// SPDX-License-Identifier: GPL-2.0-only /* * AArch64 loadable module support. * * Copyright (C) 2012 ARM Limited * * Author: Will Deacon */ #define pr_fmt(fmt) "Modules: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static u64 module_direct_base __ro_after_init = 0; static u64 module_plt_base __ro_after_init = 0; /* * Choose a random page-aligned base address for a window of 'size' bytes which * entirely contains the interval [start, end - 1]. */ static u64 __init random_bounding_box(u64 size, u64 start, u64 end) { u64 max_pgoff, pgoff; if ((end - start) >= size) return 0; max_pgoff = (size - (end - start)) / PAGE_SIZE; pgoff = get_random_u32_inclusive(0, max_pgoff); return start - pgoff * PAGE_SIZE; } /* * Modules may directly reference data and text anywhere within the kernel * image and other modules. References using PREL32 relocations have a +/-2G * range, and so we need to ensure that the entire kernel image and all modules * fall within a 2G window such that these are always within range. * * Modules may directly branch to functions and code within the kernel text, * and to functions and code within other modules. These branches will use * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure * that the entire kernel text and all module text falls within a 128M window * such that these are always within range. With PLTs, we can expand this to a * 2G window. * * We chose the 128M region to surround the entire kernel image (rather than * just the text) as using the same bounds for the 128M and 2G regions ensures * by construction that we never select a 128M region that is not a subset of * the 2G region. For very large and unusual kernel configurations this means * we may fall back to PLTs where they could have been avoided, but this keeps * the logic significantly simpler. */ static int __init module_init_limits(void) { u64 kernel_end = (u64)_end; u64 kernel_start = (u64)_text; u64 kernel_size = kernel_end - kernel_start; /* * The default modules region is placed immediately below the kernel * image, and is large enough to use the full 2G relocation range. */ BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END); BUILD_BUG_ON(MODULES_VSIZE < SZ_2G); if (!kaslr_enabled()) { if (kernel_size < SZ_128M) module_direct_base = kernel_end - SZ_128M; if (kernel_size < SZ_2G) module_plt_base = kernel_end - SZ_2G; } else { u64 min = kernel_start; u64 max = kernel_end; if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) { pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n"); } else { module_direct_base = random_bounding_box(SZ_128M, min, max); if (module_direct_base) { min = module_direct_base; max = module_direct_base + SZ_128M; } } module_plt_base = random_bounding_box(SZ_2G, min, max); } pr_info("%llu pages in range for non-PLT usage", module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0); pr_info("%llu pages in range for PLT usage", module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0); return 0; } static struct execmem_info execmem_info __ro_after_init; struct execmem_info __init *execmem_arch_setup(void) { unsigned long fallback_start = 0, fallback_end = 0; unsigned long start = 0, end = 0; module_init_limits(); /* * Where possible, prefer to allocate within direct branch range of the * kernel such that no PLTs are necessary. */ if (module_direct_base) { start = module_direct_base; end = module_direct_base + SZ_128M; if (module_plt_base) { fallback_start = module_plt_base; fallback_end = module_plt_base + SZ_2G; } } else if (module_plt_base) { start = module_plt_base; end = module_plt_base + SZ_2G; } execmem_info = (struct execmem_info){ .ranges = { [EXECMEM_DEFAULT] = { .start = start, .end = end, .pgprot = PAGE_KERNEL, .alignment = 1, .fallback_start = fallback_start, .fallback_end = fallback_end, }, [EXECMEM_KPROBES] = { .start = VMALLOC_START, .end = VMALLOC_END, .pgprot = PAGE_KERNEL_ROX, .alignment = 1, }, [EXECMEM_BPF] = { .start = VMALLOC_START, .end = VMALLOC_END, .pgprot = PAGE_KERNEL, .alignment = 1, }, }, }; return &execmem_info; } enum aarch64_reloc_op { RELOC_OP_NONE, RELOC_OP_ABS, RELOC_OP_PREL, RELOC_OP_PAGE, }; static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val) { switch (reloc_op) { case RELOC_OP_ABS: return val; case RELOC_OP_PREL: return val - (u64)place; case RELOC_OP_PAGE: return (val & ~0xfff) - ((u64)place & ~0xfff); case RELOC_OP_NONE: return 0; } pr_err("do_reloc: unknown relocation operation %d\n", reloc_op); return 0; } static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len) { s64 sval = do_reloc(op, place, val); /* * The ELF psABI for AArch64 documents the 16-bit and 32-bit place * relative and absolute relocations as having a range of [-2^15, 2^16) * or [-2^31, 2^32), respectively. However, in order to be able to * detect overflows reliably, we have