/* * Copyright (C) 1999 - 2010 Intel Corporation. * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */ #define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */ #define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1)) #define PCH_CTRL_CCE BIT(6) #define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */ #define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */ #define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */ #define PCH_CMASK_RX_TX_SET 0x00f3 #define PCH_CMASK_RX_TX_GET 0x0073 #define PCH_CMASK_ALL 0xff #define PCH_CMASK_NEWDAT BIT(2) #define PCH_CMASK_CLRINTPND BIT(3) #define PCH_CMASK_CTRL BIT(4) #define PCH_CMASK_ARB BIT(5) #define PCH_CMASK_MASK BIT(6) #define PCH_CMASK_RDWR BIT(7) #define PCH_IF_MCONT_NEWDAT BIT(15) #define PCH_IF_MCONT_MSGLOST BIT(14) #define PCH_IF_MCONT_INTPND BIT(13) #define PCH_IF_MCONT_UMASK BIT(12) #define PCH_IF_MCONT_TXIE BIT(11) #define PCH_IF_MCONT_RXIE BIT(10) #define PCH_IF_MCONT_RMTEN BIT(9) #define PCH_IF_MCONT_TXRQXT BIT(8) #define PCH_IF_MCONT_EOB BIT(7) #define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3)) #define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15)) #define PCH_ID2_DIR BIT(13) #define PCH_ID2_XTD BIT(14) #define PCH_ID_MSGVAL BIT(15) #define PCH_IF_CREQ_BUSY BIT(15) #define PCH_STATUS_INT 0x8000 #define PCH_REC 0x00007f00 #define PCH_TEC 0x000000ff #define PCH_TX_OK BIT(3) #define PCH_RX_OK BIT(4) #define PCH_EPASSIV BIT(5) #define PCH_EWARN BIT(6) #define PCH_BUS_OFF BIT(7) /* bit position of certain controller bits. */ #define PCH_BIT_BRP_SHIFT 0 #define PCH_BIT_SJW_SHIFT 6 #define PCH_BIT_TSEG1_SHIFT 8 #define PCH_BIT_TSEG2_SHIFT 12 #define PCH_BIT_BRPE_BRPE_SHIFT 6 #define PCH_MSK_BITT_BRP 0x3f #define PCH_MSK_BRPE_BRPE 0x3c0 #define PCH_MSK_CTRL_IE_SIE_EIE 0x07 #define PCH_COUNTER_LIMIT 10 #define PCH_CAN_CLK 50000000 /* 50MHz */ /* Define the number of message object. * PCH CAN communications are done via Message RAM. * The Message RAM consists of 32 message objects. */ #define PCH_RX_OBJ_NUM 26 #define PCH_TX_OBJ_NUM 6 #define PCH_RX_OBJ_START 1 #define PCH_RX_OBJ_END PCH_RX_OBJ_NUM #define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1) #define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM) #define PCH_FIFO_THRESH 16 /* TxRqst2 show status of MsgObjNo.17~32 */ #define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\ (PCH_RX_OBJ_END - 16)) enum pch_ifreg { PCH_RX_IFREG, PCH_TX_IFREG, }; enum pch_can_err { PCH_STUF_ERR = 1, PCH_FORM_ERR, PCH_ACK_ERR, PCH_BIT1_ERR, PCH_BIT0_ERR, PCH_CRC_ERR, PCH_LEC_ALL, }; enum pch_can_mode { PCH_CAN_ENABLE, PCH_CAN_DISABLE, PCH_CAN_ALL, PCH_CAN_NONE, PCH_CAN_STOP, PCH_CAN_RUN }; struct pch_can_if_regs { u32 creq; u32 cmask; u32 mask1; u32 mask2; u32 id1; u32 id2; u32 mcont; u32 data[4]; u32 rsv[13]; }; struct pch_can_regs { u32 cont; u32 stat; u32 errc; u32 bitt; u32 intr; u32 opt; u32 brpe; u32 reserve; struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */ u32 reserve1[8]; u32 treq1; u32 treq2; u32 reserve2[6]; u32 data1; u32 data2; u32 reserve3[6]; u32 canipend1; u32 canipend2; u32 reserve4[6]; u32 canmval1; u32 canmval2; u32 reserve5[37]; u32 srst; }; struct pch_can_priv { struct can_priv can; struct pci_dev *dev; u32 tx_enable[PCH_TX_OBJ_END]; u32 rx_enable[PCH_TX_OBJ_END]; u32 rx_link[PCH_TX_OBJ_END]; u32 int_enables; struct net_device *ndev; struct pch_can_regs __iomem *regs; struct napi_struct napi; int tx_obj; /* Point next Tx Obj index */ int use_msi; }; static struct can_bittiming_const pch_can_bittiming_const = { .name = KBUILD_MODNAME, .tseg1_min = 1, .tseg1_max = 16, .tseg2_min = 1, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 1024, /* 6bit + extended 4bit */ .brp_inc = 1, }; static DEFINE_PCI_DEVICE_TABLE(pch_pci_tbl) = { {PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,}, {0,} }; MODULE_DEVICE_TABLE(pci, pch_pci_tbl); static inline void pch_can_bit_set(void __iomem *addr, u32 mask) { iowrite32(ioread32(addr) | mask, addr); } static inline void pch_can_bit_clear(void __iomem *addr, u32 mask) { iowrite32(ioread32(addr) & ~mask, addr); } static void pch_can_set_run_mode(struct pch_can_priv *priv, enum pch_can_mode mode) { switch (mode) { case PCH_CAN_RUN: pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT); break; case PCH_CAN_STOP: pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT); break; default: dev_err(&priv->ndev->dev, "%s -> Invalid Mode.