/* * linux/drivers/clocksource/arm_arch_timer.c * * Copyright (C) 2011 ARM Ltd. * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) "arm_arch_timer: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CNTTIDR 0x08 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) #define CNTACR(n) (0x40 + ((n) * 4)) #define CNTACR_RPCT BIT(0) #define CNTACR_RVCT BIT(1) #define CNTACR_RFRQ BIT(2) #define CNTACR_RVOFF BIT(3) #define CNTACR_RWVT BIT(4) #define CNTACR_RWPT BIT(5) #define CNTVCT_LO 0x08 #define CNTVCT_HI 0x0c #define CNTFRQ 0x10 #define CNTP_TVAL 0x28 #define CNTP_CTL 0x2c #define CNTV_TVAL 0x38 #define CNTV_CTL 0x3c #define ARCH_CP15_TIMER BIT(0) #define ARCH_MEM_TIMER BIT(1) static unsigned arch_timers_present __initdata; static void __iomem *arch_counter_base; struct arch_timer { void __iomem *base; struct clock_event_device evt; }; #define to_arch_timer(e) container_of(e, struct arch_timer, evt) static u32 arch_timer_rate; enum ppi_nr { PHYS_SECURE_PPI, PHYS_NONSECURE_PPI, VIRT_PPI, HYP_PPI, MAX_TIMER_PPI }; static int arch_timer_ppi[MAX_TIMER_PPI]; static struct clock_event_device __percpu *arch_timer_evt; static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI; static bool arch_timer_c3stop; static bool arch_timer_mem_use_virtual; static bool arch_counter_suspend_stop; static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); static int __init early_evtstrm_cfg(char *buf) { return strtobool(buf, &evtstrm_enable); } early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); /* * Architected system timer support. */ static __always_inline void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, struct clock_event_device *clk) { if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { struct arch_timer *timer = to_arch_timer(clk); switch (reg) { case ARCH_TIMER_REG_CTRL: writel_relaxed(val, timer->base + CNTP_CTL); break; case ARCH_TIMER_REG_TVAL: writel_relaxed(val, timer->base + CNTP_TVAL); break; } } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { struct arch_timer *timer = to_arch_timer(clk); switch (reg) { case ARCH_TIMER_REG_CTRL: writel_relaxed(val, timer->base + CNTV_CTL); break; case ARCH_TIMER_REG_TVAL: writel_relaxed(val, timer->base + CNTV_TVAL); break; } } else { arch_timer_reg_write_cp15(access, reg, val); } } static __always_inline u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, struct clock_event_device *clk) { u32 val; if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { struct arch_timer *timer = to_arch_timer(clk); switch (reg) { case ARCH_TIMER_REG_CTRL: val = readl_relaxed(timer->base + CNTP_CTL); break; case ARCH_TIMER_REG_TVAL: val = readl_relaxed(timer->base + CNTP_TVAL); break; } } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { struct arch_timer *timer = to_arch_timer(clk); switch (reg) { case ARCH_TIMER_REG_CTRL: val = readl_relaxed(timer->base + CNTV_CTL); break; case ARCH_TIMER_REG_TVAL: val = readl_relaxed(timer->base + CNTV_TVAL); break; } } else { val = arch_timer_reg_read_cp15(access, reg); } return val; } #ifdef CONFIG_FSL_ERRATUM_A008585 /* * The number of retries is an arbitrary value well beyond the highest number * of iterations the loop has been observed to take. */ #define __fsl_a008585_read_reg(reg) ({ \ u64 _old, _new; \ int _retries = 200; \ \ do { \ _old = read_sysreg(reg); \ _new = read_sysreg(reg); \ _retries--; \ } while (unlikely(_old != _new) && _retries); \ \ WARN_ON_ONCE(!_retries); \ _new; \ }) static u32 notrace fsl_a008585_read_cntp_tval_el0(void) { return __fsl_a008585_read_reg(cntp_tval_el0); } static u32 notrace fsl_a008585_read_cntv_tval_el0(void) { return __fsl_a008585_read_reg(cntv_tval_el0); } static u64 notrace fsl_a008585_read_cntvct_el0(void) { return __fsl_a008585_read_reg(cntvct_el0); } #endif #ifdef CONFIG_HISILICON_ERRATUM_161010101 /* * Verify whether the value of the second read is larger than the first by * less than 32 is the only way to confirm the value is correct, so clear the * lower 5 bits to check whether the difference is greater than 32 or not. * Theoretically the erratum should not occur more than twice in succession * when reading the system counter, but it is possible that some interrupts * may lead to more than twice read errors, triggering the warning, so setting * the number of retries far beyond the number of iterations the loop has been * observed to take. */ #define __hisi_161010101_read_reg(reg) ({ \ u64 _old, _new; \ int _retries = 50; \ \ do { \ _old = read_sysreg(reg); \ _new = read_sysreg(reg); \ _retries--; \ } while (unlikely((_new - _old) >> 5) && _retries); \ \ WARN_ON_ONCE(!