// SPDX-License-Identifier: GPL-2.0-only /* * A V4L2 driver for OmniVision OV7670 cameras. * * Copyright 2006 One Laptop Per Child Association, Inc. Written * by Jonathan Corbet with substantial inspiration from Mark * McClelland's ovcamchip code. * * Copyright 2006-7 Jonathan Corbet */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Jonathan Corbet "); MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors"); MODULE_LICENSE("GPL"); static bool debug; module_param(debug, bool, 0644); MODULE_PARM_DESC(debug, "Debug level (0-1)"); /* * The 7670 sits on i2c with ID 0x42 */ #define OV7670_I2C_ADDR 0x42 #define PLL_FACTOR 4 /* Registers */ #define REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */ #define REG_BLUE 0x01 /* blue gain */ #define REG_RED 0x02 /* red gain */ #define REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */ #define REG_COM1 0x04 /* Control 1 */ #define COM1_CCIR656 0x40 /* CCIR656 enable */ #define REG_BAVE 0x05 /* U/B Average level */ #define REG_GbAVE 0x06 /* Y/Gb Average level */ #define REG_AECHH 0x07 /* AEC MS 5 bits */ #define REG_RAVE 0x08 /* V/R Average level */ #define REG_COM2 0x09 /* Control 2 */ #define COM2_SSLEEP 0x10 /* Soft sleep mode */ #define REG_PID 0x0a /* Product ID MSB */ #define REG_VER 0x0b /* Product ID LSB */ #define REG_COM3 0x0c /* Control 3 */ #define COM3_SWAP 0x40 /* Byte swap */ #define COM3_SCALEEN 0x08 /* Enable scaling */ #define COM3_DCWEN 0x04 /* Enable downsamp/crop/window */ #define REG_COM4 0x0d /* Control 4 */ #define REG_COM5 0x0e /* All "reserved" */ #define REG_COM6 0x0f /* Control 6 */ #define REG_AECH 0x10 /* More bits of AEC value */ #define REG_CLKRC 0x11 /* Clocl control */ #define CLK_EXT 0x40 /* Use external clock directly */ #define CLK_SCALE 0x3f /* Mask for internal clock scale */ #define REG_COM7 0x12 /* Control 7 */ #define COM7_RESET 0x80 /* Register reset */ #define COM7_FMT_MASK 0x38 #define COM7_FMT_VGA 0x00 #define COM7_FMT_CIF 0x20 /* CIF format */ #define COM7_FMT_QVGA 0x10 /* QVGA format */ #define COM7_FMT_QCIF 0x08 /* QCIF format */ #define COM7_RGB 0x04 /* bits 0 and 2 - RGB format */ #define COM7_YUV 0x00 /* YUV */ #define COM7_BAYER 0x01 /* Bayer format */ #define COM7_PBAYER 0x05 /* "Processed bayer" */ #define REG_COM8 0x13 /* Control 8 */ #define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */ #define COM8_AECSTEP 0x40 /* Unlimited AEC step size */ #define COM8_BFILT 0x20 /* Band filter enable */ #define COM8_AGC 0x04 /* Auto gain enable */ #define COM8_AWB 0x02 /* White balance enable */ #define COM8_AEC 0x01 /* Auto exposure enable */ #define REG_COM9 0x14 /* Control 9 - gain ceiling */ #define REG_COM10 0x15 /* Control 10 */ #define COM10_HSYNC 0x40 /* HSYNC instead of HREF */ #define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */ #define COM10_HREF_REV 0x08 /* Reverse HREF */ #define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */ #define COM10_VS_NEG 0x02 /* VSYNC negative */ #define COM10_HS_NEG 0x01 /* HSYNC negative */ #define REG_HSTART 0x17 /* Horiz start high bits */ #define REG_HSTOP 0x18 /* Horiz stop high bits */ #define REG_VSTART 0x19 /* Vert start high bits */ #define REG_VSTOP 0x1a /* Vert stop high bits */ #define REG_PSHFT 0x1b /* Pixel delay after HREF */ #define REG_MIDH 0x1c /* Manuf. ID high */ #define REG_MIDL 0x1d /* Manuf. ID low */ #define REG_MVFP 0x1e /* Mirror / vflip */ #define MVFP_MIRROR 0x20 /* Mirror image */ #define MVFP_FLIP 0x10 /* Vertical flip */ #define REG_AEW 0x24 /* AGC upper limit */ #define REG_AEB 0x25 /* AGC lower limit */ #define REG_VPT 0x26 /* AGC/AEC fast mode op region */ #define REG_HSYST 0x30 /* HSYNC rising edge delay */ #define REG_HSYEN 0x31 /* HSYNC falling edge delay */ #define REG_HREF 0x32 /* HREF pieces */ #define REG_TSLB 0x3a /* lots of stuff */ #define TSLB_YLAST 0x04 /* UYVY or VYUY - see com13 */ #define REG_COM11 0x3b /* Control 11 */ #define COM11_NIGHT 0x80 /* NIght mode enable */ #define COM11_NMFR 0x60 /* Two bit NM frame rate */ #define COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */ #define COM11_50HZ 0x08 /* Manual 50Hz select */ #define COM11_EXP 0x02 #define REG_COM12 0x3c /* Control 12 */ #define COM12_HREF 0x80 /* HREF always */ #define REG_COM13 0x3d /* Control 13 */ #define COM13_GAMMA 0x80 /* Gamma enable */ #define COM13_UVSAT 0x40 /* UV saturation auto adjustment */ #define COM13_UVSWAP 0x01 /* V before U - w/TSLB */ #define REG_COM14 0x3e /* Control 14 */ #define COM14_DCWEN 0x10 /* DCW/PCLK-scale enable */ #define REG_EDGE 0x3f /* Edge enhancement factor */ #define REG_COM15 0x40 /* Control 15 */ #define COM15_R10F0 0x00 /* Data range 10 to F0 */ #define COM15_R01FE 0x80 /* 01 to FE */ #define COM15_R00FF 0xc0 /* 00 to FF */ #define COM15_RGB565 0x10 /* RGB565 output */ #define COM15_RGB555 0x30 /* RGB555 output */ #define REG_COM16 0x41 /* Control 16 */ #define COM16_AWBGAIN 0x08 /* AWB gain enable */ #define REG_COM17 0x42 /* Control 17 */ #define COM17_AECWIN 0xc0 /* AEC window - must match COM4 */ #define COM17_CBAR 0x08 /* DSP Color bar */ /* * This matrix defines how the colors are generated, must be * tweaked to adjust hue and saturation. * * Order: v-red, v-green, v-blue, u-red, u-green, u-blue * * They are nine-bit signed quantities, with the sign bit * stored in 0x58. Sign for v-red is bit 0, and up from there. */ #define REG_CMATRIX_BASE 0x4f #define CMATRIX_LEN 6 #define REG_CMATRIX_SIGN 0x58 #define REG_BRIGHT 0x55 /* Brightness */ #define REG_CONTRAS 0x56 /* Contrast control */ #define REG_GFIX 0x69 /* Fix gain control */ #define REG_DBLV 0x6b /* PLL control an debugging */ #define DBLV_BYPASS 0x0a /* Bypass PLL */ #define DBLV_X4 0x4a /* clock x4 */ #define DBLV_X6 0x8a /* clock x6 */ #define DBLV_X8 0xca /* clock x8 */ #define REG_SCALING_XSC 0x70 /* Test pattern and horizontal scale factor */ #define TEST_PATTTERN_0 0x80 #define REG_SCALING_YSC 0x71 /* Test pattern and vertical scale factor */ #define TEST_PATTTERN_1 0x80 #define REG_REG76 0x76 /* OV's name */ #define R76_BLKPCOR 0x80 /* Black pixel correction enable */ #define R76_WHTPCOR 0x40 /* White pixel correction enable */ #define REG_RGB444 0x8c /* RGB 444 control */ #define R444_ENABLE 0x02 /* Turn on RGB444, overrides 5x5 */ #define R444_RGBX 0x01 /* Empty nibble at end */ #define REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */ #define REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */ #define REG_BD50MAX 0xa5 /* 50hz banding step limit */ #define REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */ #define REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */ #define REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */ #define REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */ #define REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */ #define REG_BD60MAX 0xab /* 60hz banding step limit */ enum ov7670_model { MODEL_OV7670 = 0, MODEL_OV7675, }; struct ov7670_win_size { int width; int height; unsigned char com7_bit; int hstart; /* Start/stop values for the camera. Note */ int hstop; /* that they do not always make complete */ int vstart; /* sense to humans, but evidently the sensor */ int vstop; /* will do the right thing... */ struct regval_list *regs; /* Regs to tweak */ }; struct ov7670_devtype { /* formats supported for each model */ struct ov7670_win_size *win_sizes; unsigned int n_win_sizes; /* callbacks for frame rate control */ int (*set_framerate)(struct v4l2_subdev *, struct v4l2_fract *); void (*get_framerate)(struct v4l2_subdev *, struct v4l2_fract *); }; /* * Information we maintain about a known sensor. */ struct ov7670_format_struct; /* coming later */ struct ov7670_info { struct v4l2_subdev sd; #if defined(CONFIG_MEDIA_CONTROLLER) struct media_pad pad; #endif struct v4l2_ctrl_handler hdl; struct { /* gain cluster */ struct v4l2_ctrl *auto_gain; struct v4l2_ctrl *gain; }; struct { /* exposure cluster */ struct v4l2_ctrl *auto_exposure; struct v4l2_ctrl *exposure; }; struct { /* saturation/hue cluster */ struct v4l2_ctrl *saturation; struct v4l2_ctrl *hue; }; struct v4l2_mbus_framefmt format; struct ov7670_format_struct *fmt; /* Current format */ struct ov7670_win_size *wsize; struct clk *clk; int on; struct gpio_desc *resetb_gpio; struct gpio_desc *pwdn_gpio; unsigned int mbus_config; /* Media bus configuration flags */ int min_width; /* Filter out smaller sizes */ int min_height; /* Filter out smaller sizes */ int clock_speed; /* External clock speed (MHz) */ u8 clkrc; /* Clock divider value */ bool use_smbus; /* Use smbus I/O instead of I2C */ bool pll_bypass; bool pclk_hb_disable; const struct ov7670_devtype *devtype; /* Device specifics */ }; static inline struct ov7670_info *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct ov7670_info, sd); } static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl) { return &container_of(ctrl->handler, struct ov7670_info, hdl)->sd; } /* * The default register settings, as obtained from OmniVision. There * is really no making sense of most of these - lots of "reserved" values * and such. * * These settings give VGA YUYV. */ struct regval_list { unsigned char reg_num; unsigned char value; }; static struct regval_list ov7670_default_regs[] = { { REG_COM7, COM7_RESET }, /* * Clock scale: 3 = 15fps * 2 = 20fps * 1 = 30fps */ { REG_CLKRC, 0x1 }, /* OV: clock scale (30 fps) */ { REG_TSLB, 0x04 }, /* OV */ { REG_COM7, 0 }, /* VGA */ /* * Set the hardware window. These values from OV don't entirely * make sense - hstop is less than hstart. But they work... */ { REG_HSTART, 0x13 }, { REG_HSTOP, 0x01 }, { REG_HREF, 0xb6 }, { REG_VSTART, 0x02 }, { REG_VSTOP, 0x7a }, { REG_VREF, 0x0a }, { REG_COM3, 0 }, { REG_COM14, 0 }, /* Mystery scaling numbers */ { REG_SCALING_XSC, 0x3a }, { REG_SCALING_YSC, 0x35 }, { 0x72, 0x11 }, { 0x73, 0xf0 }, { 0xa2, 0x02 }, { REG_COM10, 0x0 }, /* Gamma curve values */ { 0x7a, 0x20 }, { 0x7b, 0x10 }, { 0x7c, 0x1e }, { 0x7d, 0x35 }, { 0x7e, 0x5a }, { 0x7f, 0x69 }, { 0x80, 0x76 }, { 0x81, 0x80 }, { 0x82, 0x88 }, { 0x83, 0x8f }, { 0x84, 0x96 }, { 0x85, 0xa3 }, { 0x86, 0xaf }, { 0x87, 0xc4 }, { 0x88, 0xd7 }, { 0x89, 0xe8 }, /* AGC and AEC parameters. Note we start by disabling those features, then turn them only after tweaking the values. */ { REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT }, { REG_GAIN, 0 }, { REG_AECH, 0 }, { REG_COM4, 0x40 }, /* magic reserved bit */ { REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */ { REG_BD50MAX, 0x05 }, { REG_BD60MAX, 0x07 }, { REG_AEW, 0x95 }, { REG_AEB, 0x33 }, { REG_VPT, 0xe3 }, { REG_HAECC1, 0x78 }, { REG_HAECC2, 0x68 }, { 0xa1, 0x03 }, /* magic */ { REG_HAECC3, 0xd8 }, { REG_HAECC4, 0xd8 }, { REG_HAECC5, 0xf0 }, { REG_HAECC6, 0x90 }, { REG_HAECC7, 0x94 }, { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC }, /* Almost all of these are magic "reserved" values. */ { REG_COM5, 0x61 }, { REG_COM6, 0x4b }, { 0x16, 0x02 }, { REG_MVFP, 0x07 }, { 0x21, 0x02 }, { 0x22, 0x91 }, { 0x29, 0x07 }, { 0x33, 0x0b }, { 0x35, 0x0b }, { 0x37, 0x1d }, { 0x38, 0x71 }, { 0x39, 0x2a }, { REG_COM12, 0x78 }, { 0x4d, 0x40 }, { 0x4e, 0x20 }, { REG_GFIX, 0 }, { 0x6b, 0x4a }, { 0x74, 0x10 }, { 0x8d, 0x4f }, { 0x8e, 0 }, { 0x8f, 0 }, { 0x90, 0 }, { 0x91, 0 }, { 0x96, 0 }, { 0x9a, 0 }, { 0xb0, 0x84 }, { 0xb1, 0x0c }, { 0xb2, 0x0e }, { 0xb3, 0x82 }, { 0xb8, 0x0a }, /* More reserved magic, some of which tweaks white balance */ { 0x43, 0x0a }, { 0x44, 0xf0 }, { 0x45, 0x34 }, { 0x46, 0x58 }, { 0x47, 0x28 }, { 0x48, 0x3a }, { 0x59, 0x88 }, { 0x5a, 0x88 }, { 0x5b, 0x44 }, { 0x5c, 0x67 }, { 0x5d, 0x49 }, { 0x5e, 0x0e }, { 0x6c, 0x0a }, { 0x6d, 0x55 }, { 0x6e, 0x11 }, { 0x6f, 0x9f }, /* "9e for advance AWB" */ { 0x6a, 0x40 }, { REG_BLUE, 0x40 }, { REG_RED, 0x60 }, { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB }, /* Matrix coefficients */ { 0x4f, 0x80 }, { 0x50, 0x80 }, { 0x51, 0 }, { 0x52, 0x22 }, { 0x53, 0x5e }, { 0x54, 0x80 }, { 0x58, 0x9e }, { REG_COM16, COM16_AWBGAIN }, { REG_EDGE, 0 }, { 0x75, 0x05 }, { 0x76, 0xe1 }, { 0x4c, 0 }, { 0x77, 0x01 }, { REG_COM13, 0xc3 }, { 0x4b, 0x09 }, { 0xc9, 0x60 }, { REG_COM16, 0x38 }, { 0x56, 0x40 }, { 0x34, 0x11 }, { REG_COM11, COM11_EXP|COM11_HZAUTO }, { 0xa4, 0x88 }, { 0x96, 0 }, { 0x97, 0x30 }, { 0x98, 0x20 }, { 0x99, 0x30 }, { 0x9a, 0x84 }, { 0x9b, 0x29 }, { 0x9c, 0x03 }, { 0x9d, 0x4c }, { 0x9e, 0x3f }, { 0x78, 0x04 }, /* Extra-weird stuff. Some sort of multiplexor register */ { 0x79, 0x01 }, { 0xc8, 0xf0 }, { 0x79, 0x0f }, { 0xc8, 0x00 }, { 0x79, 0x10 }, { 0xc8, 0x7e }, { 0x79, 0x0a }, { 0xc8, 0x80 }, { 0x79, 0x0b }, { 0xc8, 0x01 }, { 0x79, 0x0c }, { 0xc8, 0x0f }, { 0x79, 0x0d }, { 0xc8, 0x20 }, { 0x79, 0x09 }, { 0xc8, 0x80 }, { 0x79, 0x02 }, { 0xc8, 0xc0 }, { 0x79, 0x03 }, { 0xc8, 