\n", __func__); break; } } static void pch_can_set_optmode(struct pch_can_priv *priv) { u32 reg_val = ioread32(&priv->regs->opt); if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) reg_val |= PCH_OPT_SILENT; if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) reg_val |= PCH_OPT_LBACK; pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT); iowrite32(reg_val, &priv->regs->opt); } static void pch_can_rw_msg_obj(void __iomem *creq_addr, u32 num) { int counter = PCH_COUNTER_LIMIT; u32 ifx_creq; iowrite32(num, creq_addr); while (counter) { ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY; if (!ifx_creq) break; counter--; udelay(1); } if (!counter) pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__); } static void pch_can_set_int_enables(struct pch_can_priv *priv, enum pch_can_mode interrupt_no) { switch (interrupt_no) { case PCH_CAN_DISABLE: pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE); break; case PCH_CAN_ALL: pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE); break; case PCH_CAN_NONE: pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE); break; default: dev_err(&priv->ndev->dev, "Invalid interrupt number.\n"); break; } } static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num, int set, enum pch_ifreg dir) { u32 ie; if (dir) ie = PCH_IF_MCONT_TXIE; else ie = PCH_IF_MCONT_RXIE; /* Reading the receive buffer data from RAM to Interface1 registers */ iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask); pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num); /* Setting the IF1MASK1 register to access MsgVal and RxIE bits */ iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL, &priv->regs->ifregs[dir].cmask); if (set) { /* Setting the MsgVal and RxIE bits */ pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie); pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL); } else { /* Resetting the MsgVal and RxIE bits */ pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie); pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL); } pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num); } static void pch_can_set_rx_all(struct pch_can_priv *priv, int set) { int i; /* Traversing to obtain the object configured as receivers. */ for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG); } static void pch_can_set_tx_all(struct pch_can_priv *priv, int set) { int i; /* Traversing to obtain the object configured as transmit object. */ for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG); } static u32 pch_can_int_pending(struct pch_can_priv *priv) { return ioread32(&priv->regs->intr) & 0xffff; } static void pch_can_clear_if_buffers(struct pch_can_priv *priv) { int i; /* Msg Obj ID (1~32) */ for (i = PCH_RX_OBJ_START; i <= PCH_TX_OBJ_END; i++) { iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask); iowrite32(0xffff, &priv->regs->ifregs[0].mask1); iowrite32(0xffff, &priv->regs->ifregs[0].mask2); iowrite32(0x0, &priv->regs->ifregs[0].id1); iowrite32(0x0, &priv->regs->ifregs[0].id2); iowrite32(0x0, &priv->regs->ifregs[0].mcont); iowrite32(0x0, &priv->regs->ifregs[0].data[0]); iowrite32(0x0, &priv->regs->ifregs[0].data[1]); iowrite32(0x0, &priv->regs->ifregs[0].data[2]); iowrite32(0x0, &priv->regs->ifregs[0].data[3]); iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB | PCH_CMASK_CTRL, &priv->regs->ifregs[0].cmask); pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i); } } static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv) { int i; for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) { iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask); pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i); iowrite32(0x0, &priv->regs->ifregs[0].id1); iowrite32(0x0, &priv->regs->ifregs[0].id2); pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_UMASK); /* In case FIFO mode, Last EoB of Rx Obj must be 1 */ if (i == PCH_RX_OBJ_END) pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB); else pch_can_bit_clear(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB); iowrite32(0, &priv->regs->ifregs[0].mask1); pch_can_bit_clear(&priv->regs->ifregs[0].mask2, 0x1fff | PCH_MASK2_MDIR_MXTD); /* Setting CMASK for writing */ iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB | PCH_CMASK_CTRL, &priv->regs->ifregs[0].cmask); pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i); } for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) { iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask); pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i); /* Resetting DIR bit for reception */ iowrite32(0x0, &priv->regs->ifregs[1].id1); iowrite32(PCH_ID2_DIR, &priv->regs->ifregs[1].id2); /* Setting EOB bit for transmitter */ iowrite32(PCH_IF_MCONT_EOB | PCH_IF_MCONT_UMASK, &priv->regs->ifregs[1].mcont); iowrite32(0, &priv->regs->ifregs[1].mask1); pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff); /* Setting CMASK for writing */ iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB | PCH_CMASK_CTRL, &priv->regs->ifregs[1].cmask); pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i); } } static void pch_can_init(struct pch_can_priv *priv) { /* Stopping the Can device. */ pch_can_set_run_mode(priv, PCH_CAN_STOP); /* Clearing all the message object buffers. */ pch_can_clear_if_buffers(priv); /* Configuring the respective message object as either rx/tx object. */ pch_can_config_rx_tx_buffers(priv); /* Enabling the interrupts. */ pch_can_set_int_enables(priv, PCH_CAN_ALL); } static void pch_can_release(struct pch_can_priv *priv) { /* Stooping the CAN device. */ pch_can_set_run_mode(priv, PCH_CAN_STOP); /* Disabling the interrupts. */ pch_can_set_int_enables(priv, PCH_CAN_NONE); /* Disabling all the receive object. */ pch_can_set_rx_all(priv, 0); /* Disabling all the transmit object. */ pch_can_set_tx_all(priv, 0); } /* This function clears interrupt(s) from the CAN device. */ static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask) { if (mask == PCH_STATUS_INT) { ioread32(&priv->regs->stat); return; } /* Clear interrupt for transmit object */ if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) { /* Setting CMASK for clearing the reception interrupts. */ iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask); /* Clearing the Dir bit. */ pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR); /* Clearing NewDat & IntPnd */ pch_can_bit_clear(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND); pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, mask); } else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) { /* Setting CMASK for clearing interrupts for frame transmission. */ iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB, &priv->regs->ifregs[1].cmask); /* Resetting the ID registers. */ pch_can_bit_set(&priv->regs->ifregs[1].id2, PCH_ID2_DIR | (0x7ff << 2)); iowrite32(0x0, &priv->regs->ifregs[1].id1); /* Claring NewDat, TxRqst & IntPnd */ pch_can_bit_clear(&priv->regs->ifregs[1].mcont, PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND | PCH_IF_MCONT_TXRQXT); pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, mask); } } static void pch_can_reset(struct pch_can_priv *priv) { /* write to sw reset register */ iowrite32(1, &priv->regs->srst); iowrite32(0, &priv->regs->srst); } static void pch_can_error(struct net_device *ndev, u32 status) { struct sk_buff *skb; struct pch_can_priv *priv = netdev_priv(ndev); struct can_frame *cf; u32 errc, lec; struct net_device_stats *stats = &(priv->ndev->stats); enum can_state state = priv->can.state; skb = alloc_can_err_skb(ndev, &cf); if (!skb) return; if (status & PCH_BUS_OFF) { pch_can_set_tx_all(priv, 0); pch_can_set_rx_all(priv, 0); state = CAN_STATE_BUS_OFF; cf->can_id |= CAN_ERR_BUSOFF; can_bus_off(ndev); pch_can_set_run_mode(priv, PCH_CAN_RUN); dev_err(&ndev->dev, "%s -> Bus Off occurres.