of raid devices argument to get to dev pairs */ arg = dm_shift_arg(as); if (!arg) return -EINVAL; for (i = 0; i < rs->md.raid_disks; i++) { rs->dev[i].rdev.raid_disk = i; rs->dev[i].meta_dev = NULL; rs->dev[i].data_dev = NULL; /* * There are no offsets, since there is a separate device * for data and metadata. */ rs->dev[i].rdev.data_offset = 0; rs->dev[i].rdev.mddev = &rs->md; arg = dm_shift_arg(as); if (!arg) return -EINVAL; if (strcmp(arg, "-")) { r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), &rs->dev[i].meta_dev); if (r) { rs->ti->error = "RAID metadata device lookup failure"; return r; } rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); if (!rs->dev[i].rdev.sb_page) { rs->ti->error = "Failed to allocate superblock page"; return -ENOMEM; } } arg = dm_shift_arg(as); if (!arg) return -EINVAL; if (!strcmp(arg, "-")) { if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && (!rs->dev[i].rdev.recovery_offset)) { rs->ti->error = "Drive designated for rebuild not specified"; return -EINVAL; } if (rs->dev[i].meta_dev) { rs->ti->error = "No data device supplied with metadata device"; return -EINVAL; } continue; } r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), &rs->dev[i].data_dev); if (r) { rs->ti->error = "RAID device lookup failure"; return r; } if (rs->dev[i].meta_dev) { metadata_available = 1; rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; } rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) rebuild++; } if (metadata_available) { rs->md.external = 0; rs->md.persistent = 1; rs->md.major_version = 2; } else if (rebuild && !rs->md.recovery_cp) { /* * Without metadata, we will not be able to tell if the array * is in-sync or not - we must assume it is not. Therefore, * it is impossible to rebuild a drive. * * Even if there is metadata, the on-disk information may * indicate that the array is not in-sync and it will then * fail at that time. * * User could specify 'nosync' option if desperate. */ rs->ti->error = "Unable to rebuild drive while array is not in-sync"; return -EINVAL; } return 0; } /* * validate_region_size * @rs * @region_size: region size in sectors. If 0, pick a size (4MiB default). * * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. * * Returns: 0 on success, -EINVAL on failure. */ static int validate_region_size(struct raid_set *rs, unsigned long region_size) { unsigned long min_region_size = rs->ti->len / (1 << 21); if (!region_size) { /* * Choose a reasonable default. All figures in sectors. */ if (min_region_size > (1 << 13)) { /* If not a power of 2, make it the next power of 2 */ region_size = roundup_pow_of_two(min_region_size); DMINFO("Choosing default region size of %lu sectors", region_size); } else { DMINFO("Choosing default region size of 4MiB"); region_size = 1 << 13; /* sectors */ } } else { /* * Validate user-supplied value. */ if (region_size > rs->ti->len) { rs->ti->error = "Supplied region size is too large"; return -EINVAL; } if (region_size < min_region_size) { DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", region_size, min_region_size); rs->ti->error = "Supplied region size is too small"; return -EINVAL; } if (!is_power_of_2(region_size)) { rs->ti->error = "Region size is not a power of 2"; return -EINVAL; } if (region_size < rs->md.chunk_sectors) { rs->ti->error = "Region size is smaller than the chunk size"; return -EINVAL; } } /* * Convert sectors to bytes. */ rs->md.bitmap_info.chunksize = (region_size << 9); return 0; } /* * validate_raid_redundancy * @rs * * Determine if there are enough devices in the array that haven't * failed (or are being rebuilt) to form a usable array. * * Returns: 0 on success, -EINVAL on failure. */ static int validate_raid_redundancy(struct raid_set *rs) { unsigned i, rebuild_cnt = 0; unsigned rebuilds_per_group = 0, copies; unsigned group_size, last_group_start; for (i = 0; i < rs->md.raid_disks; i++) if (!test_bit(In_sync, &rs->dev[i].rdev.flags) || !rs->dev[i].rdev.sb_page) rebuild_cnt++; switch (rs->raid_type->level) { case 1: if (rebuild_cnt >= rs->md.raid_disks) goto too_many; break; case 4: case 5: case 6: if (rebuild_cnt > rs->raid_type->parity_devs) goto too_many; break; case 10: copies = raid10_md_layout_to_copies(rs->md.new_layout); if (rebuild_cnt < copies) break; /* * It is possible to have a higher rebuild count for RAID10, * as long as the failed devices occur in different mirror * groups (i.e. different stripes). * * When checking "near" format, make sure no adjacent devices * have failed beyond what can be handled. In addition to the * simple case where the number of devices is a multiple of the * number of copies, we must also handle cases where the number * of devices is not a multiple of the number of copies. * E.g. dev1 dev2 dev3 dev4 dev5 * A A B B C * C D D E E */ if (__is_raid10_near(rs->md.new_layout)) { for (i = 0; i < rs->raid_disks; i++) { if (!(i % copies)) rebuilds_per_group = 0; if ((!rs->dev[i].rdev.sb_page || !test_bit(In_sync, &rs->dev[i].rdev.flags)) && (++rebuilds_per_group >= copies)) goto too_many; } break; } /* * When checking "far" and "offset" formats, we need to ensure * that the device that holds its copy is not also dead or * being rebuilt. (Note that "far" and "offset" formats only * support two copies right now. These formats also only ever * use the 'use_far_sets' variant.) * * This check is somewhat complicated by the need to account * for arrays that are not a multiple of (far) copies. This * results in the need to treat the last (potentially larger) * set differently. */ group_size = (rs->md.raid_disks / copies); last_group_start = (rs->md.raid_disks / group_size) - 1; last_group_start *= group_size; for (i = 0; i < rs->md.raid_disks; i++) { if (!(i % copies) && !(i > last_group_start)) rebuilds_per_group = 0; if ((!rs->dev[i].rdev.sb_page || !test_bit(In_sync, &rs->dev[i].rdev.flags)) && (++rebuilds_per_group >= copies)) goto too_many; } break; default: if (rebuild_cnt) return -EINVAL; } return 0; too_many: return -EINVAL; } /* * Possible arguments are... * [optional_args] * * Argument definitions * The number of sectors per disk that * will form the "stripe" * [[no]sync] Force or prevent recovery of the * entire array * [rebuild ] Rebuild the drive indicated by the index * [daemon_sleep ] Time between bitmap daemon work to * clear bits * [min_recovery_rate ] Throttle RAID initialization * [max_recovery_rate ] Throttle RAID initialization * [write_mostly ] Indicate a write mostly drive via index * [max_write_behind ] See '-write-behind=' (man mdadm) * [stripe_cache ] Stripe cache size for higher RAIDs * [region_size ] Defines granularity of bitmap * * RAID10-only options: * [raid10_copies <# copies>] Number of copies. (Default: 2) * [raid10_format ] Layout algorithm. (Default: near) */ static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, unsigned num_raid_params) { int value, raid10_format = ALGORITHM_RAID10_DEFAULT; unsigned raid10_copies = 2; unsigned i; unsigned region_size = 0; sector_t max_io_len; const char *arg, *key; struct raid_dev *rd; struct raid_type *rt = rs->raid_type; arg = dm_shift_arg(as); num_raid_params--; /* Account for chunk_size argument */ if (kstrtoint(arg, 10, &value) < 0) { rs->ti->error = "Bad numerical argument given for chunk_size"; return -EINVAL; } /* * First, parse the in-order required arguments * "chunk_size" is the only argument of this type. */ if (rt_is_raid1(rt)) { if (value) DMERR("Ignoring chunk size parameter for RAID 1"); value = 0; } else if (!is_power_of_2(value)) { rs->ti->error = "Chunk size must be a power of 2"; return -EINVAL; } else if (value < 8) { rs->ti->error = "Chunk size value is too small"; return -EINVAL; } rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; /* * We set each individual device as In_sync with a completed * 'recovery_offset'. If there has been a device failure or * replacement then one of the following cases applies: * * 1) User specifies 'rebuild'. * - Device is reset when param is read. * 2) A new device is supplied. * - No matching superblock found, resets device. * 3) Device failure was transient and returns on reload. * - Failure noticed, resets device for bitmap replay. * 4) Device hadn't completed recovery after previous failure. * - Superblock is read and overrides recovery_offset. * * What is found in the superblocks of the devices is always * authoritative, unless 'rebuild' or '[no]sync' was specified. */ for (i = 0; i < rs->md.raid_disks; i++) { set_bit(In_sync, &rs->dev[i].rdev.flags); rs->dev[i].rdev.recovery_offset = MaxSector; } /* * Second, parse the unordered optional arguments */ for (i = 0; i < num_raid_params; i++) { key = dm_shift_arg(as); if (!key) { rs->ti->error = "Not enough raid parameters given"; return -EINVAL; } if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) { rs->ti->error = "Only one 'nosync' argument allowed"; return -EINVAL; } rs->md.recovery_cp = MaxSector; continue; } if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) { rs->ti->error = "Only one 'sync' argument allowed"; return -EINVAL; } rs->md.recovery_cp = 0; continue; } if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; return -EINVAL; } continue; } arg = dm_shift_arg(as); i++; /* Account for the argument pairs */ if (!arg) { rs->ti->error = "Wrong number of raid parameters given"; return -EINVAL; } /* * Parameters that take a string value are checked here. */ if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { rs->ti->error = "Only one 'raid10_format' argument pair allowed"; return -EINVAL; } if (!rt_is_raid10(rt)) { rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; return -EINVAL; } raid10_format = raid10_name_to_format(arg); if (raid10_format < 0) { rs->ti->error = "Invalid 'raid10_format' value given"; return raid10_format; } continue; } if (kstrtoint(arg, 10, &value) < 0) { rs->ti->error = "Bad numerical argument given in raid params"; return -EINVAL; } if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { /* * "rebuild" is being passed in by userspace to provide * indexes of replaced devices and to set up additional * devices on raid level takeover. */ if (!__within_range(value, 0, rs->raid_disks - 1)) { rs->ti->error = "Invalid rebuild index given"; return -EINVAL; } if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { rs->ti->error = "rebuild for this index already given"; return -EINVAL; } rd = rs->dev + value; clear_bit(In_sync, &rd->rdev.flags); clear_bit(Faulty, &rd->rdev.flags); rd->rdev.recovery_offset = 0; set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags); } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { if (!rt_is_raid1(rt)) { rs->ti->error = "write_mostly option is only valid for RAID1"; return -EINVAL; } if (!__within_range(value, 0, rs->md.raid_disks - 1)) { rs->ti->error = "Invalid write_mostly index given"; return -EINVAL; } set_bit(WriteMostly, &rs->dev[value].rdev.flags); set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { if (!rt_is_raid1(rt)) { rs->ti->error = "max_write_behind option is only valid for RAID1"; return -EINVAL; } if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { rs->ti->error = "Only one max_write_behind argument pair allowed"; return -EINVAL; } /* * In device-mapper, we specify things in sectors, but * MD records this value in kB */ value /= 2; if (value > COUNTER_MAX) { rs->ti->error = "Max write-behind limit out of range"; return -EINVAL; } rs->md.bitmap_info.max_write_behind = value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { rs->ti->error = "Only one daemon_sleep argument pair allowed"; return -EINVAL; } if (!value || (value > MAX_SCHEDULE_TIMEOUT)) { rs->ti->error = "daemon sleep period out of range"; return -EINVAL; } rs->md.bitmap_info.daemon_sleep = value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { /* Userspace passes new data_offset after having extended the the data image LV */ if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { rs->ti->error = "Only one data_offset argument pair allowed"; return -EINVAL; } /* Ensure sensible data offset */ if (value < 0) { rs->ti->error = "Bogus data_offset value"; return -EINVAL; } rs->data_offset = value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { /* Define the +/-# of disks to add to/remove from the given raid set */ if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { rs->ti->error = "Only one delta_disks argument pair allowed"; return -EINVAL; } /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { rs->ti->error = "Too many delta_disk requested"; return -EINVAL; } rs->delta_disks = value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { rs->ti->error = "Only one stripe_cache argument pair allowed"; return -EINVAL; } if (!rt_is_raid456(rt)) { rs->ti->error = "Inappropriate argument: stripe_cache"; return -EINVAL; } rs->stripe_cache_entries = value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { rs->ti->error = "Only one min_recovery_rate argument pair allowed"; return -EINVAL; } if (value > INT_MAX) { rs->ti->error = "min_recovery_rate out of range"; return -EINVAL; } rs->md.sync_speed_min = (int)value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { rs->ti->error = "Only one max_recovery_rate argument pair allowed"; return -EINVAL; } if (value > INT_MAX) { rs->ti->error = "max_recovery_rate out of range"; return -EINVAL; } rs->md.sync_speed_max = (int)value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { rs->ti->error = "Only one region_size argument pair allowed"; return -EINVAL; } region_size = value; } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { rs->ti->error = "Only one raid10_copies argument pair allowed"; return -EINVAL; } if (!__within_range(value, 2, rs->md.raid_disks)) { rs->ti->error = "Bad value for 'raid10_copies'"; return -EINVAL; } raid10_copies = value; } else { DMERR("Unable to parse RAID parameter: %s", key); rs->ti->error = "Unable to parse RAID parameter"; return -EINVAL; } } if (validate_region_size(rs, region_size)) return -EINVAL; if (rs->md.chunk_sectors) max_io_len = rs->md.chunk_sectors; else max_io_len = region_size; if (dm_set_target_max_io_len(rs->ti, max_io_len)) return -EINVAL; if (rt_is_raid10(rt)) { if (raid10_copies > rs->md.raid_disks) { rs->ti->error = "Not enough devices to satisfy specification"; return -EINVAL; } rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); if (rs->md.new_layout < 0) { rs->ti->error = "Error getting raid10 format"; return rs->md.new_layout; } rt = get_raid_type_by_ll(10, rs->md.new_layout); if (!rt) { rs->ti->error = "Failed to recognize new raid10 layout"; return -EINVAL; } if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || rt->algorithm == ALGORITHM_RAID10_NEAR) && test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; return -EINVAL; } } rs->raid10_copies = raid10_copies; /* Assume there are no metadata devices until the drives are parsed */ rs->md.persistent = 0; rs->md.external = 1; /* Check, if any invalid ctr arguments have been passed in for the raid level */ return rs_check_for_valid_flags(rs); } /* Set raid4/5/6 cache size */ static int rs_set_raid456_stripe_cache(struct raid_set *rs) { int r; struct r5conf *conf; struct mddev *mddev = &rs->md; uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2; uint32_t nr_stripes = rs->stripe_cache_entries; if (!rt_is_raid456(rs->raid_type)) { rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size"; return -EINVAL; } if (nr_stripes < min_stripes) { DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size", nr_stripes, min_stripes); nr_stripes = min_stripes; } conf = mddev->private; if (!conf) { rs->ti->error = "Cannot change stripe_cache size on inactive RAID set"; return -EINVAL; } /* Try setting number of stripes in raid456 stripe cache */ if (conf->min_nr_stripes != nr_stripes) { r = raid5_set_cache_size(mddev, nr_stripes); if (r) { rs->ti->error = "Failed to set raid4/5/6 stripe cache size"; return r; } DMINFO("%u stripe cache entries", nr_stripes); } return 0; } /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ static unsigned int mddev_data_stripes(struct raid_set *rs) { return rs->md.raid_disks - rs->raid_type->parity_devs; } /* Return # of data stripes of @rs (i.e. as of ctr) */ static unsigned int rs_data_stripes(struct raid_set *rs) { return rs->raid_disks - rs->raid_type->parity_devs; } /* Calculate the sectors per device and per array used for @rs */ static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev) { int delta_disks; unsigned int data_stripes; struct mddev *mddev = &rs->md; struct md_rdev *rdev; sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len; sector_t cur_dev_sectors = rs->dev[0].rdev.sectors; if (use_mddev) { delta_disks = mddev->delta_disks; data_stripes = mddev_data_stripes(rs); } else { delta_disks = rs->delta_disks; data_stripes = rs_data_stripes(rs); } /* Special raid1 case w/o delta_disks support (yet) */ if (rt_is_raid1(rs->raid_type)) ; else if (rt_is_raid10(rs->raid_type)) { if (rs->raid10_copies < 2 || delta_disks < 0) { rs->ti->error = "Bogus raid10 data copies or delta disks"; return