_retries); \ _new; \ }) static u32 notrace hisi_161010101_read_cntp_tval_el0(void) { return __hisi_161010101_read_reg(cntp_tval_el0); } static u32 notrace hisi_161010101_read_cntv_tval_el0(void) { return __hisi_161010101_read_reg(cntv_tval_el0); } static u64 notrace hisi_161010101_read_cntvct_el0(void) { return __hisi_161010101_read_reg(cntvct_el0); } #endif #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL; EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled); EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled); static const struct arch_timer_erratum_workaround ool_workarounds[] = { #ifdef CONFIG_FSL_ERRATUM_A008585 { .match_type = ate_match_dt, .id = "fsl,erratum-a008585", .desc = "Freescale erratum a005858", .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, }, #endif #ifdef CONFIG_HISILICON_ERRATUM_161010101 { .match_type = ate_match_dt, .id = "hisilicon,erratum-161010101", .desc = "HiSilicon erratum 161010101", .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, }, #endif }; typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, const void *); static bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, const void *arg) { const struct device_node *np = arg; return of_property_read_bool(np, wa->id); } static bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, const void *arg) { return this_cpu_has_cap((uintptr_t)wa->id); } static const struct arch_timer_erratum_workaround * arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, ate_match_fn_t match_fn, void *arg) { int i; for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { if (ool_workarounds[i].match_type != type) continue; if (match_fn(&ool_workarounds[i], arg)) return &ool_workarounds[i]; } return NULL; } static void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa) { timer_unstable_counter_workaround = wa; static_branch_enable(&arch_timer_read_ool_enabled); } static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, void *arg) { const struct arch_timer_erratum_workaround *wa; ate_match_fn_t match_fn = NULL; bool local = false; switch (type) { case ate_match_dt: match_fn = arch_timer_check_dt_erratum; break; case ate_match_local_cap_id: match_fn = arch_timer_check_local_cap_erratum; local = true; break; default: WARN_ON(1); return; } wa = arch_timer_iterate_errata(type, match_fn, arg); if (!wa) return; if (needs_unstable_timer_counter_workaround()) { if (wa != timer_unstable_counter_workaround) pr_warn("Can't enable workaround for %s (clashes with %s\n)", wa->desc, timer_unstable_counter_workaround->desc); return; } arch_timer_enable_workaround(wa); pr_info("Enabling %s workaround for %s\n", local ? "local" : "global", wa->desc); } #else #define arch_timer_check_ool_workaround(t,a) do { } while(0) #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ static __always_inline irqreturn_t timer_handler(const int access, struct clock_event_device *evt) { unsigned long ctrl; ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { ctrl |= ARCH_TIMER_CTRL_IT_MASK; arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); evt->event_handler(evt); return IRQ_HANDLED; } return IRQ_NONE; } static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); } static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); } static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); } static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); } static __always_inline int timer_shutdown(const int access, struct clock_event_device *clk) { unsigned long ctrl; ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); ctrl &= ~ARCH_TIMER_CTRL_ENABLE; arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); return 0; } static int arch_timer_shutdown_virt(struct clock_event_device *clk) { return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); } static int arch_timer_shutdown_phys(struct clock_event_device *clk) { return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); } static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) { return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); } static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) { return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); } static __always_inline void set_next_event(const int access, unsigned long evt, struct clock_event_device *clk) { unsigned long ctrl; ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); ctrl |= ARCH_TIMER_CTRL_ENABLE; ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); } #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND static __always_inline void erratum_set_next_event_generic(const int access, unsigned long evt, struct clock_event_device *clk) { unsigned long ctrl; u64 cval = evt + arch_counter_get_cntvct(); ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); ctrl |= ARCH_TIMER_CTRL_ENABLE; ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; if (access == ARCH_TIMER_PHYS_ACCESS) write_sysreg(cval, cntp_cval_el0); else if (access == ARCH_TIMER_VIRT_ACCESS) write_sysreg(cval, cntv_cval_el0); arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); } static int erratum_set_next_event_virt(unsigned long evt, struct clock_event_device *clk) { erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); return 0; } static int erratum_set_next_event_phys(unsigned long evt, struct clock_event_device *clk) { erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); return 0; } #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ static int arch_timer_set_next_event_virt(unsigned long evt, struct clock_event_device *clk) { set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); return 0; } static int arch_timer_set_next_event_phys(unsigned long evt, struct clock_event_device *clk) { set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); return 0; } static int arch_timer_set_next_event_virt_mem(unsigned long evt, struct clock_event_device *clk) { set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); return 0; } static int arch_timer_set_next_event_phys_mem(unsigned long evt, struct clock_event_device *clk) { set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); return 0; } static void erratum_workaround_set_sne(struct clock_event_device *clk) { #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND if (!static_branch_unlikely(&arch_timer_read_ool_enabled)) return; if (arch_timer_uses_ppi == VIRT_PPI) clk->set_next_event = erratum_set_next_event_virt; else clk->set_next_event = erratum_set_next_event_phys; #endif } static void __arch_timer_setup(unsigned type, struct clock_event_device *clk) { clk->features = CLOCK_EVT_FEAT_ONESHOT; if (type == ARCH_CP15_TIMER) { if (arch_timer_c3stop) clk->features |= CLOCK_EVT_FEAT_C3STOP; clk->name = "arch_sys_timer"; clk->rating = 450; clk->cpumask = cpumask_of(smp_processor_id()); clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; switch (arch_timer_uses_ppi) { case VIRT_PPI: clk->set_state_shutdown = arch_timer_shutdown_virt; clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; clk->set_next_event = arch_timer_set_next_event_virt; break; case PHYS_SECURE_PPI: case PHYS_NONSECURE_PPI: case HYP_PPI: clk->set_state_shutdown = arch_timer_shutdown_phys; clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; clk->set_next_event = arch_timer_set_next_event_phys; break; default: BUG(); } arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); erratum_workaround_set_sne(clk); } else { clk->features |= CLOCK_EVT_FEAT_DYNIRQ; clk->name = "arch_mem_timer"; clk->rating = 400; clk->cpumask = cpu_all_mask; if (arch_timer_mem_use_virtual) { clk->set_state_shutdown = arch_timer_shutdown_virt_mem; clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; clk->set_next_event = arch_timer_set_next_event_virt_mem; } else { clk->set_state_shutdown = arch_timer_shutdown_phys_mem; clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; clk->set_next_event = arch_timer_set_next_event_phys_mem; } } clk->set_state_shutdown(clk); clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); } static void arch_timer_evtstrm_enable(int divider) { u32 cntkctl = arch_timer_get_cntkctl(); cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; /* Set the divider and enable virtual event stream */ cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) | ARCH_TIMER_VIRT_EVT_EN; arch_timer_set_cntkctl(cntkctl); elf_hwcap |= HWCAP_EVTSTRM; #ifdef CONFIG_COMPAT compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; #endif } static void arch_timer_configure_evtstream(void) { int evt_stream_div, pos; /* Find the closest power of two to the divisor */ evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; pos = fls(evt_stream_div); if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) pos--; /* enable event stream */ arch_timer_evtstrm_enable(min(pos, 15)); } static void arch_counter_set_user_access(void) { u32 cntkctl = arch_timer_get_cntkctl(); /* Disable user access to the timers and the physical counter */ /* Also disable virtual event stream */ cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN | ARCH_TIMER_USR_VT_ACCESS_EN | ARCH_TIMER_VIRT_EVT_EN | ARCH_TIMER_USR_PCT_ACCESS_EN); /* Enable user access to the virtual counter */ cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; arch_timer_set_cntkctl(cntkctl); } static bool arch_timer_has_nonsecure_ppi(void) { return (arch_timer_uses_ppi == PHYS_SECURE_PPI && arch_timer_ppi[PHYS_NONSECURE_PPI]); } static u32 check_ppi_trigger(int