\n", __func__); } errc = ioread32(&priv->regs->errc); /* Warning interrupt. */ if (status & PCH_EWARN) { state = CAN_STATE_ERROR_WARNING; priv->can.can_stats.error_warning++; cf->can_id |= CAN_ERR_CRTL; if (((errc & PCH_REC) >> 8) > 96) cf->data[1] |= CAN_ERR_CRTL_RX_WARNING; if ((errc & PCH_TEC) > 96) cf->data[1] |= CAN_ERR_CRTL_TX_WARNING; dev_warn(&ndev->dev, "%s -> Error Counter is more than 96.\n", __func__); } /* Error passive interrupt. */ if (status & PCH_EPASSIV) { priv->can.can_stats.error_passive++; state = CAN_STATE_ERROR_PASSIVE; cf->can_id |= CAN_ERR_CRTL; if (((errc & PCH_REC) >> 8) > 127) cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; if ((errc & PCH_TEC) > 127) cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; dev_err(&ndev->dev, "%s -> CAN controller is ERROR PASSIVE .\n", __func__); } lec = status & PCH_LEC_ALL; switch (lec) { case PCH_STUF_ERR: cf->data[2] |= CAN_ERR_PROT_STUFF; priv->can.can_stats.bus_error++; stats->rx_errors++; break; case PCH_FORM_ERR: cf->data[2] |= CAN_ERR_PROT_FORM; priv->can.can_stats.bus_error++; stats->rx_errors++; break; case PCH_ACK_ERR: cf->can_id |= CAN_ERR_ACK; priv->can.can_stats.bus_error++; stats->rx_errors++; break; case PCH_BIT1_ERR: case PCH_BIT0_ERR: cf->data[2] |= CAN_ERR_PROT_BIT; priv->can.can_stats.bus_error++; stats->rx_errors++; break; case PCH_CRC_ERR: cf->data[2] |= CAN_ERR_PROT_LOC_CRC_SEQ | CAN_ERR_PROT_LOC_CRC_DEL; priv->can.can_stats.bus_error++; stats->rx_errors++; break; case PCH_LEC_ALL: /* Written by CPU. No error status */ break; } priv->can.state = state; netif_rx(skb); stats->rx_packets++; stats->rx_bytes += cf->can_dlc; } static irqreturn_t pch_can_interrupt(int irq, void *dev_id) { struct net_device *ndev = (struct net_device *)dev_id; struct pch_can_priv *priv = netdev_priv(ndev); pch_can_set_int_enables(priv, PCH_CAN_NONE); napi_schedule(&priv->napi); return IRQ_HANDLED; } static void pch_fifo_thresh(struct pch_can_priv *priv, int obj_id) { if (obj_id < PCH_FIFO_THRESH) { iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask); /* Clearing the Dir bit. */ pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR); /* Clearing NewDat & IntPnd */ pch_can_bit_clear(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_INTPND); pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id); } else if (obj_id > PCH_FIFO_THRESH) { pch_can_int_clr(priv, obj_id); } else if (obj_id == PCH_FIFO_THRESH) { int cnt; for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++) pch_can_int_clr(priv, cnt + 1); } } static void pch_can_rx_msg_lost(struct net_device *ndev, int obj_id) { struct pch_can_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &(priv->ndev->stats); struct sk_buff *skb; struct can_frame *cf; netdev_dbg(priv->ndev, "Msg Obj is overwritten.