EINVAL; } dev_sectors *= rs->raid10_copies; if (sector_div(dev_sectors, data_stripes)) goto bad; array_sectors = (data_stripes + delta_disks) * dev_sectors; if (sector_div(array_sectors, rs->raid10_copies)) goto bad; } else if (sector_div(dev_sectors, data_stripes)) goto bad; else /* Striped layouts */ array_sectors = (data_stripes + delta_disks) * dev_sectors; rdev_for_each(rdev, mddev) rdev->sectors = dev_sectors; mddev->array_sectors = array_sectors; mddev->dev_sectors = dev_sectors; if (!rs_is_raid0(rs) && dev_sectors > cur_dev_sectors) mddev->recovery_cp = dev_sectors; return 0; bad: rs->ti->error = "Target length not divisible by number of data devices"; return EINVAL; } static void do_table_event(struct work_struct *ws) { struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); rs_set_capacity(rs); dm_table_event(rs->ti->table); } static int raid_is_congested(struct dm_target_callbacks *cb, int bits) { struct raid_set *rs = container_of(cb, struct raid_set, callbacks); return mddev_congested(&rs->md, bits); } /* * Make sure a valid takover (level switch) is being requested on @rs * * Conversions of raid sets from one MD personality to another * have to conform to restrictions which are enforced here. * * Degration is already checked for in rs_check_conversion() below. */ static int rs_check_takeover(struct raid_set *rs) { struct mddev *mddev = &rs->md; unsigned int near_copies; smp_rmb(); if (rs->md.degraded) { rs->ti->error = "Can't takeover degraded raid set"; return -EPERM; } if (rs_is_reshaping(rs)) { rs->ti->error = "Can't takeover reshaping raid set"; return -EPERM; } switch (mddev->level) { case 0: /* raid0 -> raid1/5 with one disk */ if ((mddev->new_level == 1 || mddev->new_level == 5) && mddev->raid_disks == 1) return 0; /* raid0 -> raid10 */ if (mddev->new_level == 10 && !(rs->raid_disks % mddev->raid_disks)) return 0; /* raid0 with multiple disks -> raid4/5/6 */ if (__within_range(mddev->new_level, 4, 6) && mddev->new_layout == ALGORITHM_PARITY_N && mddev->raid_disks > 1) return 0; break; case 10: /* Can't takeover raid10_offset! */ if (__is_raid10_offset(mddev->layout)) break; near_copies = __raid10_near_copies(mddev->layout); /* raid10* -> raid0 */ if (mddev->new_level == 0) { /* Can takeover raid10_near with raid disks divisable by data copies! */ if (near_copies > 1 && !(mddev->raid_disks % near_copies)) { mddev->raid_disks /= near_copies; mddev->delta_disks = mddev->raid_disks; return 0; } /* Can takeover raid10_far */ if (near_copies == 1 && __raid10_far_copies(mddev->layout) > 1) return 0; break; } /* raid10_{near,far} -> raid1 */ if (mddev->new_level == 1 && max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks) return 0; /* raid10_{near,far} with 2 disks -> raid4/5 */ if (__within_range(mddev->new_level, 4, 5) && mddev->raid_disks == 2) return 0; break; case 1: /* raid1 with 2 disks -> raid4/5 */ if (__within_range(mddev->new_level, 4, 5) && mddev->raid_disks == 2) { mddev->degraded = 1; return 0; } /* raid1 -> raid0 */ if (mddev->new_level == 0 && mddev->raid_disks == 1) return 0; /* raid1 -> raid10 */ if (mddev->new_level == 10) return 0; break; case 4: /* raid4 -> raid0 */ if (mddev->new_level == 0) return 0; /* raid4 -> raid1/5 with 2 disks */ if ((mddev->new_level == 1 || mddev->new_level == 5) && mddev->raid_disks == 2) return 0; /* raid4 -> raid5/6 with parity N */ if (__within_range(mddev->new_level, 5, 6) && mddev->layout == ALGORITHM_PARITY_N) return 0; break; case 5: /* raid5 with parity N -> raid0 */ if (mddev->new_level == 0 && mddev->layout == ALGORITHM_PARITY_N) return 0; /* raid5 with parity N -> raid4 */ if (mddev->new_level == 4 && mddev->layout == ALGORITHM_PARITY_N) return 0; /* raid5 with 2 disks -> raid1/4/10 */ if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && mddev->raid_disks == 2) return 0; /* raid5 with parity N -> raid6 with parity N */ if (mddev->new_level == 6 && ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) return 0; break; case 6: /* raid6 with parity N -> raid0 */ if (mddev->new_level == 0 && mddev->layout == ALGORITHM_PARITY_N) return 0; /* raid6 with parity N -> raid4 */ if (mddev->new_level == 4 && mddev->layout == ALGORITHM_PARITY_N) return 0; /* raid6_*_n with parity N -> raid5_* */ if (mddev->new_level == 5 && ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) return 0; default: break; } rs->ti->error = "takeover not possible"; return -EINVAL; } /* True if @rs requested to be taken over */ static bool rs_takeover_requested(struct raid_set *rs) { return rs->md.new_level != rs->md.level; } /* True if @rs is requested to reshape by ctr */ static bool rs_reshape_requested(struct raid_set *rs) { struct mddev *mddev = &rs->md; if (!mddev->level) return false; return !__is_raid10_far(mddev->new_layout) && mddev->new_level == mddev->level && (mddev->new_layout != mddev->layout || mddev->new_chunk_sectors != mddev->chunk_sectors || rs->raid_disks + rs->delta_disks != mddev->raid_disks); } /* Features */ #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ /* State flags for sb->flags */ #define SB_FLAG_RESHAPE_ACTIVE 0x1 #define SB_FLAG_RESHAPE_BACKWARDS 0x2 /* * This structure is never routinely used by userspace, unlike md superblocks. * Devices with this superblock should only ever be accessed via device-mapper. */ #define DM_RAID_MAGIC 0x64526D44 struct dm_raid_superblock { __le32 magic; /* "DmRd" */ __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ __le32 array_position; /* The position of this drive in the raid set */ __le64 events; /* Incremented by md when superblock updated */ __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ /* indicate failures (see extension below) */ /* * This offset tracks the progress of the repair or replacement of * an individual drive. */ __le64 disk_recovery_offset; /* * This offset tracks the progress of the initial raid set * synchronisation/parity calculation. */ __le64 array_resync_offset; /* * raid characteristics */ __le32 level; __le32 layout; __le32 stripe_sectors; /******************************************************************** * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! * * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist */ __le32 flags; /* Flags defining array states for reshaping */ /* * This offset tracks the progress of a raid * set reshape in order to be able to restart it */ __le64 reshape_position; /* * These define the properties of the array in case of an interrupted reshape */ __le32 new_level; __le32 new_layout; __le32 new_stripe_sectors; __le32 delta_disks; __le64 array_sectors; /* Array size in sectors */ /* * Sector offsets to data on devices (reshaping). * Needed to support out of place reshaping, thus * not writing over any stripes whilst converting * them from old to new layout */ __le64 data_offset; __le64 new_data_offset; __le64 sectors; /* Used device size in sectors */ /* * Additonal Bit field of devices indicating failures to support * up to 256 devices with the 1.9.0 on-disk metadata format */ __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; __le32 incompat_features; /* Used to indicate any incompatible features */ /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ } __packed; /* * Check for reshape constraints on raid set @rs: * * - reshape function non-existent * - degraded set * - ongoing recovery * - ongoing reshape * * Returns 0 if none or -EPERM if given constraint * and error message reference in @errmsg */ static int rs_check_reshape(struct raid_set *rs) { struct mddev *mddev = &rs->md; smp_rmb(); /* Make sure we access recent reshape position */ if (!mddev->pers || !mddev->pers->check_reshape) rs->ti->error = "Reshape not supported"; else if (mddev->degraded) rs->ti->error = "Can't reshape degraded raid set"; else if (rs_is_recovering(rs)) rs->ti->error = "Convert request on recovering raid set prohibited"; else if (mddev->reshape_position && rs_is_reshaping(rs)) rs->ti->error = "raid set already reshaping!"; else if (!