irq) { u32 flags = irq_get_trigger_type(irq); if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); pr_warn("WARNING: Please fix your firmware\n"); flags = IRQF_TRIGGER_LOW; } return flags; } static int arch_timer_starting_cpu(unsigned int cpu) { struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); u32 flags; __arch_timer_setup(ARCH_CP15_TIMER, clk); flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); if (arch_timer_has_nonsecure_ppi()) { flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]); enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags); } arch_counter_set_user_access(); if (evtstrm_enable) arch_timer_configure_evtstream(); return 0; } static void arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np) { /* Who has more than one independent system counter? */ if (arch_timer_rate) return; /* * Try to determine the frequency from the device tree or CNTFRQ, * if ACPI is enabled, get the frequency from CNTFRQ ONLY. */ if (!acpi_disabled || of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) { if (cntbase) arch_timer_rate = readl_relaxed(cntbase + CNTFRQ); else arch_timer_rate = arch_timer_get_cntfrq(); } /* Check the timer frequency. */ if (arch_timer_rate == 0) pr_warn("Architected timer frequency not available\n"); } static void arch_timer_banner(unsigned type) { pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", type & ARCH_CP15_TIMER ? "cp15" : "", type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "", type & ARCH_MEM_TIMER ? "mmio" : "", (unsigned long)arch_timer_rate / 1000000, (unsigned long)(arch_timer_rate / 10000) % 100, type & ARCH_CP15_TIMER ? (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" : "", type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "", type & ARCH_MEM_TIMER ? arch_timer_mem_use_virtual ? "virt" : "phys" : ""); } u32 arch_timer_get_rate(void) { return arch_timer_rate; } static u64 arch_counter_get_cntvct_mem(void) { u32 vct_lo, vct_hi, tmp_hi; do { vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); } while (vct_hi != tmp_hi); return ((u64) vct_hi << 32) | vct_lo; } /* * Default to cp15 based access because arm64 uses this function for * sched_clock() before DT is probed and the cp15 method is guaranteed * to exist on arm64. arm doesn't use this before DT is probed so even * if we don't have the cp15 accessors we won't have a problem. */ u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; static u64 arch_counter_read(struct clocksource *cs) { return arch_timer_read_counter(); } static u64 arch_counter_read_cc(const struct cyclecounter *cc) { return arch_timer_read_counter(); } static struct clocksource clocksource_counter = { .name = "arch_sys_counter", .rating = 400, .read = arch_counter_read, .mask = CLOCKSOURCE_MASK(56), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static struct cyclecounter cyclecounter __ro_after_init = { .read = arch_counter_read_cc, .mask = CLOCKSOURCE_MASK(56), }; static struct arch_timer_kvm_info arch_timer_kvm_info; struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) { return &arch_timer_kvm_info; } static void __init arch_counter_register(unsigned type) { u64 start_count; /* Register the CP15 based counter if we have one */ if (type & ARCH_CP15_TIMER) { if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI) arch_timer_read_counter = arch_counter_get_cntvct; else arch_timer_read_counter = arch_counter_get_cntpct; clocksource_counter.archdata.vdso_direct = true; #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND /* * Don't use the vdso fastpath if errata require using * the out-of-line counter accessor. */ if (static_branch_unlikely(&arch_timer_read_ool_enabled)) clocksource_counter.archdata.vdso_direct = false; #endif } else { arch_timer_read_counter = arch_counter_get_cntvct_mem; } if (!arch_counter_suspend_stop) clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; start_count = arch_timer_read_counter(); clocksource_register_hz(&clocksource_counter, arch_timer_rate); cyclecounter.mult = clocksource_counter.mult; cyclecounter.shift = clocksource_counter.shift; timecounter_init(&arch_timer_kvm_info.timecounter, &cyclecounter, start_count); /* 56 bits minimum, so we assume worst case rollover */ sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); } static void arch_timer_stop(struct clock_event_device *clk) { pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); if (arch_timer_has_nonsecure_ppi()) disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); clk->set_state_shutdown(clk); } static int arch_timer_dying_cpu(unsigned int cpu) { struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); arch_timer_stop(clk); return 