\n"); pch_can_bit_clear(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_MSGLOST); iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL, &priv->regs->ifregs[0].cmask); pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id); skb = alloc_can_err_skb(ndev, &cf); if (!skb) return; cf->can_id |= CAN_ERR_CRTL; cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; stats->rx_over_errors++; stats->rx_errors++; netif_receive_skb(skb); } static int pch_can_rx_normal(struct net_device *ndev, u32 obj_num, int quota) { u32 reg; canid_t id; int rcv_pkts = 0; struct sk_buff *skb; struct can_frame *cf; struct pch_can_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &(priv->ndev->stats); int i; u32 id2; u16 data_reg; do { /* Reading the messsage object from the Message RAM */ iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask); pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_num); /* Reading the MCONT register. */ reg = ioread32(&priv->regs->ifregs[0].mcont); if (reg & PCH_IF_MCONT_EOB) break; /* If MsgLost bit set. */ if (reg & PCH_IF_MCONT_MSGLOST) { pch_can_rx_msg_lost(ndev, obj_num); rcv_pkts++; quota--; obj_num++; continue; } else if (!(reg & PCH_IF_MCONT_NEWDAT)) { obj_num++; continue; } skb = alloc_can_skb(priv->ndev, &cf); if (!skb) return -ENOMEM; /* Get Received data */ id2 = ioread32(&priv->regs->ifregs[0].id2); if (id2 & PCH_ID2_XTD) { id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff); id |= (((id2) & 0x1fff) << 16); cf->can_id = id | CAN_EFF_FLAG; } else { id = (id2 >> 2) & CAN_SFF_MASK; cf->can_id = id; } if (id2 & PCH_ID2_DIR) cf->can_id |= CAN_RTR_FLAG; cf->can_dlc = get_can_dlc((ioread32(&priv->regs-> ifregs[0].mcont)) & 0xF); for (i = 0; i < cf->can_dlc; i += 2) { data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]); cf->data[i] = data_reg; cf->data[i + 1] = data_reg >> 8; } netif_receive_skb(skb); rcv_pkts++; stats->rx_packets++; quota--; stats->rx_bytes += cf->can_dlc; pch_fifo_thresh(priv, obj_num); obj_num++; } while (quota > 0); return rcv_pkts; } static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat) { struct pch_can_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &(priv->ndev->stats); u32 dlc; can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1); iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND, &priv->regs->ifregs[1].cmask); pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, int_stat); dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) & PCH_IF_MCONT_DLC); stats->tx_bytes += dlc; stats->tx_packets++; if (int_stat == PCH_TX_OBJ_END) netif_wake_queue(ndev); } static int pch_can_poll(struct napi_struct *napi, int quota) { struct net_device *ndev = napi->dev; struct pch_can_priv *priv = netdev_priv(ndev); u32 int_stat; int rcv_pkts = 0; u32 reg_stat; int_stat = pch_can_int_pending(priv); if (!int_stat) goto end; if ((int_stat == PCH_STATUS_INT) && (quota > 0)) { reg_stat = ioread32(&priv->regs->stat); if (reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) { if (reg_stat & PCH_BUS_OFF || (reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL) { pch_can_error(ndev, reg_stat); quota--; } } if (reg_stat & PCH_TX_OK) pch_can_bit_clear(&priv->regs->stat, PCH_TX_OK); if (reg_stat & PCH_RX_OK) pch_can_bit_clear(&priv->regs->stat, PCH_RX_OK); int_stat = pch_can_int_pending(priv); } if (quota == 0) goto end; if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) { rcv_pkts += pch_can_rx_normal(ndev, int_stat, quota); quota -= rcv_pkts; if (quota < 0) goto end; } else if ((int_stat >= PCH_TX_OBJ_START) && (int_stat <= PCH_TX_OBJ_END)) { /* Handle transmission interrupt */ pch_can_tx_complete(ndev, int_stat); } end: napi_complete(napi); pch_can_set_int_enables(priv, PCH_CAN_ALL); return rcv_pkts; } static int pch_set_bittiming(struct net_device *ndev) { struct pch_can_priv *priv = netdev_priv(ndev); const struct can_bittiming *bt = &priv->can.bittiming; u32 canbit; u32 bepe; u32 brp; /* Setting the CCE bit for accessing the Can Timing register. */ pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE); brp = (bt->tq) / (1000000000/PCH_CAN_CLK) - 1; canbit = brp & PCH_MSK_BITT_BRP; canbit |= (bt->sjw - 1) << PCH_BIT_SJW_SHIFT; canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1_SHIFT; canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2_SHIFT; bepe = (brp & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE_SHIFT; iowrite32(canbit, &priv->regs->bitt); iowrite32(bepe, &priv->regs->brpe); pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE); return 