0x40 }, { 0x79, 0x05 }, { 0xc8, 0x30 }, { 0x79, 0x26 }, { 0xff, 0xff }, /* END MARKER */ }; /* * Here we'll try to encapsulate the changes for just the output * video format. * * RGB656 and YUV422 come from OV; RGB444 is homebrewed. * * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why. */ static struct regval_list ov7670_fmt_yuv422[] = { { REG_COM7, 0x0 }, /* Selects YUV mode */ { REG_RGB444, 0 }, /* No RGB444 please */ { REG_COM1, 0 }, /* CCIR601 */ { REG_COM15, COM15_R00FF }, { REG_COM9, 0x48 }, /* 32x gain ceiling; 0x8 is reserved bit */ { 0x4f, 0x80 }, /* "matrix coefficient 1" */ { 0x50, 0x80 }, /* "matrix coefficient 2" */ { 0x51, 0 }, /* vb */ { 0x52, 0x22 }, /* "matrix coefficient 4" */ { 0x53, 0x5e }, /* "matrix coefficient 5" */ { 0x54, 0x80 }, /* "matrix coefficient 6" */ { REG_COM13, COM13_GAMMA|COM13_UVSAT }, { 0xff, 0xff }, }; static struct regval_list ov7670_fmt_rgb565[] = { { REG_COM7, COM7_RGB }, /* Selects RGB mode */ { REG_RGB444, 0 }, /* No RGB444 please */ { REG_COM1, 0x0 }, /* CCIR601 */ { REG_COM15, COM15_RGB565 }, { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */ { 0x4f, 0xb3 }, /* "matrix coefficient 1" */ { 0x50, 0xb3 }, /* "matrix coefficient 2" */ { 0x51, 0 }, /* vb */ { 0x52, 0x3d }, /* "matrix coefficient 4" */ { 0x53, 0xa7 }, /* "matrix coefficient 5" */ { 0x54, 0xe4 }, /* "matrix coefficient 6" */ { REG_COM13, COM13_GAMMA|COM13_UVSAT }, { 0xff, 0xff }, }; static struct regval_list ov7670_fmt_rgb444[] = { { REG_COM7, COM7_RGB }, /* Selects RGB mode */ { REG_RGB444, R444_ENABLE }, /* Enable xxxxrrrr ggggbbbb */ { REG_COM1, 0x0 }, /* CCIR601 */ { REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */ { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */ { 0x4f, 0xb3 }, /* "matrix coefficient 1" */ { 0x50, 0xb3 }, /* "matrix coefficient 2" */ { 0x51, 0 }, /* vb */ { 0x52, 0x3d }, /* "matrix coefficient 4" */ { 0x53, 0xa7 }, /* "matrix coefficient 5" */ { 0x54, 0xe4 }, /* "matrix coefficient 6" */ { REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 }, /* Magic rsvd bit */ { 0xff, 0xff }, }; static struct regval_list ov7670_fmt_raw[] = { { REG_COM7, COM7_BAYER }, { REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */ { REG_COM16, 0x3d }, /* Edge enhancement, denoise */ { REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */ { 0xff, 0xff }, }; /* * Low-level register I/O. * * Note that there are two versions of these. On the XO 1, the * i2c controller only does SMBUS, so that's what we use. The * ov7670 is not really an SMBUS device, though, so the communication * is not always entirely reliable. */ static int ov7670_read_smbus(struct v4l2_subdev *sd, unsigned char reg, unsigned char *value) { struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; ret = i2c_smbus_read_byte_data(client, reg); if (ret >= 0) { *value = (unsigned char)ret; ret = 0; } return ret; } static int ov7670_write_smbus(struct v4l2_subdev *sd, unsigned char reg, unsigned char value) { struct i2c_client *client = v4l2_get_subdevdata(sd); int ret = i2c_smbus_write_byte_data(client, reg, value); if (reg == REG_COM7 && (value & COM7_RESET)) msleep(5); /* Wait for reset to run */ return ret; } /* * On most platforms, we'd rather do straight i2c I/O. */ static int ov7670_read_i2c(struct v4l2_subdev *sd, unsigned char reg, unsigned char *value) { struct i2c_client *client = v4l2_get_subdevdata(sd); u8 data = reg; struct i2c_msg msg; int ret; /* * Send out the register address... */ msg.addr = client->addr; msg.flags = 0; msg.len = 1; msg.buf = &data; ret = i2c_transfer(client->adapter, &msg, 1); if (ret < 0) { printk(KERN_ERR "Error %d on register write\n", ret); return ret; } /* * ...then read back the result. */ msg.flags = I2C_M_RD; ret = i2c_transfer(client->adapter, &msg, 1); if (ret >= 0) { *value = data; ret = 0; } return ret; } static int ov7670_write_i2c(struct v4l2_subdev *sd, unsigned char reg, unsigned char value) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct i2c_msg msg; unsigned char data[2] = { reg, value }; int ret; msg.addr = client->addr; msg.flags = 0; msg.len = 2; msg.buf = data; ret = i2c_transfer(client->adapter, &msg, 1); if (ret > 0) ret = 0; if (reg == REG_COM7 && (value & COM7_RESET)) msleep(5); /* Wait for reset to run */ return ret; } static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg, unsigned char *value) { struct ov7670_info *info = to_state(sd); if (info->use_smbus) return ov7670_read_smbus(sd, reg, value); else return ov7670_read_i2c(sd, reg, value); } static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg, unsigned char value) { struct ov7670_info *info = to_state(sd); if (info->use_smbus) return ov7670_write_smbus(sd, reg, value); else return ov7670_write_i2c(sd, reg, value); } static int ov7670_update_bits(struct v4l2_subdev *sd, unsigned char reg, unsigned char mask, unsigned char value) { unsigned char orig; int ret; ret = ov7670_read(sd, reg, &orig); if (ret) return ret; return ov7670_write(sd, reg, (orig & ~mask) | (value & mask)); } /* * Write a list of register settings; ff/ff stops the process. */ static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals) { while (vals->reg_num != 0xff || vals->value != 0xff) { int ret = ov7670_write(sd, vals->reg_num, vals->value); if (ret < 0) return ret; vals++; } return 0; } /* * Stuff that knows about the sensor. */ static int ov7670_reset(struct v4l2_subdev *sd, u32 val) { ov7670_write(sd, REG_COM7, COM7_RESET); msleep(1); return 0; } static int ov7670_init(struct v4l2_subdev *sd, u32 val) { return ov7670_write_array(sd, ov7670_default_regs); } static int ov7670_detect(struct v4l2_subdev *sd) { unsigned char v; int ret; ret = ov7670_init(sd, 0); if (ret < 0) return ret; ret = ov7670_read(sd, REG_MIDH, &v); if (ret < 0) return ret; if (v != 0x7f) /* OV manuf. id. */ return -ENODEV; ret = ov7670_read(sd, REG_MIDL, &v); if (ret < 0) return ret; if (v != 0xa2) return -ENODEV; /* * OK, we know we have an OmniVision chip...but which one? */ ret = ov7670_read(sd, REG_PID, &v); if (ret < 0) return ret; if (v != 0x76) /* PID + VER = 0x76 / 0x73 */ return -ENODEV; ret = ov7670_read(sd, REG_VER, &v); if (ret < 0) return ret; if (v != 0x73) /* PID + VER = 0x76 / 0x73 */ return -ENODEV; return 0; } /* * Store information about the video data format. The color matrix * is deeply tied into the format, so keep the relevant values here. * The magic matrix numbers come from OmniVision. */ static struct ov7670_format_struct { u32 mbus_code; enum v4l2_colorspace colorspace; struct regval_list *regs; int cmatrix[CMATRIX_LEN]; } ov7670_formats[] = { { .