(rs_is_raid10(rs) || rs_is_raid456(rs))) rs->ti->error = "Reshaping only supported for raid4/5/6/10"; else return 0; return -EPERM; } static int read_disk_sb(struct md_rdev *rdev, int size) { BUG_ON(!rdev->sb_page); if (rdev->sb_loaded) return 0; if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, 1)) { DMERR("Failed to read superblock of device at position %d", rdev->raid_disk); md_error(rdev->mddev, rdev); return -EINVAL; } rdev->sb_loaded = 1; return 0; } static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) { failed_devices[0] = le64_to_cpu(sb->failed_devices); memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { int i = ARRAY_SIZE(sb->extended_failed_devices); while (i--) failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); } } static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) { int i = ARRAY_SIZE(sb->extended_failed_devices); sb->failed_devices = cpu_to_le64(failed_devices[0]); while (i--) sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); } /* * Synchronize the superblock members with the raid set properties * * All superblock data is little endian. */ static void super_sync(struct mddev *mddev, struct md_rdev *rdev) { bool update_failed_devices = false; unsigned int i; uint64_t failed_devices[DISKS_ARRAY_ELEMS]; struct dm_raid_superblock *sb; struct raid_set *rs = container_of(mddev, struct raid_set, md); /* No metadata device, no superblock */ if (!rdev->meta_bdev) return; BUG_ON(!rdev->sb_page); sb = page_address(rdev->sb_page); sb_retrieve_failed_devices(sb, failed_devices); for (i = 0; i < rs->raid_disks; i++) if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { update_failed_devices = true; set_bit(i, (void *) failed_devices); } if (update_failed_devices) sb_update_failed_devices(sb, failed_devices); sb->magic = cpu_to_le32(DM_RAID_MAGIC); sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); sb->num_devices = cpu_to_le32(mddev->raid_disks); sb->array_position = cpu_to_le32(rdev->raid_disk); sb->events = cpu_to_le64(mddev->events); sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); sb->level = cpu_to_le32(mddev->level); sb->layout = cpu_to_le32(mddev->layout); sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); sb->new_level = cpu_to_le32(mddev->new_level); sb->new_layout = cpu_to_le32(mddev->new_layout); sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); sb->delta_disks = cpu_to_le32(mddev->delta_disks); smp_rmb(); /* Make sure we access most recent reshape position */ sb->reshape_position = cpu_to_le64(mddev->reshape_position); if (le64_to_cpu(sb->reshape_position) != MaxSector) { /* Flag ongoing reshape */ sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); if (mddev->delta_disks < 0 || mddev->reshape_backwards) sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); } else { /* Clear reshape flags */ sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS)); } sb->array_sectors = cpu_to_le64(mddev->array_sectors); sb->data_offset = cpu_to_le64(rdev->data_offset); sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); sb->sectors = cpu_to_le64(rdev->sectors); /* Zero out the rest of the payload after the size of the superblock */ memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); } /* * super_load * * This function creates a superblock if one is not found on the device * and will decide which superblock to use if there's a choice. * * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise */ static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) { int r; struct dm_raid_superblock *sb; struct dm_raid_superblock *refsb; uint64_t events_sb, events_refsb; rdev->sb_start = 0; rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) { DMERR("superblock size of a logical block is no longer valid"); return -EINVAL; } r = read_disk_sb(rdev, rdev->sb_size); if (r) return r; sb = page_address(rdev->sb_page); /* * Two cases that we want to write new superblocks and rebuild: * 1) New device (no matching magic number) * 2) Device specified for rebuild (!In_sync w/ offset == 0) */ if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { super_sync(rdev->mddev, rdev); set_bit(FirstUse, &rdev->flags); sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); /* Force writing of superblocks to disk */ set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags); /* Any superblock is better than none, choose that if given */ return refdev ? 0 : 1; } if (!refdev) return 1; events_sb = le64_to_cpu(sb->events); refsb = page_address(refdev->sb_page); events_refsb = le64_to_cpu(refsb->events); return (events_sb > events_refsb) ? 1 : 0; } static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) { int role; unsigned int d; struct mddev *mddev = &rs->md; uint64_t events_sb; uint64_t failed_devices[DISKS_ARRAY_ELEMS]; struct dm_raid_superblock *sb; uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; struct md_rdev *r; struct dm_raid_superblock *sb2; sb = page_address(rdev->sb_page); events_sb = le64_to_cpu(sb->events); /* * Initialise to 1 if this is a new superblock. */ mddev->events = events_sb ? : 1; mddev->reshape_position = MaxSector; /* * Reshaping is supported, e.g. reshape_position is valid * in superblock and superblock content is authoritative. */ if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) { /* Superblock is authoritative wrt given raid set layout! */ mddev->raid_disks = le32_to_cpu(sb->num_devices); mddev->level = le32_to_cpu(sb->level); mddev->layout = le32_to_cpu(sb->layout); mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); mddev->new_level = le32_to_cpu(sb->new_level); mddev->new_layout = le32_to_cpu(sb->new_layout); mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); mddev->delta_disks = le32_to_cpu(sb->delta_disks); mddev->array_sectors = le64_to_cpu(sb->array_sectors); /* raid was reshaping and got interrupted */ if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) { if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { DMERR("Reshape requested but raid set is still reshaping"); return -EINVAL; } if (mddev->delta_disks < 0 || (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS))) mddev->reshape_backwards = 1; else mddev->reshape_backwards = 0; mddev->reshape_position = le64_to_cpu(sb->reshape_position); rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); } } else { /* * No takeover/reshaping, because we don't have the extended v1.9.0 metadata */ if (le32_to_cpu(sb->level) != mddev->level) { DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)"); return -EINVAL; } if (le32_to_cpu(sb->layout) != mddev->layout) { DMERR("Reshaping raid sets not yet supported. (raid layout change)"); DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout); DMERR(" Old layout: %s w/ %d copies", raid10_md_layout_to_format(le32_to_cpu(sb->layout)), raid10_md_layout_to_copies(le32_to_cpu(sb->layout))); DMERR(" New layout: %s w/ %d copies", raid10_md_layout_to_format(mddev->layout), raid10_md_layout_to_copies(mddev->layout)); return -EINVAL; } if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) { DMERR("Reshaping raid sets not yet supported. (stripe sectors change)"); return -EINVAL; } /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */ if (!rt_is_raid1(rs->raid_type) && (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) { DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)", sb->num_devices, mddev->raid_disks); return -EINVAL; } /* Table line is checked vs. authoritative superblock */ rs_set_new(rs); } if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); /* * During load, we set FirstUse if a new superblock was written. * There are two reasons we might not have a superblock: * 1) The raid set is brand new - in which case, all of the * devices must have their In_sync bit set. Also, * recovery_cp must be 0, unless forced. * 2) This is a new device being added to an old raid set * and the new device needs to be rebuilt - in which * case the In_sync bit will /not/ be set and * recovery_cp must be MaxSector. * 3) This is/are a new device(s) being added to an old * raid set during takeover to a higher raid level * to provide capacity for redundancy or during reshape * to add capacity to grow the raid set. */ d = 0; rdev_for_each(r, mddev) { if (test_bit(FirstUse, &r->flags)) new_devs++; if (!test_bit(In_sync, &r->flags)) { DMINFO("Device %d specified for rebuild; clearing superblock", r->raid_disk); rebuilds++; if (test_bit(FirstUse, &r->flags)) rebuild_and_new++; } d++; } if (new_devs == rs->raid_disks || !rebuilds) { /* Replace a broken device */ if (new_devs == 1 && !rs->delta_disks) ; if (new_devs == rs->raid_disks) { DMINFO("Superblocks created for new raid set"); set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); mddev->recovery_cp = 0; } else if (new_devs != rebuilds && new_devs != rs->delta_disks) { DMERR("New device injected into existing raid set without " "'delta_disks' or 'rebuild' parameter specified"); return -EINVAL; } } else if (new_devs && new_devs != rebuilds) { DMERR("%u 'rebuild' devices cannot be injected into" " a raid set with %u other first-time devices", rebuilds, new_devs); return -EINVAL; } else if (rebuilds) { if (rebuild_and_new && rebuilds != rebuild_and_new) { DMERR("new device%s provided without 'rebuild'", new_devs > 1 ? "s" : ""); return -EINVAL; } else if (rs_is_recovering(rs)) { DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", (unsigned long long) mddev->recovery_cp); return -EINVAL; } else if (rs_is_reshaping(rs)) { DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)", (unsigned long long) mddev->reshape_position); return -EINVAL; } } /* * Now we set the Faulty bit for those devices that are * recorded in the superblock as failed. */ sb_retrieve_failed_devices(sb, failed_devices); rdev_for_each(r, mddev) { if (!r->sb_page) continue; sb2 = page_address(r->sb_page); sb2->failed_devices = 0; memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); /* * Check for any device re-ordering. */ if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { role = le32_to_cpu(sb2->array_position); if (role < 0) continue; if (role != r->raid_disk) { if (__is_raid10_near(mddev->layout)) { if (mddev->raid_disks % __raid10_near_copies(mddev->layout) || rs->raid_disks % rs->raid10_copies) { rs->ti->error = "Cannot change raid10 near set to odd # of devices!"; return -EINVAL; } sb2->array_position = cpu_to_le32(r->raid_disk); } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && !rt_is_raid1(rs->raid_type)) { rs->ti->error = "Cannot change device positions in raid set"; return -EINVAL; } DMINFO("raid device #%d now at position #%d", role, r->raid_disk); } /* * Partial recovery is performed on * returning failed devices. */ if (test_bit(role, (void *) failed_devices)) set_bit(Faulty, &r->flags); } } return 0; } static int super_validate(struct raid_set *rs, struct md_rdev *rdev) { struct mddev *mddev = &rs->md; struct dm_raid_superblock *sb; if (rs_is_raid0(rs) || !rdev->sb_page) return 0; sb = page_address(rdev->sb_page); /* * If mddev->events is not set, we know we have not yet initialized * the array. */ if (!mddev->events && super_init_validation(rs, rdev)) return -EINVAL; if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; return -EINVAL; } if (sb->incompat_features) { rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; return -EINVAL; } /* Enable bitmap creation for RAID levels != 0 */ mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096); rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; if (!test_and_clear_bit(FirstUse, &rdev->flags)) { /* Retrieve device size stored in superblock to be prepared for shrink */ rdev->sectors = le64_to_cpu(sb->sectors); rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); if (rdev->recovery_offset == MaxSector) set_bit(In_sync, &rdev->flags); /* * If no reshape in progress -> we're recovering single * disk(s) and have to set the device(s) to out-of-sync */ else if (!rs_is_reshaping(rs)) clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ } /* * If a device comes back, set it as not In_sync and no longer faulty. */ if (test_and_clear_bit(Faulty, &rdev->flags)) { rdev->recovery_offset = 0; clear_bit(In_sync, &rdev->flags); rdev->saved_raid_disk = rdev->raid_disk; } /* Reshape support -> restore repective data offsets */ rdev->data_offset = le64_to_cpu(sb->data_offset); rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); return 0; } /* * Analyse superblocks and select the freshest. */ static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) { int r; struct raid_dev *dev; struct md_rdev *rdev, *tmp, *freshest; struct mddev *mddev = &rs->md; freshest = NULL; rdev_for_each_safe(rdev, tmp, mddev) { /* * Skipping super_load due to CTR_FLAG_SYNC will cause * the array to undergo initialization again as * though it were new. This is the intended effect * of the "sync" directive. * * When reshaping capability is added, we must ensure * that the "sync" directive is disallowed during the * reshape. */ if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) continue; if (!rdev->meta_bdev) continue; r = super_load(rdev, freshest); switch (r) { case 1: freshest = rdev; break; case 0: break; default: dev = container_of(rdev, struct raid_dev, rdev); if (dev->meta_dev) dm_put_device(ti, dev->meta_dev); dev->meta_dev = NULL; rdev->meta_bdev = NULL; if (rdev->sb_page) put_page(rdev->sb_page); rdev->sb_page = NULL; rdev->sb_loaded = 0; /* * We might be able to salvage the data device * even though the meta device has failed. For * now, we behave as though '- -' had been * set for this device in the table. */ if (dev->data_dev) dm_put_device(ti, dev->data_dev); dev->data_dev = NULL; rdev->bdev = NULL; list_del(&rdev->same_set); } } if (!freshest) return 0; if (validate_raid_redundancy(rs)) { rs->ti->error = "Insufficient redundancy to activate array"; return -EINVAL; } /* * Validation of the freshest device provides the source of * validation for the remaining devices. */ rs->ti->error = "Unable to assemble array: Invalid superblocks"; if (super_validate(rs, freshest)) return -EINVAL; rdev_for_each(rdev, mddev) if ((rdev != freshest) && super_validate(rs, rdev)) return -EINVAL; return 0; } /* * Adjust data_offset and new_data_offset on all disk members of @rs * for out of place reshaping if requested by contructor * * We need free space at the beginning of each raid disk for forward * and at the end for backward reshapes which userspace has to provide * via remapping/reordering of space. */ static int rs_adjust_data_offsets(struct raid_set *rs) { sector_t data_offset = 0, new_data_offset = 0; struct md_rdev *rdev; /* Constructor did not request data offset change */ if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { if (!rs_is_reshapable(rs)) goto out; return 0; } /* HM FIXME: get InSync raid_dev? */ rdev = &rs->dev[0].rdev; if (rs->delta_disks < 0) { /* * Removing disks (reshaping backwards): * * - before reshape: data is at offset 0 and free space * is at end of each component LV * * - after reshape: data is at offset rs->data_offset != 0 on each component LV */ data_offset = 0; new_data_offset = rs->data_offset; } else if (rs->delta_disks > 0) { /* * Adding disks (reshaping forwards): * * - before reshape: data is at offset rs->data_offset != 0 and * free space is at begin of each component LV * * - after reshape: data is at offset 0 on each component LV */ data_offset = rs->data_offset; new_data_offset = 0; } else { /* * User space passes in 0 for data offset after having removed reshape space * * - or - (data offset != 0) * * Changing RAID layout or chunk size -> toggle offsets * * - before reshape: data is at offset rs->data_offset 0 and * free space is at end of each component LV * -or- * data is at offset rs->data_offset != 0 and * free space is at begin of each component LV * * - after reshape: data is at offset 0 if i was at offset != 0 * of at offset != 0 if it was at offset 0 * on each component LV * */ data_offset = rs->data_offset ? rdev->data_offset : 0; new_data_offset = data_offset ? 0 : rs->data_offset; set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); } /* * Make sure we got a minimum amount of free sectors per device */ if (rs->data_offset && to_sector(i_size_read(rdev->bdev->bd_inode)) - rdev->sectors < MIN_FREE_RESHAPE_SPACE) { rs->ti->error = data_offset ? "No space for forward reshape" : "No space for backward reshape"; return -ENOSPC; } out: /* Adjust data offsets on all rdevs */ rdev_for_each(rdev, &rs->md) { rdev->data_offset = data_offset; rdev->new_data_offset = new_data_offset; } return 0; } /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ static void __reorder_raid_disk_indexes(struct raid_set *rs) { int i = 0; struct md_rdev *rdev; rdev_for_each(rdev, &rs->md) { rdev->raid_disk = i++; rdev->saved_raid_disk = rdev->new_raid_disk = -1; } } /* * Setup @rs for takeover by a different raid level */ static int rs_setup_takeover(struct raid_set *rs) { struct mddev *mddev = &rs->md; struct md_rdev *rdev; unsigned int d = mddev->raid_disks = rs->raid_disks; sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; if (rt_is_raid10(rs->raid_type)) { if (mddev->level == 0) { /* Userpace reordered disks -> adjust raid_disk indexes */ __reorder_raid_disk_indexes(rs); /* raid0 -> raid10_far layout */ mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, rs->raid10_copies); } else if (mddev->level == 1) /* raid1 -> raid10_near layout */ mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, rs->raid_disks); else return -EINVAL; } clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); mddev->recovery_cp = MaxSector; while (d--) { rdev = &rs->dev[d].rdev; if (test_bit(d, (void *) rs->rebuild_disks)) { clear_bit(In_sync, &rdev->flags); clear_bit(Faulty, &rdev->flags); mddev->recovery_cp = rdev->recovery_offset = 0; /* Bitmap has to be created when we do an "up" takeover */ set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); } rdev->new_data_offset = new_data_offset; } return 0; } /* * * - change raid layout * - change chunk size * - add disks * - remove disks */ static int rs_setup_reshape(struct raid_set *rs) { int r = 0; unsigned int cur_raid_devs, d; struct mddev *mddev = &rs->md; struct md_rdev *rdev; mddev->delta_disks = rs->delta_disks; cur_raid_devs = mddev->raid_disks; /* Ignore impossible layout change whilst adding/removing disks */ if (mddev->delta_disks && mddev->layout != mddev->new_layout) { DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks); mddev->new_layout = mddev->layout; } /* * Adjust array size: * * - in case of adding disks, array size has * to grow after the disk adding reshape, * which'll hapen in the event handler; * reshape will happen forward, so space has to * be available at the beginning of each disk * * - in case of removing disks, array size * has to shrink before starting the reshape, * which'll happen here; * reshape will happen backward, so space has to * be available at the end of each disk * * - data_offset and new_data_offset are * adjusted for afreentioned out of place * reshaping based on userspace passing in * the "data_offset " key/value * pair via te constructor */ /* Add disk(s) */ if (rs->delta_disks > 0) { /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */ for (d = cur_raid_devs; d < rs->raid_disks; d++) { rdev = &rs->dev[d].rdev; clear_bit(In_sync, &rdev->flags); /* * save_raid_disk needs to be -1, or recovery_offset will be set to 0 * by md, which'll store that erroneously in the superblock on reshape */ rdev->saved_raid_disk = -1; rdev->raid_disk = d; rdev->sectors = mddev->dev_sectors; rdev->recovery_offset = MaxSector; } mddev->reshape_backwards = 0; /* adding disks -> forward reshape */ /* Remove disk(s) */ } else if (rs->delta_disks < 0) { r = rs_set_dev_and_array_sectors(rs, true); mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */ /* Change layout and/or chunk size */ } else { /* * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size: * * keeping number of disks and do layout change -> * * toggle reshape_backward depending on data_offset: * * - free space upfront -> reshape forward * * - free space at the end -> reshape backward * * * This utilizes free reshape space avoiding the need * for userspace to move (parts of) LV segments in * case of layout/chunksize change (for disk * adding/removing reshape space has to be at * the proper address (see above with delta_disks): * * add disk(s) -> begin * remove disk(s)-> end */ mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1; } return r; } /* * Enable/disable discard support on RAID set depending on * RAID level and discard properties of underlying RAID members. */ static void configure_discard_support(struct raid_set *rs) { int i; bool raid456; struct dm_target *ti = rs->ti; /* Assume discards not supported until after checks below. */ ti->discards_supported = false; /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */ raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6); for (i = 0; i < rs->md.raid_disks; i++) { struct request_queue *q; if (!rs->dev[i].rdev.bdev) continue; q = bdev_get_queue(rs->dev[i].rdev.bdev); if (!q || !blk_queue_discard(q)) return; if (raid456) { if (!q->limits.discard_zeroes_data) return; if (!devices_handle_discard_safely) { DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); return; } } } /* All RAID members properly support discards */ ti->discards_supported = true; /* * RAID1 and RAID10 personalities require bio splitting, * RAID0/4/5/6 don't and process large discard bios properly. */ ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10); ti->num_discard_bios = 1; } /* * Construct a RAID0/1/10/4/5/6 mapping: * Args: * <#raid_params> {0,} \ * <#raid_devs> [ ]{1,} * * varies by . See 'parse_raid_params' for * details on possible . * * Userspace is free to initialize the metadata devices, hence the superblocks to * enforce recreation based on the passed in table parameters. * */ static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv) { int r; struct raid_type *rt; unsigned num_raid_params, num_raid_devs; struct raid_set *rs = NULL; const char *arg; struct rs_layout rs_layout; struct dm_arg_set as = { argc, argv }, as_nrd; struct dm_arg _args[] = { { 0, as.argc, "Cannot understand number of raid parameters" }, { 1, 254, "Cannot understand number of raid devices parameters" } }; /* Must have */ arg = dm_shift_arg(&as); if (!arg) { ti->error = "No arguments"; return -EINVAL; } rt = get_raid_type(arg); if (!rt) { ti->error = "Unrecognised raid_type"; return -EINVAL; } /* Must have <#raid_params> */ if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) return -EINVAL; /* number of raid device tupples */ as_nrd = as; dm_consume_args(&as_nrd, num_raid_params); _args[1].max = (as_nrd.argc - 1) / 2; if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) return -EINVAL; if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { ti->error = "Invalid number of supplied raid devices"; return -EINVAL; } rs = raid_set_alloc(ti, rt, num_raid_devs); if (IS_ERR(rs)) return PTR_ERR(rs); r = parse_raid_params(rs, &as, num_raid_params); if (r) goto bad; r = parse_dev_params(rs, &as); if (r) goto bad; rs->md.sync_super = super_sync; r = rs_set_dev_and_array_sectors(rs, false); if (r) return r; /* * Backup any new raid set level, layout, ... * requested to be able to compare to superblock * members for conversion decisions. */ rs_config_backup(rs, &rs_layout); r = analyse_superblocks(ti, rs); if (r) goto bad; INIT_WORK(&rs->md.event_work, do_table_event); ti->private = rs; ti->num_flush_bios = 1; /* Restore any requested new layout for conversion decision */ rs_config_restore(rs, &rs_layout); if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) { set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); rs_set_new(rs); } else if (rs_is_reshaping(rs)) ; /* skip rs setup */ else if (rs_takeover_requested(rs)) { if (rs_is_reshaping(rs)) { ti->error = "Can't takeover a reshaping raid set"; return -EPERM; } /* * If a takeover is needed, just set the level to * the new requested one and allow the raid set to run. */ r = rs_check_takeover(rs); if (r) return r; r = rs_setup_takeover(rs); if (r) return r; set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); rs_set_new(rs); } else if (rs_reshape_requested(rs)) { if (rs_is_reshaping(rs)) { ti->error = "raid set already reshaping!"; return -EPERM; } if (rs_is_raid10(rs)) { if (rs->raid_disks != rs->md.raid_disks && __is_raid10_near(rs->md.layout) && rs->raid10_copies && rs->raid10_copies != __raid10_near_copies(rs->md.layout)) { /* * raid disk have to be multiple of data copies to allow this conversion, * * This is actually not a reshape it is a * rebuild of any additional mirrors per group */ if (rs->raid_disks % rs->raid10_copies) { ti->error = "Can't reshape raid10 mirror groups"; return -EINVAL; } /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */ __reorder_raid_disk_indexes(rs); rs->md.layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, rs->raid10_copies); rs->md.new_layout = rs->md.layout; } else set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); } else if (rs_is_raid456(rs)) set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags); /* * HM FIXME: process raid1 via delta_disks as well? * Would cause allocations in raid1->check_reshape * though, thus more issues with potential failures */ else if (rs_is_raid1(rs)) rs->md.raid_disks = rs->raid_disks; if (rs->md.raid_disks < rs->raid_disks) set_bit(MD_ARRAY_FIRST_USE, &rs->md.flags); set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); rs_set_cur(rs); } else rs_set_cur(rs); /* If constructor requested it, change data and new_data offsets */ r = rs_adjust_data_offsets(rs); if (r) return r; /* Start raid set read-only and assumed clean to change in raid_resume() */ rs->md.ro = 1; rs->md.in_sync = 1; set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); /* Has to be held on running the array */ mddev_lock_nointr(&rs->md); r = md_run(&rs->md); rs->md.in_sync = 0; /* Assume already marked dirty */ if (r) { ti->error = "Failed to run raid array"; mddev_unlock(&rs->md); goto bad; } rs->callbacks.congested_fn = raid_is_congested; dm_table_add_target_callbacks(ti->table, &rs->callbacks); mddev_suspend(&rs->md); /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */ if (rs_is_raid456(rs)) { r = rs_set_raid456_stripe_cache(rs); if (r) goto bad_stripe_cache; } /* Now do an early reshape check */ if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { r = rs_check_reshape(rs); if (r) return r; /* Restore new, ctr requested layout to perform check */ rs_config_restore(rs, &rs_layout); r = rs->md.pers->check_reshape(&rs->md); if (r) { ti->error = "Reshape check failed"; goto bad_check_reshape; } } mddev_unlock(&rs->md); return 0; bad_stripe_cache: bad_check_reshape: md_stop(&rs->md); bad: raid_set_free(rs); return r; } static void raid_dtr(struct dm_target *ti) { struct raid_set *rs = ti->private; list_del_init(&rs->callbacks.list); md_stop(&rs->md); raid_set_free(rs); } static int raid_map(struct dm_target *ti, struct bio *bio) { struct raid_set *rs = ti->private; struct mddev *mddev = &rs->md; /* * If we're reshaping to add disk(s)), ti->len and * mddev->array_sectors will differ during the process * (ti->len > mddev->array_sectors), so we have to requeue * bios with addresses > mddev->array_sectors here or * or there will occur accesses past EOD of the component * data images thus erroring the raid set. */ if (unlikely(bio_end_sector(bio) > mddev->array_sectors)) return DM_MAPIO_REQUEUE; mddev->pers->make_request(mddev, bio); return DM_MAPIO_SUBMITTED; } /* Return string describing the current sync action of @mddev */ static const char *decipher_sync_action(struct mddev *mddev) { if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) return "frozen"; if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) return "reshape"; if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) return "resync"; else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) return "check"; return "repair"; } if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) return "recover"; } return "idle"; } /* * Return status string @rdev * * Status characters: * * 'D' = Dead/Failed device * 'a' = Alive but not in-sync * 'A' = Alive and in-sync */ static const char *__raid_dev_status(struct md_rdev *rdev, bool array_in_sync) { if (test_bit(Faulty, &rdev->flags)) return "D"; else if (!array_in_sync || !test_bit(In_sync, &rdev->flags)) return "a"; else return "A"; } /* Helper to return resync/reshape progress for @rs and @array_in_sync */ static sector_t rs_get_progress(struct raid_set *rs, sector_t resync_max_sectors, bool *array_in_sync) { sector_t r, recovery_cp, curr_resync_completed; struct mddev *mddev = &rs->md; curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp; recovery_cp = mddev->recovery_cp; *array_in_sync = false; if (rs_is_raid0(rs)) { r = resync_max_sectors; *array_in_sync = true; } else { r = mddev->reshape_position; /* Reshape is relative to the array size */ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || r != MaxSector) { if (r == MaxSector) { *array_in_sync = true; r = resync_max_sectors; } else { /* Got to reverse on backward reshape */ if (mddev->reshape_backwards) r = mddev->array_sectors - r; /* Devide by # of data stripes */ sector_div(r, mddev_data_stripes(rs)); } /* Sync is relative to the component device size */ } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) r = curr_resync_completed; else r = recovery_cp; if (r == MaxSector) { /* * Sync complete. */ *array_in_sync = true; r = resync_max_sectors; } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { /* * If "check" or "repair" is occurring, the raid set has * undergone an initial sync and the health characters * should not be 'a' anymore. */ *array_in_sync = true; } else { struct md_rdev *rdev; /* * The raid set may be doing an initial sync, or it may * be rebuilding individual components. If all the * devices are In_sync, then it is the raid set that is * being initialized. */ rdev_for_each(rdev, mddev) if (!test_bit(In_sync, &rdev->flags)) *array_in_sync = true; #if 0 r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */ #endif } } return r; } /* Helper to return @dev name or "-" if !@dev */ static const char *__get_dev_name(struct dm_dev *dev) { return dev ? dev->name : "-"; } static void raid_status(struct dm_target *ti, status_type_t type, unsigned int status_flags, char *result, unsigned int maxlen) { struct raid_set *rs = ti->private; struct mddev *mddev = &rs->md; struct r5conf *conf = mddev->private; int max_nr_stripes = conf ? conf->max_nr_stripes : 0; bool array_in_sync; unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ unsigned int sz = 0; unsigned int write_mostly_params = 0; sector_t progress, resync_max_sectors, resync_mismatches; const char *sync_action; struct raid_type *rt; struct md_rdev *rdev; switch (type) { case STATUSTYPE_INFO: /* *Should* always succeed */ rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); if (!rt) return; DMEMIT("%s %d ", rt->name, mddev->raid_disks); /* Access most recent mddev properties for status output */ smp_rmb(); /* Get sensible max sectors even if raid set not yet started */ resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ? mddev->resync_max_sectors : mddev->dev_sectors; progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync); resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ? atomic64_read(&mddev->resync_mismatches) : 0; sync_action = decipher_sync_action(&rs->md); /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */ rdev_for_each(rdev, mddev) DMEMIT(__raid_dev_status(rdev, array_in_sync)); /* * In-sync/Reshape ratio: * The in-sync ratio shows the progress of: * - Initializing the raid set * - Rebuilding a subset of devices of the raid set * The user can distinguish between the two by referring * to the status characters. * * The reshape ratio shows the progress of * changing the raid layout or the number of * disks of a raid set */ DMEMIT(" %llu/%llu", (unsigned long long) progress, (unsigned long long) resync_max_sectors); /* * v1.5.0+: * * Sync action: * See Documentation/device-mapper/dm-raid.txt for * information on each of these states. */ DMEMIT(" %s", sync_action); /* * v1.5.0+: * * resync_mismatches/mismatch_cnt * This field shows the number of discrepancies found when * performing a "check" of the raid set. */ DMEMIT(" %llu", (unsigned long long) resync_mismatches); /* * v1.9.0+: * * data_offset (needed for out of space reshaping) * This field shows the data offset into the data * image LV where the first stripes data starts. * * We keep data_offset equal on all raid disks of the set, * so retrieving it from the first raid disk is sufficient. */ DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); break; case STATUSTYPE_TABLE: /* Report the table line string you would use to construct this raid set */ /* Calculate raid parameter count */ rdev_for_each(rdev, mddev) if (test_bit(WriteMostly, &rdev->flags)) write_mostly_params += 2; raid_param_cnt += memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)) * 2 + write_mostly_params + hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2; /* Emit table line */ DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), raid10_md_layout_to_format(mddev->layout)); if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), raid10_md_layout_to_copies(mddev->layout)); if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), (unsigned long long) rs->data_offset); if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), mddev->bitmap_info.daemon_sleep); if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), mddev->delta_disks); if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), max_nr_stripes); rdev_for_each(rdev, mddev) if (test_bit(rdev->raid_disk, (void *) rs->rebuild_disks)) DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), rdev->raid_disk); rdev_for_each(rdev, mddev) if (test_bit(WriteMostly, &rdev->flags)) DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), rdev->raid_disk); if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), mddev->bitmap_info.max_write_behind); if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), mddev->sync_speed_max); if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), mddev->sync_speed_min); DMEMIT(" %d", rs->raid_disks); rdev_for_each(rdev, mddev) { struct raid_dev *rd = container_of(rdev, struct raid_dev, rdev); DMEMIT(" %s %s", __get_dev_name(rd->meta_dev), __get_dev_name(rd->data_dev)); } } } static int raid_message(struct dm_target *ti, unsigned argc, char **argv) { struct raid_set *rs = ti->private; struct