to choose whether we interpret * such quantities as signed or as unsigned, and stick with it. * The way we organize our address space requires a signed * interpretation of 32-bit relative references, so let's use that * for all R_AARCH64_PRELxx relocations. This means our upper * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX. */ switch (len) { case 16: *(s16 *)place = sval; switch (op) { case RELOC_OP_ABS: if (sval < 0 || sval > U16_MAX) return -ERANGE; break; case RELOC_OP_PREL: if (sval < S16_MIN || sval > S16_MAX) return -ERANGE; break; default: pr_err("Invalid 16-bit data relocation (%d)\n", op); return 0; } break; case 32: *(s32 *)place = sval; switch (op) { case RELOC_OP_ABS: if (sval < 0 || sval > U32_MAX) return -ERANGE; break; case RELOC_OP_PREL: if (sval < S32_MIN || sval > S32_MAX) return -ERANGE; break; default: pr_err("Invalid 32-bit data relocation (%d)\n", op); return 0; } break; case 64: *(s64 *)place = sval; break; default: pr_err("Invalid length (%d) for data relocation\n", len); return 0; } return 0; } enum aarch64_insn_movw_imm_type { AARCH64_INSN_IMM_MOVNZ, AARCH64_INSN_IMM_MOVKZ, }; static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val, int lsb, enum aarch64_insn_movw_imm_type imm_type) { u64 imm; s64 sval; u32 insn = le32_to_cpu(*place); sval = do_reloc(op, place, val); imm = sval >> lsb; if (imm_type == AARCH64_INSN_IMM_MOVNZ) { /* * For signed MOVW relocations, we have to manipulate the * instruction encoding depending on whether or not the * immediate is less than zero. */ insn &= ~(3 << 29); if (sval >= 0) { /* >=0: Set the instruction to MOVZ (opcode 10b). */ insn |= 2 << 29; } else { /* * <0: Set the instruction to MOVN (opcode 00b). * Since we've masked the opcode already, we * don't need to do anything other than * inverting the new immediate field. */ imm = ~imm; } } /* Update the instruction with the new encoding. */ insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm); *place = cpu_to_le32(insn); if (imm > U16_MAX) return -ERANGE; return 0; } static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val, int lsb, int len, enum aarch64_insn_imm_type imm_type) { u64 imm, imm_mask; s64 sval; u32 insn = le32_to_cpu(*place); /* Calculate the relocation value. */ sval = do_reloc(op, place, val); sval >>= lsb; /* Extract the value bits and shift them to bit 0. */ imm_mask = (BIT(lsb + len) - 1) >> lsb; imm = sval & imm_mask; /* Update the instruction's immediate field. */ insn = aarch64_insn_encode_immediate(imm_type, insn, imm); *place = cpu_to_le32(insn); /* * Extract the upper value bits (including the sign bit) and * shift them to bit 0. */ sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1); /* * Overflow has occurred if the upper bits are not all equal to * the sign bit of the value. */ if ((u64)(sval + 1) >= 2) return -ERANGE; return 0; } static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs, __le32 *place, u64 val) { u32 insn; if (!is_forbidden_offset_for_adrp(place)) return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21, AARCH64_INSN_IMM_ADR); /* patch ADRP to ADR if it is in range */ if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21, AARCH64_INSN_IMM_ADR)) { insn = le32_to_cpu(*place); insn &= ~BIT(31); } else { /* out of range for ADR -> emit a veneer */ val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff); if (!val) return -ENOEXEC; insn = aarch64_insn_gen_branch_imm((u64)place, val, AARCH64_INSN_BRANCH_NOLINK); } *place = cpu_to_le32(insn); return 0; } int apply_relocate_add(Elf64_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me) { unsigned int i; int ovf; bool overflow_check; Elf64_Sym *sym; void *loc; u64 val; Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr; for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { /* loc corresponds to P in the AArch64 ELF document. */ loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr + rel[i].r_offset; /* sym is the ELF symbol we're referring to. */ sym = (Elf64_Sym *)sechdrs[symindex].sh_addr + ELF64_R_SYM(rel[i].r_info); /* val corresponds to (S + A) in the AArch64 ELF document. */ val = sym->st_value + rel[i].r_addend; /* Check for overflow by default. */ overflow_check = true; /* Perform the static relocation. */ switch (ELF64_R_TYPE(rel[i].r_info)) { /* Null relocations. */ case R_ARM_NONE: case R_AARCH64_NONE: ovf = 0; break; /* Data relocations. */ case R_AARCH64_ABS64: overflow_check = false; ovf = reloc_data(RELOC_OP_ABS, loc, val, 64); break; case R_AARCH64_ABS32: ovf = reloc_data(RELOC_OP_ABS, loc, val, 32); break; case R_AARCH64_ABS16: ovf = reloc_data(RELOC_OP_ABS, loc, val, 16); break; case R_AARCH64_PREL64: overflow_check = false; ovf = reloc_data(RELOC_OP_PREL, loc, val, 64); break; case R_AARCH64_PREL32: ovf = reloc_data(RELOC_OP_PREL, loc, val, 32); break; case