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8, .colorspace = V4L2_COLORSPACE_SRGB, .regs = ov7670_fmt_yuv422, .cmatrix = { 128, -128, 0, -34, -94, 128 }, }, { .mbus_code = MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE, .colorspace = V4L2_COLORSPACE_SRGB, .regs = ov7670_fmt_rgb444, .cmatrix = { 179, -179, 0, -61, -176, 228 }, }, { .mbus_code = MEDIA_BUS_FMT_RGB565_2X8_LE, .colorspace = V4L2_COLORSPACE_SRGB, .regs = ov7670_fmt_rgb565, .cmatrix = { 179, -179, 0, -61, -176, 228 }, }, { .mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8, .colorspace = V4L2_COLORSPACE_SRGB, .regs = ov7670_fmt_raw, .cmatrix = { 0, 0, 0, 0, 0, 0 }, }, }; #define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats) /* * Then there is the issue of window sizes. Try to capture the info here. */ /* * QCIF mode is done (by OV) in a very strange way - it actually looks like * VGA with weird scaling options - they do *not* use the canned QCIF mode * which is allegedly provided by the sensor. So here's the weird register * settings. */ static struct regval_list ov7670_qcif_regs[] = { { REG_COM3, COM3_SCALEEN|COM3_DCWEN }, { REG_COM3, COM3_DCWEN }, { REG_COM14, COM14_DCWEN | 0x01}, { 0x73, 0xf1 }, { 0xa2, 0x52 }, { 0x7b, 0x1c }, { 0x7c, 0x28 }, { 0x7d, 0x3c }, { 0x7f, 0x69 }, { REG_COM9, 0x38 }, { 0xa1, 0x0b }, { 0x74, 0x19 }, { 0x9a, 0x80 }, { 0x43, 0x14 }, { REG_COM13, 0xc0 }, { 0xff, 0xff }, }; static struct ov7670_win_size ov7670_win_sizes[] = { /* VGA */ { .width = VGA_WIDTH, .height = VGA_HEIGHT, .com7_bit = COM7_FMT_VGA, .hstart = 158, /* These values from */ .hstop = 14, /* Omnivision */ .vstart = 10, .vstop = 490, .regs = NULL, }, /* CIF */ { .width = CIF_WIDTH, .height = CIF_HEIGHT, .com7_bit = COM7_FMT_CIF, .hstart = 170, /* Empirically determined */ .hstop = 90, .vstart = 14, .vstop = 494, .regs = NULL, }, /* QVGA */ { .width = QVGA_WIDTH, .height = QVGA_HEIGHT, .com7_bit = COM7_FMT_QVGA, .hstart = 168, /* Empirically determined */ .hstop = 24, .vstart = 12, .vstop = 492, .regs = NULL, }, /* QCIF */ { .width = QCIF_WIDTH, .height = QCIF_HEIGHT, .com7_bit = COM7_FMT_VGA, /* see comment above */ .hstart = 456, /* Empirically determined */ .hstop = 24, .vstart = 14, .vstop = 494, .regs = ov7670_qcif_regs, } }; static struct ov7670_win_size ov7675_win_sizes[] = { /* * Currently, only VGA is supported. Theoretically it could be possible * to support CIF, QVGA and QCIF too. Taking values for ov7670 as a * base and tweak them empirically could be required. */ { .width = VGA_WIDTH, .height = VGA_HEIGHT, .com7_bit = COM7_FMT_VGA, .hstart = 158, /* These values from */ .hstop = 14, /* Omnivision */ .vstart = 14, /* Empirically determined */ .vstop = 494, .regs = NULL, } }; static void ov7675_get_framerate(struct v4l2_subdev *sd, struct v4l2_fract *tpf) { struct ov7670_info *info = to_state(sd); u32 clkrc = info->clkrc; int pll_factor; if (info->pll_bypass) pll_factor = 1; else pll_factor = PLL_FACTOR; clkrc++; if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8) clkrc = (clkrc >> 1); tpf->numerator = 1; tpf->denominator = (5 * pll_factor * info->clock_speed) / (4 * clkrc); } static int ov7675_apply_framerate(struct v4l2_subdev *sd) { struct ov7670_info *info = to_state(sd); int ret; ret = ov7670_write(sd, REG_CLKRC, info->clkrc); if (ret < 0) return ret; return ov7670_write(sd, REG_DBLV, info->pll_bypass ? DBLV_BYPASS : DBLV_X4); } static int ov7675_set_framerate(struct v4l2_subdev *sd, struct v4l2_fract *tpf) { struct ov7670_info *info = to_state(sd); u32 clkrc; int pll_factor; /* * The formula is fps = 5/4*pixclk for YUV/RGB and * fps = 5/2*pixclk for RAW. * * pixclk = clock_speed / (clkrc + 1) * PLLfactor * */ if (tpf->numerator == 0 || tpf->denominator == 0) { clkrc = 0; } else { pll_factor = info->pll_bypass ? 1 : PLL_FACTOR; clkrc = (5 * pll_factor * info->clock_speed * tpf->numerator) / (4 * tpf->denominator); if (info->fmt->mbus_code == MEDIA_BUS_FMT_SBGGR8_1X8) clkrc = (clkrc << 1); clkrc--; } /* * The datasheet claims that clkrc = 0 will divide the input clock by 1 * but we've checked with an oscilloscope that it divides by 2 instead. * So, if clkrc = 0 just bypass the divider. */ if (clkrc <= 0) clkrc = CLK_EXT; else if (clkrc > CLK_SCALE) clkrc = CLK_SCALE; info->clkrc = clkrc; /* Recalculate frame rate */ ov7675_get_framerate(sd, tpf); /* * If the device is not powered up by the host driver do * not apply any changes to H/W at this time. Instead * the framerate will be restored right after power-up. */ if (info->on) return ov7675_apply_framerate(sd); return 0; } static void ov7670_get_framerate_legacy(struct v4l2_subdev *sd, struct v4l2_fract *tpf) { struct ov7670_info *info = to_state(sd); tpf->numerator = 1; tpf->denominator = info->clock_speed; if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1) tpf->denominator /= (info->clkrc & CLK_SCALE); } static int ov7670_set_framerate_legacy(struct v4l2_subdev *sd, struct v4l2_fract *tpf) { struct ov7670_info *info = to_state(sd); int div; if (tpf->numerator == 0 || tpf->denominator == 0) div = 1; /* Reset to full rate */ else div = (tpf->numerator * info->clock_speed) / tpf->denominator; if (div == 0) div = 1; else if (div > CLK_SCALE) div = CLK_SCALE; info->clkrc = (info->clkrc & 0x80) | div; tpf->numerator = 1; tpf->denominator = info->clock_speed / div; /* * If the device is not powered up by the host driver do * not apply any changes to H/W at this time. Instead * the framerate will be restored right after power-up. */ if (info->on) return ov7670_write(sd, REG_CLKRC, info->clkrc); return 0; } /* * Store a set of start/stop values into the camera. */ static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop, int vstart, int vstop) { int ret; unsigned char v; /* * Horizontal: 11 bits, top 8 live in hstart and hstop. Bottom 3 of * hstart are in href[2:0], bottom 3 of hstop in href[5:3]. There is * a mystery "edge offset" value in the top two bits of href. */ ret = ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff); if (ret) return ret; ret = ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff); if (ret) return ret; ret = ov7670_read(sd, REG_HREF, &v); if (ret) return ret; v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7); msleep(10); ret = ov7670_write(sd, REG_HREF, v); if (ret) return ret; /* Vertical: similar arrangement, but only 10 bits. */ ret = ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff); if (ret) return ret; ret = ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff); if (ret) return ret; ret = ov7670_read(sd, REG_VREF, &v); if (ret) return ret; v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3); msleep(10); return ov7670_write(sd, REG_VREF, v); } static int ov7670_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { if (code->pad || code->index >= N_OV7670_FMTS) return -EINVAL; code->code = ov7670_formats[code->index].mbus_code; return 0; } static int ov7670_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, struct ov7670_format_struct **ret_fmt, struct ov7670_win_size **ret_wsize) { int index, i; struct ov7670_win_size *wsize; struct ov7670_info *info = to_state(sd); unsigned int n_win_sizes = info->devtype->n_win_sizes; unsigned int win_sizes_limit = n_win_sizes; for (index = 0; index < N_OV7670_FMTS; index++) if (ov7670_formats[index].mbus_code == fmt->code) break; if (index >= N_OV7670_FMTS) { /* default to first format */ index = 0; fmt->code = ov7670_formats[0].mbus_code; } if (ret_fmt != NULL) *ret_fmt = ov7670_formats + index; /* * Fields: the OV devices claim to be progressive. */ fmt->field = V4L2_FIELD_NONE; /* * Don't consider values that don't match min_height and min_width * constraints. */ if (info->min_width || info->min_height) for (i = 0; i < n_win_sizes; i++) { wsize = info->devtype->win_sizes + i; if (wsize->width < info->min_width || wsize->height < info->min_height) { win_sizes_limit = i; break; } } /* * Round requested image size down to the nearest * we support, but not below the smallest. */ for (wsize = info->devtype->win_sizes; wsize < info->devtype->win_sizes + win_sizes_limit; wsize++) if (fmt->width >= wsize->width && fmt->height >= wsize->height) break; if (wsize >= info->devtype->win_sizes + win_sizes_limit) wsize--; /* Take the smallest one */ if (ret_wsize != NULL) *ret_wsize = wsize; /* * Note the size we'll actually handle. */ fmt->width = wsize->width; fmt->height = wsize->height; fmt->colorspace = ov7670_formats[index].colorspace; info->format = *fmt; return 0; } static int ov7670_apply_fmt(struct v4l2_subdev *sd) { struct ov7670_info *info = to_state(sd); struct ov7670_win_size *wsize = info->wsize; unsigned char com7, com10 = 0; int ret; /* * COM7 is a pain in the ass, it doesn't like to be read then * quickly written afterward. But we have everything we need * to set it absolutely here, as long as the format-specific * register sets list it first. */ com7 = info->fmt->regs[0].value; com7 |= wsize->com7_bit; ret = ov7670_write(sd, REG_COM7, com7); if (ret) return ret; /* * Configure the media bus through COM10 register */ if (info->mbus_config & V4L2_MBUS_VSYNC_ACTIVE_LOW) com10 |= COM10_VS_NEG; if (info->mbus_config & V4L2_MBUS_HSYNC_ACTIVE_LOW) com10 |= COM10_HREF_REV; if (info->pclk_hb_disable) com10 |= COM10_PCLK_HB; ret = ov7670_write(sd, REG_COM10, com10); if (ret) return ret; /* * Now write the rest of the array. Also store start/stops */ ret = ov7670_write_array(sd, info->fmt->regs + 1); if (ret) return ret; ret = ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart, wsize->vstop); if (ret) return ret; if (wsize->regs) { ret = ov7670_write_array(sd, wsize->regs); if (ret) return ret; } /* * If we're running RGB565, we must rewrite clkrc after setting * the other parameters or the image looks poor. If we're *not* * doing RGB565, we must not rewrite clkrc or the image looks * *really* poor. * * (Update) Now that we retain clkrc state, we should be able * to write it unconditionally, and that will make the frame * rate persistent too. */ ret = ov7670_write(sd, REG_CLKRC, info->clkrc); if (ret) return ret; return 0; } /* * Set a format. */ static int ov7670_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct ov7670_info *info = to_state(sd); #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API struct v4l2_mbus_framefmt *mbus_fmt; #endif int ret; if (format->pad) return -EINVAL; if (format->which == V4L2_SUBDEV_FORMAT_TRY) { ret = ov7670_try_fmt_internal(sd, &format->format, NULL, NULL); if (ret) return ret; #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API mbus_fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad); *mbus_fmt = format->format; #endif return 0; } ret = ov7670_try_fmt_internal(sd, &format->format, &info->fmt, &info->wsize); if (ret) return ret; /* * If the device is not powered up by the host driver do * not apply any changes to H/W at this time. Instead * the frame format will be restored right after power-up. */ if (info->on) return ov7670_apply_fmt(sd); return 0; } static int ov7670_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct ov7670_info *info = to_state(sd); #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API struct v4l2_mbus_framefmt *mbus_fmt; #endif if (format->which == V4L2_SUBDEV_FORMAT_TRY) { #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API mbus_fmt = v4l2_subdev_get_try_format(sd, sd_state, 0); format->format = *mbus_fmt; return 0; #else return -EINVAL; #endif } else { format->format = info->format; } return 0; } /* * Implement G/S_PARM. There is a "high quality" mode we could try * to do someday; for now, we just do the frame rate tweak. */ static int ov7670_g_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *ival) { struct ov7670_info *info = to_state(sd); info->devtype->get_framerate(sd, &ival->interval); return 0; } static int ov7670_s_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *ival) { struct v4l2_fract *tpf = &ival->interval; struct ov7670_info *info = to_state(sd); return info->devtype->set_framerate(sd, tpf); } /* * Frame intervals. Since frame rates are controlled with the clock * divider, we can only do 30/n for integer n values. So no continuous * or stepwise options. Here we just pick a handful of logical values. */ static int ov7670_frame_rates[] = { 30, 15, 10, 5, 1 }; static int ov7670_enum_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_interval_enum *fie) { struct ov7670_info *info = to_state(sd); unsigned int n_win_sizes = info->devtype->n_win_sizes; int i; if (fie->pad) return -EINVAL; if (fie->index >= ARRAY_SIZE(ov7670_frame_rates)) return -EINVAL; /* * Check if the width/height is valid. * * If a minimum width/height was requested, filter out the capture * windows that fall outside that. */ for (i = 0; i < n_win_sizes; i++) { struct ov7670_win_size *win = &info->devtype->win_sizes[i]; if (info->min_width && win->width < info->min_width) continue; if (info->min_height && win->height < info->min_height) continue; if (fie->width == win->width && fie->height == win->height) break; } if (i == n_win_sizes) return -EINVAL; fie->interval.numerator = 1; fie->interval.denominator = ov7670_frame_rates[fie->index]; return 0; } /* * Frame size enumeration */ static int ov7670_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { struct ov7670_info *info = to_state(sd); int i; int num_valid = -1; __u32 index = fse->index; unsigned int n_win_sizes = info->devtype->n_win_sizes; if (fse->pad) return -EINVAL; /* * If a minimum width/height was requested, filter out the capture * windows that fall outside that. */ for (i = 0; i < n_win_sizes; i++) { struct ov7670_win_size *win = &info->devtype->win_sizes[i]; if (info->min_width && win->width < info->min_width) continue; if (info->min_height && win->height < info->min_height) continue; if (index == ++num_valid) { fse->min_width = fse->max_width = win->width; fse->min_height = fse->max_height = win->height; return 0; } } return -EINVAL; } /* * Code for dealing with controls. */ static int ov7670_store_cmatrix(struct v4l2_subdev *sd, int matrix[CMATRIX_LEN]) { int i, ret; unsigned char signbits = 0; /* * Weird crap seems to exist in the upper part of * the sign bits register, so let's preserve it. */ ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits); signbits &= 0xc0; for (i = 0; i < CMATRIX_LEN; i++) { unsigned char raw; if (matrix[i] < 0) { signbits |= (1 << i); if (matrix[i] < -255) raw = 0xff; else raw = (-1 * matrix[i]) & 0xff; } else { if (matrix[i] > 255) raw = 0xff; else raw = matrix[i] & 0xff; } ret = ov7670_write(sd, REG_CMATRIX_BASE + i, raw); if (ret) return ret; } return ov7670_write(sd, REG_CMATRIX_SIGN, signbits); } /* * Hue also requires messing with the color matrix. It also requires * trig functions, which tend not to be well supported in the kernel. * So here is a simple table of sine values, 0-90 degrees, in steps * of five degrees. Values are multiplied by 1000. * * The following naive approximate trig functions require an argument * carefully limited to -180 <= theta <= 180. */ #define SIN_STEP 5 static const int ov7670_sin_table[] = { 0, 87, 173, 258, 342, 422, 499, 573, 642, 707, 766, 819, 866, 906, 939, 965, 984, 996, 1000 }; static int ov7670_sine(int theta) { int chs = 1; int sine; if (theta < 0) { theta = -theta; chs = -1; } if (theta <= 90) sine = ov7670_sin_table[theta/SIN_STEP]; else { theta -= 90; sine = 1000 - ov7670_sin_table[theta/SIN_STEP]; } return sine*chs; } static int ov7670_cosine(int theta) { theta = 90 - theta; if (theta > 180) theta -= 360; else if (theta < -180) theta += 360; return ov7670_sine(theta); } static void ov7670_calc_cmatrix(struct ov7670_info *info, int matrix[CMATRIX_LEN], int sat, int hue) { int i; /* * Apply the current saturation setting first. */ for (i = 0; i < CMATRIX_LEN; i++) matrix[i] = (info->fmt->cmatrix[i] * sat) >> 7; /* * Then, if need be, rotate the hue value. */ if (hue != 0) { int sinth, costh, tmpmatrix[CMATRIX_LEN]; memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int)); sinth = ov7670_sine(hue); costh = ov7670_cosine(hue); matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000; matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000; matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000; matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000; matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000; matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000; } } static int ov7670_s_sat_hue(struct v4l2_subdev *sd, int sat, int hue) { struct ov7670_info *info = to_state(sd); int matrix[CMATRIX_LEN]; ov7670_calc_cmatrix(info, matrix, sat, hue); return ov7670_store_cmatrix(sd, matrix); } /* * Some weird registers seem to store values in a sign/magnitude format! */ static unsigned char ov7670_abs_to_sm(unsigned char v) { if (v > 127) return v & 0x7f; return (128 - v) | 0x80; } static int ov7670_s_brightness(struct v4l2_subdev *sd, int value) { unsigned char com8 = 0, v; ov7670_read(sd, REG_COM8, &com8); com8 &= ~COM8_AEC; ov7670_write(sd, REG_COM8, com8); v = ov7670_abs_to_sm(value); return ov7670_write(sd, REG_BRIGHT, v); } static int ov7670_s_contrast(struct v4l2_subdev *sd, int value) { return ov7670_write(sd, REG_CONTRAS, (unsigned char) value); } static int ov7670_s_hflip(struct v4l2_subdev *sd, int value) { unsigned char v = 0; int ret; ret = ov7670_read(sd, REG_MVFP, &v); if (ret) return ret; if (value) v |= MVFP_MIRROR; else v &= ~MVFP_MIRROR; msleep(10); /* FIXME */ return ov7670_write(sd, REG_MVFP, v); } static int ov7670_s_vflip(struct v4l2_subdev *sd, int value) { unsigned char v = 0; int ret; ret = ov7670_read(sd, REG_MVFP, &v); if (ret) return ret; if (value) v |= MVFP_FLIP; else v &= ~MVFP_FLIP; msleep(10); /* FIXME */ return ov7670_write(sd, REG_MVFP, v); } /* * GAIN is split between REG_GAIN and REG_VREF[7:6]. If one believes * the data sheet, the VREF parts should be the most significant, but * experience shows otherwise. There seems to be little value in * messing with the VREF bits, so we leave them alone. */ static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value) { int ret; unsigned char gain; ret = ov7670_read(sd, REG_GAIN, &gain); if (ret) return ret; *value = gain; return 0; } static int ov7670_s_gain(struct v4l2_subdev *sd, int value) { int ret; unsigned char com8; ret = ov7670_write(sd, REG_GAIN, value & 0xff); if (ret) return ret; /* Have to turn off AGC as well */ ret = ov7670_read(sd, REG_COM8, &com8); if (ret) return ret; return ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC); } /* * Tweak autogain. */ static int ov7670_s_autogain(struct v4l2_subdev *sd, int value) { int ret; unsigned char com8; ret = ov7670_read(sd, REG_COM8, &com8); if (ret == 0) { if (value) com8 |= COM8_AGC; else com8 &= ~COM8_AGC; ret = ov7670_write(sd, REG_COM8, com8); } return ret; } static int ov7670_s_exp(struct v4l2_subdev *sd, int value) { int