0; } static void pch_can_start(struct net_device *ndev) { struct pch_can_priv *priv = netdev_priv(ndev); if (priv->can.state != CAN_STATE_STOPPED) pch_can_reset(priv); pch_set_bittiming(ndev); pch_can_set_optmode(priv); pch_can_set_tx_all(priv, 1); pch_can_set_rx_all(priv, 1); /* Setting the CAN to run mode. */ pch_can_set_run_mode(priv, PCH_CAN_RUN); priv->can.state = CAN_STATE_ERROR_ACTIVE; return; } static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode) { int ret = 0; switch (mode) { case CAN_MODE_START: pch_can_start(ndev); netif_wake_queue(ndev); break; default: ret = -EOPNOTSUPP; break; } return ret; } static int pch_can_open(struct net_device *ndev) { struct pch_can_priv *priv = netdev_priv(ndev); int retval; retval = pci_enable_msi(priv->dev); if (retval) { dev_info(&ndev->dev, "PCH CAN opened without MSI\n"); priv->use_msi = 0; } else { dev_info(&ndev->dev, "PCH CAN opened with MSI\n"); priv->use_msi = 1; } /* Regsitering the interrupt. */ retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED, ndev->name, ndev); if (retval) { dev_err(&ndev->dev, "request_irq failed.\n"); goto req_irq_err; } /* Open common can device */ retval = open_candev(ndev); if (retval) { dev_err(ndev->dev.parent, "open_candev() failed %d\n", retval); goto err_open_candev; } pch_can_init(priv); pch_can_start(ndev); napi_enable(&priv->napi); netif_start_queue(ndev); return 0; err_open_candev: free_irq(priv->dev->irq, ndev); req_irq_err: if (priv->use_msi) pci_disable_msi(priv->dev); pch_can_release(priv); return retval; } static int pch_close(struct net_device *ndev) { struct pch_can_priv *priv = netdev_priv(ndev); netif_stop_queue(ndev); napi_disable(&priv->napi); pch_can_release(priv); free_irq(priv->dev->irq, ndev); if (priv->use_msi) pci_disable_msi(priv->dev); close_candev(ndev); priv->can.state = CAN_STATE_STOPPED; return 0; } static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev) { struct pch_can_priv *priv = netdev_priv(ndev); struct can_frame *cf = (struct can_frame *)skb->data; int tx_obj_no; int i; u32 id2; if (can_dropped_invalid_skb(ndev, skb)) return NETDEV_TX_OK; if (priv->tx_obj == PCH_TX_OBJ_END) { if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK) netif_stop_queue(ndev); tx_obj_no = priv->tx_obj; priv->tx_obj = PCH_TX_OBJ_START; } else { tx_obj_no = priv->tx_obj; priv->tx_obj++; } /* Reading the Msg Obj from the Msg RAM to the Interface register. */ iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask); pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no); /* Setting the CMASK register. */ pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL); /* If ID extended is set. */ if (cf->can_id & CAN_EFF_FLAG) { iowrite32(cf->can_id & 0xffff, &priv->regs->ifregs[1].id1); id2 = ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD; } else { iowrite32(0, &priv->regs->ifregs[1].id1); id2 = (cf->can_id & CAN_SFF_MASK) << 2; } id2 |= PCH_ID_MSGVAL; /* If remote frame has to be transmitted.. */ if (cf->can_id & CAN_RTR_FLAG) id2 &= ~PCH_ID2_DIR; else id2 |= PCH_ID2_DIR; iowrite32(id2, &priv->regs->ifregs[1].id2); /* Copy data to register */ for (i = 0; i < cf->can_dlc; i += 2) { iowrite16(cf->data[i] | (cf->data[i + 1] << 8), &priv->regs->ifregs[1].data[i / 2]); } can_put_echo_skb(skb, ndev, tx_obj_no - PCH_RX_OBJ_END - 1); /* Updating the size of the data. */ iowrite32(cf->can_dlc | PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT | PCH_IF_MCONT_TXIE, &priv->regs->ifregs[1].mcont); pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no); return NETDEV_TX_OK; } static const struct net_device_ops pch_can_netdev_ops = { .ndo_open = pch_can_open, .ndo_stop = pch_close, .ndo_start_xmit = pch_xmit, }; static void __devexit pch_can_remove(struct pci_dev *pdev) { struct net_device *ndev = pci_get_drvdata(pdev); struct pch_can_priv *priv = netdev_priv(ndev); unregister_candev(priv->ndev); free_candev(priv->ndev); pci_iounmap(pdev, priv->regs); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); pch_can_reset(priv); } #ifdef CONFIG_PM static void pch_can_set_int_custom(struct pch_can_priv *priv) { /* Clearing the IE, SIE and EIE bits of Can control register. */ pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE); /* Appropriately setting them. */ pch_can_bit_set(&priv->regs->cont, ((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1)); } /* This function retrieves interrupt enabled for the CAN device. */ static u32 pch_can_get_int_enables(struct pch_can_priv *priv) { /* Obtaining the status of IE, SIE and EIE interrupt bits. */ return (ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1; } static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num, enum pch_ifreg dir) { u32 ie, enable; if (dir) ie = PCH_IF_MCONT_RXIE; else ie = PCH_IF_MCONT_TXIE; iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask); pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num); if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) && ((ioread32(&priv->regs->ifregs[dir].mcont)) & ie)) { enable = 1; } else { enable = 0; } return enable; } static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv, u32 buffer_num, int set) { iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask); pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num); iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL, &priv->regs->ifregs[0].cmask); if (set) pch_can_bit_clear(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB); else pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB); pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num); } static u32 pch_can_get_rx_buffer_link(struct pch_can_priv *priv, u32 buffer_num) { u32 link; iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask); pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num); if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB) link = 0; else link = 1; return link; } static int pch_can_get_buffer_status(struct pch_can_priv *priv) { return (ioread32(&priv->regs->treq1) & 0xffff) | (ioread32(&priv->regs->treq2) << 16); } static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state) { int i; /* Counter variable. */ int retval; /* Return value. */ u32 buf_stat; /* Variable for reading the transmit buffer status. */ int counter = PCH_COUNTER_LIMIT; struct net_device *dev = pci_get_drvdata(pdev); struct pch_can_priv *priv = netdev_priv(dev); /* Stop the CAN controller */ pch_can_set_run_mode(priv, PCH_CAN_STOP); /* Indicate that we are aboutto/in suspend */ priv->can.state = CAN_STATE_SLEEPING; /* Waiting for all transmission to complete. */ while (counter) { buf_stat = pch_can_get_buffer_status(priv); if (!buf_stat) break; counter--; udelay(1); } if (!counter) dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__); /* Save interrupt configuration and then disable them */ priv->int_enables = pch_can_get_int_enables(priv); pch_can_set_int_enables(priv, PCH_CAN_DISABLE); /* Save Tx buffer enable state */ for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) priv->tx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_TX_IFREG); /* Disable all Transmit buffers */ pch_can_set_tx_all(priv, 0); /* Save Rx buffer enable state */ for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) { priv->rx_enable[i] = pch_can_get_rxtx_ir(priv, i, PCH_RX_IFREG); priv->rx_link[i] = pch_can_get_rx_buffer_link(priv, i); } /* Disable all Receive buffers */ pch_can_set_rx_all(priv, 0); retval = pci_save_state(pdev); if (retval) { dev_err(&pdev->dev, "pci_save_state failed.