R_AARCH64_PREL16: ovf = reloc_data(RELOC_OP_PREL, loc, val, 16); break; /* MOVW instruction relocations. */ case R_AARCH64_MOVW_UABS_G0_NC: overflow_check = false; fallthrough; case R_AARCH64_MOVW_UABS_G0: ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_UABS_G1_NC: overflow_check = false; fallthrough; case R_AARCH64_MOVW_UABS_G1: ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_UABS_G2_NC: overflow_check = false; fallthrough; case R_AARCH64_MOVW_UABS_G2: ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_UABS_G3: /* We're using the top bits so we can't overflow. */ overflow_check = false; ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_SABS_G0: ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, AARCH64_INSN_IMM_MOVNZ); break; case R_AARCH64_MOVW_SABS_G1: ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, AARCH64_INSN_IMM_MOVNZ); break; case R_AARCH64_MOVW_SABS_G2: ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, AARCH64_INSN_IMM_MOVNZ); break; case R_AARCH64_MOVW_PREL_G0_NC: overflow_check = false; ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_PREL_G0: ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, AARCH64_INSN_IMM_MOVNZ); break; case R_AARCH64_MOVW_PREL_G1_NC: overflow_check = false; ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_PREL_G1: ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, AARCH64_INSN_IMM_MOVNZ); break; case R_AARCH64_MOVW_PREL_G2_NC: overflow_check = false; ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_PREL_G2: ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, AARCH64_INSN_IMM_MOVNZ); break; case R_AARCH64_MOVW_PREL_G3: /* We're using the top bits so we can't overflow. */ overflow_check = false; ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48, AARCH64_INSN_IMM_MOVNZ); break; /* Immediate instruction relocations. */ case R_AARCH64_LD_PREL_LO19: ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, AARCH64_INSN_IMM_19); break; case R_AARCH64_ADR_PREL_LO21: ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21, AARCH64_INSN_IMM_ADR); break; case R_AARCH64_ADR_PREL_PG_HI21_NC: overflow_check = false; fallthrough; case R_AARCH64_ADR_PREL_PG_HI21: ovf = reloc_insn_adrp(me, sechdrs, loc, val); if (ovf && ovf != -ERANGE) return ovf; break; case R_AARCH64_ADD_ABS_LO12_NC: case R_AARCH64_LDST8_ABS_LO12_NC: overflow_check = false; ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12, AARCH64_INSN_IMM_12); break; case R_AARCH64_LDST16_ABS_LO12_NC: overflow_check = false; ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11, AARCH64_INSN_IMM_12); break; case R_AARCH64_LDST32_ABS_LO12_NC: overflow_check = false; ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10, AARCH64_INSN_IMM_12); break; case R_AARCH64_LDST64_ABS_LO12_NC: overflow_check = false; ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9, AARCH64_INSN_IMM_12); break; case R_AARCH64_LDST128_ABS_LO12_NC: overflow_check = false; ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8, AARCH64_INSN_IMM_12); break; case R_AARCH64_TSTBR14: ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14, AARCH64_INSN_IMM_14); break; case R_AARCH64_CONDBR19: ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, AARCH64_INSN_IMM_19); break; case R_AARCH64_JUMP26: case R_AARCH64_CALL26: ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26, AARCH64_INSN_IMM_26); if (ovf == -ERANGE) { val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym); if (!val) return -ENOEXEC; ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26, AARCH64_INSN_IMM_26); } break; default: pr_err("module %s: unsupported RELA relocation: %llu\n", me->name, ELF64_R_TYPE(rel[i].r_info)); return -ENOEXEC; } if (overflow_check && ovf == -ERANGE) goto overflow; } return 0; overflow: pr_err("module %s: overflow in relocation type %d val %Lx\n", me->name, (int)ELF64_R_TYPE(rel[i].r_info), val); return -ENOEXEC; } static inline void __init_plt(struct plt_entry *plt, unsigned long addr) { *plt = get_plt_entry(addr, plt); } static int module_init_ftrace_plt(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, struct module *mod) { #if defined(CONFIG_DYNAMIC_FTRACE) const Elf_Shdr *s; struct plt_entry *plts; s = find_section(hdr, sechdrs, ".text.ftrace_trampoline"); if (!s) return -ENOEXEC; plts = (void *)s->sh_addr; __init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR); mod->arch.ftrace_trampolines = plts; #endif return 0; } int module_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, struct module *me) { const Elf_Shdr *s; s = find_section(hdr, sechdrs, ".altinstructions"); if (s) apply_alternatives_module((void *)s->sh_addr, s->sh_size); if (scs_is_dynamic()) { s = find_section(hdr, sechdrs, ".init.eh_frame"); if (s) __pi_scs_patch((void *)s->sh_addr, s->sh_size); } return module_init_ftrace_plt(hdr, sechdrs, me); }