ret; unsigned char com1, com8, aech, aechh; ret = ov7670_read(sd, REG_COM1, &com1) + ov7670_read(sd, REG_COM8, &com8) + ov7670_read(sd, REG_AECHH, &aechh); if (ret) return ret; com1 = (com1 & 0xfc) | (value & 0x03); aech = (value >> 2) & 0xff; aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f); ret = ov7670_write(sd, REG_COM1, com1) + ov7670_write(sd, REG_AECH, aech) + ov7670_write(sd, REG_AECHH, aechh); /* Have to turn off AEC as well */ if (ret == 0) ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC); return ret; } /* * Tweak autoexposure. */ static int ov7670_s_autoexp(struct v4l2_subdev *sd, enum v4l2_exposure_auto_type value) { int ret; unsigned char com8; ret = ov7670_read(sd, REG_COM8, &com8); if (ret == 0) { if (value == V4L2_EXPOSURE_AUTO) com8 |= COM8_AEC; else com8 &= ~COM8_AEC; ret = ov7670_write(sd, REG_COM8, com8); } return ret; } static const char * const ov7670_test_pattern_menu[] = { "No test output", "Shifting \"1\"", "8-bar color bar", "Fade to gray color bar", }; static int ov7670_s_test_pattern(struct v4l2_subdev *sd, int value) { int ret; ret = ov7670_update_bits(sd, REG_SCALING_XSC, TEST_PATTTERN_0, value & BIT(0) ? TEST_PATTTERN_0 : 0); if (ret) return ret; return ov7670_update_bits(sd, REG_SCALING_YSC, TEST_PATTTERN_1, value & BIT(1) ? TEST_PATTTERN_1 : 0); } static int ov7670_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_sd(ctrl); struct ov7670_info *info = to_state(sd); switch (ctrl->id) { case V4L2_CID_AUTOGAIN: return ov7670_g_gain(sd, &info->gain->val); } return -EINVAL; } static int ov7670_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_sd(ctrl); struct ov7670_info *info = to_state(sd); switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: return ov7670_s_brightness(sd, ctrl->val); case V4L2_CID_CONTRAST: return ov7670_s_contrast(sd, ctrl->val); case V4L2_CID_SATURATION: return ov7670_s_sat_hue(sd, info->saturation->val, info->hue->val); case V4L2_CID_VFLIP: return ov7670_s_vflip(sd, ctrl->val); case V4L2_CID_HFLIP: return ov7670_s_hflip(sd, ctrl->val); case V4L2_CID_AUTOGAIN: /* Only set manual gain if auto gain is not explicitly turned on. */ if (!ctrl->val) { /* ov7670_s_gain turns off auto gain */ return ov7670_s_gain(sd, info->gain->val); } return ov7670_s_autogain(sd, ctrl->val); case V4L2_CID_EXPOSURE_AUTO: /* Only set manual exposure if auto exposure is not explicitly turned on. */ if (ctrl->val == V4L2_EXPOSURE_MANUAL) { /* ov7670_s_exp turns off auto exposure */ return ov7670_s_exp(sd, info->exposure->val); } return ov7670_s_autoexp(sd, ctrl->val); case V4L2_CID_TEST_PATTERN: return ov7670_s_test_pattern(sd, ctrl->val); } return -EINVAL; } static const struct v4l2_ctrl_ops ov7670_ctrl_ops = { .s_ctrl = ov7670_s_ctrl, .g_volatile_ctrl = ov7670_g_volatile_ctrl, }; #ifdef CONFIG_VIDEO_ADV_DEBUG static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { unsigned char val = 0; int ret; ret = ov7670_read(sd, reg->reg & 0xff, &val); reg->val = val; reg->size = 1; return ret; } static int ov7670_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) { ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff); return 0; } #endif static void ov7670_power_on(struct v4l2_subdev *sd) { struct ov7670_info *info = to_state(sd); if (info->on) return; clk_prepare_enable(info->clk); if (info->pwdn_gpio) gpiod_set_value(info->pwdn_gpio, 0); if (info->resetb_gpio) { gpiod_set_value(info->resetb_gpio, 1); usleep_range(500, 1000); gpiod_set_value(info->resetb_gpio, 0); } if (info->pwdn_gpio || info->resetb_gpio || info->clk) usleep_range(3000, 5000); info->on = true; } static void ov7670_power_off(struct v4l2_subdev *sd) { struct ov7670_info *info = to_state(sd); if (!info->on) return; clk_disable_unprepare(info->clk); if (info->pwdn_gpio) gpiod_set_value(info->pwdn_gpio, 1); info->on = false; } static int ov7670_s_power(struct v4l2_subdev *sd, int on) { struct ov7670_info *info = to_state(sd); if (info->on == on) return 0; if (on) { ov7670_power_on(sd); ov7670_init(sd, 0); ov7670_apply_fmt(sd); ov7675_apply_framerate(sd); v4l2_ctrl_handler_setup(&info->hdl); } else { ov7670_power_off(sd); } return 0; } static void ov7670_get_default_format(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *format) { struct ov7670_info *info = to_state(sd); format->width = info->devtype->win_sizes[0].width; format->height = info->devtype->win_sizes[0].height; format->colorspace = info->fmt->colorspace; format->code = info->fmt->mbus_code; format->field = V4L2_FIELD_NONE; } #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API static int ov7670_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { struct v4l2_mbus_framefmt *format = v4l2_subdev_get_try_format(sd, fh->state, 0); ov7670_get_default_format(sd, format); return 0; } #endif /* ----------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops ov7670_core_ops = { .reset = ov7670_reset, .init = ov7670_init, .s_power = ov7670_s_power, .log_status = v4l2_ctrl_subdev_log_status, .subscribe_event = v4l2_ctrl_subdev_subscribe_event, .unsubscribe_event = v4l2_event_subdev_unsubscribe, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = ov7670_g_register, .s_register = ov7670_s_register, #endif }; static const struct v4l2_subdev_video_ops ov7670_video_ops = { .s_frame_interval = ov7670_s_frame_interval, .g_frame_interval = ov7670_g_frame_interval, }; static const struct v4l2_subdev_pad_ops ov7670_pad_ops = { .enum_frame_interval = ov7670_enum_frame_interval, .enum_frame_size = ov7670_enum_frame_size, .enum_mbus_code = ov7670_enum_mbus_code, .get_fmt = ov7670_get_fmt, .set_fmt = ov7670_set_fmt, }; static const struct v4l2_subdev_ops ov7670_ops = { .core = &ov7670_core_ops, .video = &ov7670_video_ops, .pad = &ov7670_pad_ops, }; #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API static const struct v4l2_subdev_internal_ops ov7670_subdev_internal_ops = { .open = ov7670_open, }; #endif /* ----------------------------------------------------------------------- */ static const struct ov7670_devtype ov7670_devdata[] = { [MODEL_OV7670] = { .win_sizes = ov7670_win_sizes, .n_win_sizes = ARRAY_SIZE(ov7670_win_sizes), .set_framerate = ov7670_set_framerate_legacy, .get_framerate = ov7670_get_framerate_legacy, }, [MODEL_OV7675] = { .win_sizes = ov7675_win_sizes, .n_win_sizes = ARRAY_SIZE(ov7675_win_sizes), .set_framerate = ov7675_set_framerate, .get_framerate = ov7675_get_framerate, }, }; static int ov7670_init_gpio(struct i2c_client *client, struct ov7670_info *info) { info->pwdn_gpio = devm_gpiod_get_optional(&client->dev, "powerdown", GPIOD_OUT_LOW); if (IS_ERR(info->pwdn_gpio)) { dev_info(&client->dev, "can't get %s GPIO\n", "powerdown"); return PTR_ERR(info->pwdn_gpio); } info->resetb_gpio = devm_gpiod_get_optional(&client->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(info->resetb_gpio)) { dev_info(&client->dev, "can't get %s GPIO\n", "reset"); return PTR_ERR(info->resetb_gpio); } usleep_range(3000, 5000); return 0; } /* * ov7670_parse_dt() - Parse device tree to collect mbus configuration * properties */ static int ov7670_parse_dt(struct device *dev, struct ov7670_info *info) { struct fwnode_handle *fwnode = dev_fwnode(dev); struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 }; struct fwnode_handle *ep; int ret; if (!fwnode) return -EINVAL; info->pclk_hb_disable = false; if (fwnode_property_present(fwnode, "ov7670,pclk-hb-disable")) info->pclk_hb_disable = true; ep = fwnode_graph_get_next_endpoint(fwnode, NULL); if (!ep) return -EINVAL; ret = v4l2_fwnode_endpoint_parse(ep, &bus_cfg); fwnode_handle_put(ep); if (ret) return ret; if (bus_cfg.bus_type != V4L2_MBUS_PARALLEL) { dev_err(dev, "Unsupported media bus type\n"); return ret; } info->mbus_config = bus_cfg.bus.parallel.flags; return 0; } static int ov7670_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct v4l2_fract tpf; struct v4l2_subdev *sd; struct ov7670_info *info; int ret; info = devm_kzalloc(&client->dev, sizeof(*info), GFP_KERNEL); if (info == NULL) return -ENOMEM; sd = &info->sd; v4l2_i2c_subdev_init(sd, client, &ov7670_ops); #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API sd->internal_ops = &ov7670_subdev_internal_ops; sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; #endif info->clock_speed = 30; /* default: a guess */ if (dev_fwnode(&client->dev)) { ret = ov7670_parse_dt(&client->dev, info); if (ret) return ret; } else if (client->dev.platform_data) { struct ov7670_config *config = client->dev.platform_data; /* * Must apply configuration before initializing device, because it * selects I/O method. */ info->min_width = config->min_width; info->min_height = config->min_height; info->use_smbus = config->use_smbus; if (config->clock_speed) info->clock_speed = config->clock_speed; if (config->pll_bypass) info->pll_bypass = true; if (config->pclk_hb_disable) info->pclk_hb_disable = true; } info->clk = devm_clk_get(&client->dev, "xclk"); /* optional */ if (IS_ERR(info->clk)) { ret = PTR_ERR(info->clk); if (ret == -ENOENT) info->clk = NULL; else return ret; } ret = ov7670_init_gpio(client, info); if (ret) return ret; ov7670_power_on(sd); if (info->clk) { info->clock_speed = clk_get_rate(info->clk) / 1000000; if (info->clock_speed < 10 || info->clock_speed > 48) { ret = -EINVAL; goto power_off; } } /* Make sure it's an ov7670 */ ret = ov7670_detect(sd); if (ret) { v4l_dbg(1, debug, client, "chip found @ 0x%x (%s) is not an ov7670 chip.\n", client->addr << 1, client->adapter->name); goto power_off; } v4l_info(client, "chip found @ 0x%02x (%s)\n", client->addr << 1, client->adapter->name); info->devtype = &ov7670_devdata[id->driver_data]; info->fmt = &ov7670_formats[0]; info->wsize = &info->devtype->win_sizes[0]; ov7670_get_default_format(sd, &info->format); info->clkrc = 0; /* Set default frame rate to 30 fps */ tpf.numerator = 1; tpf.denominator = 30; info->devtype->set_framerate(sd, &tpf); v4l2_ctrl_handler_init(&info->hdl, 10); v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, V4L2_CID_BRIGHTNESS, 0, 255, 1, 128); v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, V4L2_CID_CONTRAST, 0, 127, 1, 64); v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0); info->saturation = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, V4L2_CID_SATURATION, 0, 256, 1, 128); info->hue = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, V4L2_CID_HUE, -180, 180, 5, 0); info->gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, V4L2_CID_GAIN, 0, 255, 1, 128); info->auto_gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, V4L2_CID_AUTOGAIN, 0, 1, 1, 1); info->exposure = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops, V4L2_CID_EXPOSURE, 0, 65535, 1, 500); info->auto_exposure = v4l2_ctrl_new_std_menu(&info->hdl, &ov7670_ctrl_ops, V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_MANUAL, 0, V4L2_EXPOSURE_AUTO); v4l2_ctrl_new_std_menu_items(&info->hdl, &ov7670_ctrl_ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(ov7670_test_pattern_menu) - 1, 0, 0, ov7670_test_pattern_menu); sd->ctrl_handler = &info->hdl; if (info->hdl.error) { ret = info->hdl.error; goto hdl_free; } /* * We have checked empirically that hw allows to read back the gain * value chosen by auto gain but that's not the case for auto exposure. */ v4l2_ctrl_auto_cluster(2, &info->auto_gain, 0, true); v4l2_ctrl_auto_cluster(2, &info->auto_exposure, V4L2_EXPOSURE_MANUAL, false); v4l2_ctrl_cluster(2, &info->saturation); #if defined(CONFIG_MEDIA_CONTROLLER) info->pad.flags = MEDIA_PAD_FL_SOURCE; info->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = media_entity_pads_init(&info->sd.entity, 1, &info->pad); if (ret < 0) goto hdl_free; #endif v4l2_ctrl_handler_setup(&info->hdl); ret = v4l2_async_register_subdev(&info->sd); if (ret < 0) goto entity_cleanup; ov7670_power_off(sd); return 0; entity_cleanup: media_entity_cleanup(&info->sd.entity); hdl_free: v4l2_ctrl_handler_free(&info->hdl); power_off: ov7670_power_off(sd); return ret; } static void ov7670_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ov7670_info *info = to_state(sd); v4l2_async_unregister_subdev(sd); v4l2_ctrl_handler_free(&info->hdl); media_entity_cleanup(&info->sd.entity); } static const struct i2c_device_id ov7670_id[] = { { "ov7670", MODEL_OV7670 }, { "ov7675", MODEL_OV7675 }, { } }; MODULE_DEVICE_TABLE(i2c, ov7670_id); #if IS_ENABLED(CONFIG_OF) static const struct of_device_id ov7670_of_match[] = { { .compatible = "ovti,ov7670", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, ov7670_of_match); #endif static struct i2c_driver ov7670_driver = { .driver = { .name = "ov7670", .of_match_table = of_match_ptr(ov7670_of_match), }, .probe_new = ov7670_probe, .remove = ov7670_remove, .id_table = ov7670_id, }; module_i2c_driver(ov7670_driver);