0; } #ifdef CONFIG_CPU_PM static unsigned int saved_cntkctl; static int arch_timer_cpu_pm_notify(struct notifier_block *self, unsigned long action, void *hcpu) { if (action == CPU_PM_ENTER) saved_cntkctl = arch_timer_get_cntkctl(); else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) arch_timer_set_cntkctl(saved_cntkctl); return NOTIFY_OK; } static struct notifier_block arch_timer_cpu_pm_notifier = { .notifier_call = arch_timer_cpu_pm_notify, }; static int __init arch_timer_cpu_pm_init(void) { return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); } static void __init arch_timer_cpu_pm_deinit(void) { WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); } #else static int __init arch_timer_cpu_pm_init(void) { return 0; } static void __init arch_timer_cpu_pm_deinit(void) { } #endif static int __init arch_timer_register(void) { int err; int ppi; arch_timer_evt = alloc_percpu(struct clock_event_device); if (!arch_timer_evt) { err = -ENOMEM; goto out; } ppi = arch_timer_ppi[arch_timer_uses_ppi]; switch (arch_timer_uses_ppi) { case VIRT_PPI: err = request_percpu_irq(ppi, arch_timer_handler_virt, "arch_timer", arch_timer_evt); break; case PHYS_SECURE_PPI: case PHYS_NONSECURE_PPI: err = request_percpu_irq(ppi, arch_timer_handler_phys, "arch_timer", arch_timer_evt); if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; err = request_percpu_irq(ppi, arch_timer_handler_phys, "arch_timer", arch_timer_evt); if (err) free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], arch_timer_evt); } break; case HYP_PPI: err = request_percpu_irq(ppi, arch_timer_handler_phys, "arch_timer", arch_timer_evt); break; default: BUG(); } if (err) { pr_err("arch_timer: can't register interrupt %d (%d)\n", ppi, err); goto out_free; } err = arch_timer_cpu_pm_init(); if (err) goto out_unreg_notify; /* Register and immediately configure the timer on the boot CPU */ err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, "clockevents/arm/arch_timer:starting", arch_timer_starting_cpu, arch_timer_dying_cpu); if (err) goto out_unreg_cpupm; return 0; out_unreg_cpupm: arch_timer_cpu_pm_deinit(); out_unreg_notify: free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); if (arch_timer_has_nonsecure_ppi()) free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], arch_timer_evt); out_free: free_percpu(arch_timer_evt); out: return err; } static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) { int ret; irq_handler_t func; struct arch_timer *t; t = kzalloc(sizeof(*t), GFP_KERNEL); if (!t) return -ENOMEM; t->base = base; t->evt.irq = irq; __arch_timer_setup(ARCH_MEM_TIMER, &t->evt); if (arch_timer_mem_use_virtual) func = arch_timer_handler_virt_mem; else func = arch_timer_handler_phys_mem; ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); if (ret) { pr_err("arch_timer: Failed to request mem timer irq\n"); kfree(t); } return ret; } static const struct of_device_id arch_timer_of_match[] __initconst = { { .compatible = "arm,armv7-timer", }, { .compatible = "arm,armv8-timer", }, {}, }; static const struct of_device_id arch_timer_mem_of_match[] __initconst = { { .compatible = "arm,armv7-timer-mem", }, {}, }; static bool __init arch_timer_needs_probing(int type, const struct of_device_id *matches) { struct device_node *dn; bool needs_probing = false; dn = of_find_matching_node(NULL, matches); if (dn && of_device_is_available(dn) && !(arch_timers_present & type)) needs_probing = true; of_node_put(dn); return needs_probing; } static int __init arch_timer_common_init(void) { unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER; /* Wait until both nodes are probed if we have two timers */ if ((arch_timers_present & mask) != mask) { if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match)) return 0; if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match)) return 0; } arch_timer_banner(arch_timers_present); arch_counter_register(arch_timers_present); return arch_timer_arch_init(); } static int __init arch_timer_init(void) { int ret; /* * If HYP mode is available, we know that the physical timer * has been configured to be accessible from PL1. Use it, so * that a guest can use the virtual timer instead. * * If no interrupt provided for virtual timer, we'll have to * stick to the physical timer. It'd better be accessible... * * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE * accesses to CNTP_*_EL1 registers are silently redirected to * their CNTHP_*_EL2 counterparts, and use a different PPI * number. */ if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) { bool has_ppi; if (is_kernel_in_hyp_mode()) { arch_timer_uses_ppi = HYP_PPI; has_ppi = !!arch_timer_ppi[HYP_PPI]; } else { arch_timer_uses_ppi = PHYS_SECURE_PPI; has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] || !!arch_timer_ppi[PHYS_NONSECURE_PPI]); } if (!has_ppi) { pr_warn("arch_timer: No interrupt available, giving up\n"); return -EINVAL; } } ret = arch_timer_register(); if (ret) return ret; ret = arch_timer_common_init(); if (ret) return ret; arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI]; return 0; } static int __init arch_timer_of_init(struct device_node *np) { int i; if (arch_timers_present & ARCH_CP15_TIMER) { pr_warn("arch_timer: multiple nodes in dt, skipping\n"); return 0; } arch_timers_present |= ARCH_CP15_TIMER; for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) arch_timer_ppi[i] = irq_of_parse_and_map(np, i); arch_timer_detect_rate(NULL, np); arch_timer_c3stop = !of_property_read_bool(np, "always-on"); /* Check for globally applicable workarounds */ arch_timer_check_ool_workaround(ate_match_dt, np); /* * If we cannot rely on firmware initializing the timer registers then * we should use the physical timers instead. */ if (IS_ENABLED(CONFIG_ARM) && of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) arch_timer_uses_ppi = PHYS_SECURE_PPI; /* On some systems, the counter stops ticking when in suspend. */ arch_counter_suspend_stop = of_property_read_bool(np, "arm,no-tick-in-suspend"); return arch_timer_init(); } CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); static int __init arch_timer_mem_init(struct device_node *np) { struct device_node *frame, *best_frame = NULL; void __iomem *cntctlbase, *base; unsigned int irq, ret = -EINVAL; u32 cnttidr; arch_timers_present |= ARCH_MEM_TIMER; cntctlbase = of_iomap(np, 0); if (!cntctlbase) { pr_err("arch_timer: Can't find CNTCTLBase\n"); return -ENXIO; } cnttidr = readl_relaxed(cntctlbase + CNTTIDR); /* * Try to find a virtual capable frame. Otherwise fall back to a * physical capable frame. */ for_each_available_child_of_node(np, frame) { int n; u32 cntacr; if (of_property_read_u32(frame, "frame-number", &n)) { pr_err("arch_timer: Missing frame-number\n"); of_node_put(frame); goto out; } /* Try enabling everything, and see what sticks */ cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; writel_relaxed(cntacr, cntctlbase + CNTACR(n)); cntacr = readl_relaxed(cntctlbase + CNTACR(n)); if ((cnttidr & CNTTIDR_VIRT(n)) && !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { of_node_put(best_frame); best_frame = frame; arch_timer_mem_use_virtual = true; break; } if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) continue; of_node_put(best_frame); best_frame = of_node_get(frame); } ret= -ENXIO; base = arch_counter_base = of_io_request_and_map(best_frame, 0, "arch_mem_timer"); if (IS_ERR(base)) { pr_err("arch_timer: Can't map frame's registers\n"); goto out; } if (arch_timer_mem_use_virtual) irq = irq_of_parse_and_map(best_frame, 1); else irq = irq_of_parse_and_map(best_frame, 0); ret = -EINVAL; if (!irq) { pr_err("arch_timer: Frame missing %s irq", arch_timer_mem_use_virtual ? "virt" : "phys"); goto out; } arch_timer_detect_rate(base, np); ret = arch_timer_mem_register(base, irq); if (ret) goto out; return arch_timer_common_init(); out: iounmap(cntctlbase); of_node_put(best_frame); return ret; } CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", arch_timer_mem_init); #ifdef CONFIG_ACPI static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags) { int trigger, polarity; if (!interrupt) return 0; trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW : ACPI_ACTIVE_HIGH; return acpi_register_gsi(NULL, interrupt, trigger, polarity); } /* Initialize per-processor generic timer */ static int __init arch_timer_acpi_init(struct acpi_table_header *table) { struct acpi_table_gtdt *gtdt; if (arch_timers_present & ARCH_CP15_TIMER) { pr_warn("arch_timer: already initialized, skipping\n"); return -EINVAL; } gtdt = container_of(table, struct acpi_table_gtdt, header); arch_timers_present |= ARCH_CP15_TIMER; arch_timer_ppi[PHYS_SECURE_PPI] = map_generic_timer_interrupt(gtdt->secure_el1_interrupt, gtdt->secure_el1_flags); arch_timer_ppi[PHYS_NONSECURE_PPI] = map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt, gtdt->non_secure_el1_flags); arch_timer_ppi[VIRT_PPI] = map_generic_timer_interrupt(gtdt->virtual_timer_interrupt, gtdt->virtual_timer_flags); arch_timer_ppi[HYP_PPI] = map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt, gtdt->non_secure_el2_flags); /* Get the frequency from CNTFRQ */ arch_timer_detect_rate(NULL, NULL); /* Always-on capability */ arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON); arch_timer_init(); return 0; } CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); #endif