mddev *mddev = &rs->md; if (!mddev->pers || !mddev->pers->sync_request) return -EINVAL; if (!strcasecmp(argv[0], "frozen")) set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); else clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { if (mddev->sync_thread) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_reap_sync_thread(mddev); } } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) return -EBUSY; else if (!strcasecmp(argv[0], "resync")) ; /* MD_RECOVERY_NEEDED set below */ else if (!strcasecmp(argv[0], "recover")) set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); else { if (!strcasecmp(argv[0], "check")) set_bit(MD_RECOVERY_CHECK, &mddev->recovery); else if (!!strcasecmp(argv[0], "repair")) return -EINVAL; set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); set_bit(MD_RECOVERY_SYNC, &mddev->recovery); } if (mddev->ro == 2) { /* A write to sync_action is enough to justify * canceling read-auto mode */ mddev->ro = 0; if (!mddev->suspended && mddev->sync_thread) md_wakeup_thread(mddev->sync_thread); } set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); if (!mddev->suspended && mddev->thread) md_wakeup_thread(mddev->thread); return 0; } static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) { struct raid_set *rs = ti->private; unsigned i; int r = 0; for (i = 0; !r && i < rs->md.raid_disks; i++) if (rs->dev[i].data_dev) r = fn(ti, rs->dev[i].data_dev, 0, /* No offset on data devs */ rs->md.dev_sectors, data); return r; } static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) { struct raid_set *rs = ti->private; unsigned chunk_size = rs->md.chunk_sectors << 9; struct r5conf *conf = rs->md.private; blk_limits_io_min(limits, chunk_size); blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded)); } static void raid_presuspend(struct dm_target *ti) { struct raid_set *rs = ti->private; md_stop_writes(&rs->md); } static void raid_postsuspend(struct dm_target *ti) { struct raid_set *rs = ti->private; mddev_suspend(&rs->md); rs->md.ro = 1; clear_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags); } static void attempt_restore_of_faulty_devices(struct raid_set *rs) { int i; uint64_t failed_devices, cleared_failed_devices = 0; unsigned long flags; struct dm_raid_superblock *sb; struct md_rdev *r; for (i = 0; i < rs->md.raid_disks; i++) { r = &rs->dev[i].rdev; if (test_bit(Faulty, &r->flags) && r->sb_page && sync_page_io(r, 0, r->sb_size, r->sb_page, REQ_OP_READ, 0, 1)) { DMINFO("Faulty %s device #%d has readable super block." " Attempting to revive it.", rs->raid_type->name, i); /* * Faulty bit may be set, but sometimes the array can * be suspended before the personalities can respond * by removing the device from the array (i.e. calling * 'hot_remove_disk'). If they haven't yet removed * the failed device, its 'raid_disk' number will be * '>= 0' - meaning we must call this function * ourselves. */ if ((r->raid_disk >= 0) && (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0)) /* Failed to revive this device, try next */ continue; r->raid_disk = i; r->saved_raid_disk = i; flags = r->flags; clear_bit(Faulty, &r->flags); clear_bit(WriteErrorSeen, &r->flags); clear_bit(In_sync, &r->flags); if (r->mddev->pers->hot_add_disk(r->mddev, r)) { r->raid_disk = -1; r->saved_raid_disk = -1; r->flags = flags; } else { r->recovery_offset = 0; cleared_failed_devices |= 1 << i; } } } if (cleared_failed_devices) { rdev_for_each(r, &rs->md) { sb = page_address(r->sb_page); failed_devices = le64_to_cpu(sb->failed_devices); failed_devices &= ~cleared_failed_devices; sb->failed_devices = cpu_to_le64(failed_devices); } } } static int __load_dirty_region_bitmap(struct raid_set *rs) { int r = 0; /* Try loading the bitmap unless "raid0", which does not have one */ if (!rs_is_raid0(rs) && !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { r = bitmap_load(&rs->md); if (r) DMERR("Failed to load bitmap"); } return r; } /* * Reshape changes raid algorithm of @rs to new one within personality * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes * disks from a raid set thus growing/shrinking it or resizes the set * * Call mddev_lock_nointr() before! */ static int rs_start_reshape(struct raid_set *rs) { int r; struct mddev *mddev = &rs->md; struct md_personality *pers = mddev->pers; r = rs_setup_reshape(rs); if (r) return r; /* Need to be resumed to be able to start reshape, recovery is frozen until raid_resume() though */ if (mddev->suspended) mddev_resume(mddev); /* * Check any reshape constraints enforced by the personalility * * May as well already kick the reshape off so that * pers->start_reshape() becomes optional. */ r = pers->check_reshape(mddev); if (r) { rs->ti->error = "pers->check_reshape() failed"; return r; } /* * Personality may not provide start reshape method in which * case check_reshape above has already covered everything */ if (pers->start_reshape) { r = pers->start_reshape(mddev); if (r) { rs->ti->error = "pers->start_reshape() failed"; return r; } } /* Suspend because a resume will happen in raid_resume() */ if (!mddev->suspended) mddev_suspend(mddev); mddev->ro = 0; md_update_sb(mddev, 1); mddev->ro = 1; return 0; } static int raid_preresume(struct dm_target *ti) { int r; struct raid_set *rs = ti->private; struct mddev *mddev = &rs->md; /* This is a resume after a suspend of the set -> it's already started */ if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) return 0; /* * The superblocks need to be updated on disk if the * array is new or __load_dirty_region_bitmap will overwrite them * in core with old data. * * In case the array got modified (takeover/reshape/resize) * or the data offsets on the component devices changed, they * have to be updated as well. * * Have to switch to readwrite and back in order to * allow for the superblock updates. */ if (test_and_clear_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) { set_bit(MD_CHANGE_DEVS, &mddev->flags); mddev->ro = 0; md_update_sb(mddev, 1); mddev->ro = 1; } /* * Disable/enable discard support on raid set after any * conversion, because devices can have been added */ configure_discard_support(rs); /* Load the bitmap from disk unless raid0 */ r = __load_dirty_region_bitmap(rs); if (r) return r; /* Check for any resize/reshape on @rs and adjust/initiate */ /* Be prepared for mddev_resume() in raid_resume() */ set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) { set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); set_bit(MD_RECOVERY_SYNC, &mddev->recovery); mddev->resync_min = mddev->recovery_cp; } rs_set_capacity(rs); /* Check for any reshape request and region size change unless new raid set */ if (test_and_clear_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) { /* Initiate a reshape. */ mddev_lock_nointr(mddev); r = rs_start_reshape(rs); mddev_unlock(mddev); if (r) DMWARN("Failed to check/start reshape, continuing without change"); r = 0; } return r; } static void raid_resume(struct dm_target *ti) { struct raid_set *rs = ti->private; struct mddev *mddev = &rs->md; if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { /* * A secondary resume while the device is active. * Take this opportunity to check whether any failed * devices are reachable again. */ attempt_restore_of_faulty_devices(rs); } mddev->ro = 0; mddev->in_sync = 0; clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); if (mddev->suspended) mddev_resume(mddev); } static struct target_type raid_target = { .name = "raid", .version = {1, 9, 0}, .module = THIS_MODULE, .ctr = raid_ctr, .dtr = raid_dtr, .map = raid_map, .status = raid_status, .message = raid_message, .iterate_devices = raid_iterate_devices, .io_hints = raid_io_hints, .presuspend = raid_presuspend, .postsuspend = raid_postsuspend, .preresume = raid_preresume, .resume = raid_resume, }; static int __init dm_raid_init(void) { DMINFO("Loading target version %u.%u.%u", raid_target.version[0], raid_target.version[1], raid_target.version[2]); return dm_register_target(&raid_target); } static void __exit dm_raid_exit(void) { dm_unregister_target(&raid_target); } module_init(dm_raid_init); module_exit(dm_raid_exit); module_param(devices_handle_discard_safely, bool, 0644); MODULE_PARM_DESC(devices_handle_discard_safely, "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); MODULE_ALIAS("dm-raid0"); MODULE_ALIAS("dm-raid1"); MODULE_ALIAS("dm-raid10"); MODULE_ALIAS("dm-raid4"); MODULE_ALIAS("dm-raid5"); MODULE_ALIAS("dm-raid6"); MODULE_AUTHOR("Neil Brown "); MODULE_AUTHOR("Heinz Mauelshagen "); MODULE_LICENSE("GPL");