\n"); } else { pci_enable_wake(pdev, PCI_D3hot, 0); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); } return retval; } static int pch_can_resume(struct pci_dev *pdev) { int i; /* Counter variable. */ int retval; /* Return variable. */ struct net_device *dev = pci_get_drvdata(pdev); struct pch_can_priv *priv = netdev_priv(dev); pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); retval = pci_enable_device(pdev); if (retval) { dev_err(&pdev->dev, "pci_enable_device failed.\n"); return retval; } pci_enable_wake(pdev, PCI_D3hot, 0); priv->can.state = CAN_STATE_ERROR_ACTIVE; /* Disabling all interrupts. */ pch_can_set_int_enables(priv, PCH_CAN_DISABLE); /* Setting the CAN device in Stop Mode. */ pch_can_set_run_mode(priv, PCH_CAN_STOP); /* Configuring the transmit and receive buffers. */ pch_can_config_rx_tx_buffers(priv); /* Restore the CAN state */ pch_set_bittiming(dev); /* Listen/Active */ pch_can_set_optmode(priv); /* Enabling the transmit buffer. */ for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) pch_can_set_rxtx(priv, i, priv->tx_enable[i], PCH_TX_IFREG); /* Configuring the receive buffer and enabling them. */ for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) { /* Restore buffer link */ pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i]); /* Restore buffer enables */ pch_can_set_rxtx(priv, i, priv->rx_enable[i], PCH_RX_IFREG); } /* Enable CAN Interrupts */ pch_can_set_int_custom(priv); /* Restore Run Mode */ pch_can_set_run_mode(priv, PCH_CAN_RUN); return retval; } #else #define pch_can_suspend NULL #define pch_can_resume NULL #endif static int pch_can_get_berr_counter(const struct net_device *dev, struct can_berr_counter *bec) { struct pch_can_priv *priv = netdev_priv(dev); u32 errc = ioread32(&priv->regs->errc); bec->txerr = errc & PCH_TEC; bec->rxerr = (errc & PCH_REC) >> 8; return 0; } static int __devinit pch_can_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct net_device *ndev; struct pch_can_priv *priv; int rc; void __iomem *addr; rc = pci_enable_device(pdev); if (rc) { dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc); goto probe_exit_endev; } rc = pci_request_regions(pdev, KBUILD_MODNAME); if (rc) { dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc); goto probe_exit_pcireq; } addr = pci_iomap(pdev, 1, 0); if (!addr) { rc = -EIO; dev_err(&pdev->dev, "Failed pci_iomap\n"); goto probe_exit_ipmap; } ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END); if (!ndev) { rc = -ENOMEM; dev_err(&pdev->dev, "Failed alloc_candev\n"); goto probe_exit_alloc_candev; } priv = netdev_priv(ndev); priv->ndev = ndev; priv->regs = addr; priv->dev = pdev; priv->can.bittiming_const = &pch_can_bittiming_const; priv->can.do_set_mode = pch_can_do_set_mode; priv->can.do_get_berr_counter = pch_can_get_berr_counter; priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_LOOPBACK; priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */ ndev->irq = pdev->irq; ndev->flags |= IFF_ECHO; pci_set_drvdata(pdev, ndev); SET_NETDEV_DEV(ndev, &pdev->dev); ndev->netdev_ops = &pch_can_netdev_ops; priv->can.clock.freq = PCH_CAN_CLK; /* Hz */ netif_napi_add(ndev, &priv->napi, pch_can_poll, PCH_RX_OBJ_END); rc = register_candev(ndev); if (rc) { dev_err(&pdev->dev, "Failed register_candev %d\n", rc); goto probe_exit_reg_candev; } return 0; probe_exit_reg_candev: free_candev(ndev); probe_exit_alloc_candev: pci_iounmap(pdev, addr); probe_exit_ipmap: pci_release_regions(pdev); probe_exit_pcireq: pci_disable_device(pdev); probe_exit_endev: return rc; } static struct pci_driver pch_can_pci_driver = { .name = "pch_can", .id_table = pch_pci_tbl, .probe = pch_can_probe, .remove = __devexit_p(pch_can_remove), .suspend = pch_can_suspend, .resume = pch_can_resume, }; static int __init pch_can_pci_init(void) { return pci_register_driver(&pch_can_pci_driver); } module_init(pch_can_pci_init); static void __exit pch_can_pci_exit(void) { pci_unregister_driver(&pch_can_pci_driver); } module_exit(pch_can_pci_exit); MODULE_DESCRIPTION("Intel EG20T PCH CAN(Controller Area Network) Driver"); MODULE_LICENSE("GPL v2"); MODULE_VERSION("0.94");