// SPDX-License-Identifier: GPL-2.0 /* erasure coding */ #include "bcachefs.h" #include "alloc_foreground.h" #include "bset.h" #include "btree_gc.h" #include "btree_update.h" #include "buckets.h" #include "disk_groups.h" #include "ec.h" #include "error.h" #include "io.h" #include "keylist.h" #include "recovery.h" #include "super-io.h" #include "util.h" #include #ifdef __KERNEL__ #include #include static void raid5_recov(unsigned disks, unsigned failed_idx, size_t size, void **data) { unsigned i = 2, nr; BUG_ON(failed_idx >= disks); swap(data[0], data[failed_idx]); memcpy(data[0], data[1], size); while (i < disks) { nr = min_t(unsigned, disks - i, MAX_XOR_BLOCKS); xor_blocks(nr, size, data[0], data + i); i += nr; } swap(data[0], data[failed_idx]); } static void raid_gen(int nd, int np, size_t size, void **v) { if (np >= 1) raid5_recov(nd + np, nd, size, v); if (np >= 2) raid6_call.gen_syndrome(nd + np, size, v); BUG_ON(np > 2); } static void raid_rec(int nr, int *ir, int nd, int np, size_t size, void **v) { switch (nr) { case 0: break; case 1: if (ir[0] < nd + 1) raid5_recov(nd + 1, ir[0], size, v); else raid6_call.gen_syndrome(nd + np, size, v); break; case 2: if (ir[1] < nd) { /* data+data failure. */ raid6_2data_recov(nd + np, size, ir[0], ir[1], v); } else if (ir[0] < nd) { /* data + p/q failure */ if (ir[1] == nd) /* data + p failure */ raid6_datap_recov(nd + np, size, ir[0], v); else { /* data + q failure */ raid5_recov(nd + 1, ir[0], size, v); raid6_call.gen_syndrome(nd + np, size, v); } } else { raid_gen(nd, np, size, v); } break; default: BUG(); } } #else #include #endif struct ec_bio { struct bch_dev *ca; struct ec_stripe_buf *buf; size_t idx; struct bio bio; }; /* Stripes btree keys: */ const char *bch2_stripe_invalid(const struct bch_fs *c, struct bkey_s_c k) { const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; if (k.k->p.inode) return "invalid stripe key"; if (bkey_val_bytes(k.k) < sizeof(*s)) return "incorrect value size"; if (bkey_val_bytes(k.k) < sizeof(*s) || bkey_val_u64s(k.k) < stripe_val_u64s(s)) return "incorrect value size"; return bch2_bkey_ptrs_invalid(c, k); } void bch2_stripe_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) { const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; unsigned i; pr_buf(out, "algo %u sectors %u blocks %u:%u csum %u gran %u", s->algorithm, le16_to_cpu(s->sectors), s->nr_blocks - s->nr_redundant, s->nr_redundant, s->csum_type, 1U << s->csum_granularity_bits); for (i = 0; i < s->nr_blocks; i++) pr_buf(out, " %u:%llu:%u", s->ptrs[i].dev, (u64) s->ptrs[i].offset, stripe_blockcount_get(s, i)); bch2_bkey_ptrs_to_text(out, c, k); } static int ptr_matches_stripe(struct bch_fs *c, struct bch_stripe *v, const struct bch_extent_ptr *ptr) { unsigned i; for (i = 0; i < v->nr_blocks - v->nr_redundant; i++) { const struct bch_extent_ptr *ptr2 = v->ptrs + i; if (ptr->dev == ptr2->dev && ptr->gen == ptr2->gen && ptr->offset >= ptr2->offset && ptr->offset < ptr2->offset + le16_to_cpu(v->sectors)) return i; } return -1; } static int extent_matches_stripe(struct bch_fs *c, struct bch_stripe *v, struct bkey_s_c k) { struct bkey_s_c_extent e; const struct bch_extent_ptr *ptr; int idx; if (!bkey_extent_is_data(k.k)) return -1; e = bkey_s_c_to_extent(k); extent_for_each_ptr(e, ptr) { idx = ptr_matches_stripe(c, v, ptr); if (idx >= 0) return idx; } return -1; } static bool extent_has_stripe_ptr(struct bkey_s_c k, u64 idx) { struct bkey_s_c_extent e; const union bch_extent_entry *entry; if (!bkey_extent_is_data(k.k)) return false; e = bkey_s_c_to_extent(k); extent_for_each_entry(e, entry) if (extent_entry_type(entry) == BCH_EXTENT_ENTRY_stripe_ptr && entry->stripe_ptr.idx == idx) return true; return false; } static void ec_stripe_key_init(struct bch_fs *c, struct bkey_i_stripe *s, struct open_buckets *blocks, struct open_buckets *parity, unsigned stripe_size) { struct open_bucket *ob; unsigned i, u64s; bkey_stripe_init(&s->k_i); s->v.sectors = cpu_to_le16(stripe_size); s->v.algorithm = 0; s->v.nr_blocks = parity->nr + blocks->nr; s->v.nr_redundant = parity->nr; s->v.csum_granularity_bits = ilog2(c->sb.encoded_extent_max); s->v.csum_type = BCH_CSUM_CRC32C; s->v.pad = 0; open_bucket_for_each(c, blocks, ob, i) s->v.ptrs[i] = ob->ptr; open_bucket_for_each(c, parity, ob, i) s->v.ptrs[blocks->nr + i] = ob->ptr; while ((u64s = stripe_val_u64s(&s->v)) > BKEY_VAL_U64s_MAX) { BUG_ON(1 << s->v.csum_granularity_bits >= le16_to_cpu(s->v.sectors) || s->v.csum_granularity_bits == U8_MAX); s->v.csum_granularity_bits++; } set_bkey_val_u64s(&s->k, u64s); } /* Checksumming: */ static void ec_generate_checksums(struct ec_stripe_buf *buf) { struct bch_stripe *v = &buf->key.v; unsigned csum_granularity = 1 << v->csum_granularity_bits; unsigned csums_per_device = stripe_csums_per_device(v); unsigned csum_bytes = bch_crc_bytes[v->csum_type]; unsigned i, j; if (!csum_bytes) return; BUG_ON(buf->offset); BUG_ON(buf->size != le16_to_cpu(v->sectors)); for (i = 0; i < v->nr_blocks; i++) { for (j = 0; j < csums_per_device; j++) { unsigned offset = j << v->csum_granularity_bits; unsigned len = min(csum_granularity, buf->size - offset); struct bch_csum csum = bch2_checksum(NULL, v->csum_type, null_nonce(), buf->data[i] + (offset << 9), len << 9); memcpy(stripe_csum(v, i, j), &csum, csum_bytes); } } } static void ec_validate_checksums(struct bch_fs *c, struct ec_stripe_buf *buf) { struct bch_stripe *v = &buf->key.v; unsigned csum_granularity = 1 << v->csum_granularity_bits; unsigned csum_bytes = bch_crc_bytes[v->csum_type]; unsigned i; if (!csum_bytes) return; for (i = 0; i < v->nr_blocks; i++) { unsigned offset = buf->offset; unsigned end = buf->offset + buf->size; if (!test_bit(i, buf->valid)) continue; while (offset < end) { unsigned j = offset >> v->csum_granularity_bits; unsigned len = min(csum_granularity, end - offset); struct bch_csum csum; BUG_ON(offset & (csum_granularity - 1)); BUG_ON(offset + len != le16_to_cpu(v->sectors) && ((offset + len) & (csum_granularity - 1))); csum = bch2_checksum(NULL, v->csum_type, null_nonce(), buf->data[i] + ((offset - buf->offset) << 9), len << 9); if (memcmp(stripe_csum(v, i, j), &csum, csum_bytes)) { __bcache_io_error(c, "checksum error while doing reconstruct read (%u:%u)", i, j); clear_bit(i, buf->valid); break; } offset += len; } } } /* Erasure coding: */ static void ec_generate_ec(struct ec_stripe_buf *buf) { struct bch_stripe *v = &buf->key.v; unsigned nr_data = v->nr_blocks - v->nr_redundant; unsigned bytes = le16_to_cpu(v->sectors) << 9; raid_gen(nr_data, v->nr_redundant, bytes, buf->data); } static unsigned __ec_nr_failed(struct ec_stripe_buf *buf, unsigned nr) { return nr - bitmap_weight(buf->valid, nr); } static unsigned ec_nr_failed(struct ec_stripe_buf *buf) { return __ec_nr_failed(buf, buf->key.v.nr_blocks); } static int ec_do_recov(struct bch_fs *c, struct ec_stripe_buf *buf) { struct bch_stripe *v = &buf->key.v; unsigned i, failed[EC_STRIPE_MAX], nr_failed = 0; unsigned nr_data = v->nr_blocks - v->nr_redundant; unsigned bytes = buf->size << 9; if (ec_nr_failed(buf) > v->nr_redundant) { __bcache_io_error(c, "error doing reconstruct read: unable to read enough blocks"); return -1; } for (i = 0; i < nr_data; i++) if (!test_bit(i, buf->valid)) failed[nr_failed++] = i; raid_rec(nr_failed, failed, nr_data, v->nr_redundant, bytes, buf->data); return 0; } /* IO: */ static void ec_block_endio(struct bio *bio) { struct ec_bio *ec_bio = container_of(bio, struct ec_bio, bio); struct bch_dev *ca = ec_bio->ca; struct closure *cl = bio->bi_private; if (bch2_dev_io_err_on(bio->bi_status, ca, "erasure coding")) clear_bit(ec_bio->idx, ec_bio->buf->valid); bio_put(&ec_bio->bio); percpu_ref_put(&ca->io_ref); closure_put(cl); } static void ec_block_io(struct bch_fs *c, struct ec_stripe_buf *buf, unsigned rw, unsigned idx, struct closure *cl) { struct bch_stripe *v = &buf->key.v; unsigned offset = 0, bytes = buf->size << 9; struct bch_extent_ptr *ptr = &v->ptrs[idx]; struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); if (!bch2_dev_get_ioref(ca, rw)) { clear_bit(idx, buf->valid); return; } while (offset < bytes) { unsigned nr_iovecs = min_t(size_t, BIO_MAX_VECS, DIV_ROUND_UP(bytes, PAGE_SIZE)); unsigned b = min_t(size_t, bytes - offset, nr_iovecs << PAGE_SHIFT); struct ec_bio *ec_bio; ec_bio = container_of(bio_alloc_bioset(ca->disk_sb.bdev, nr_iovecs, rw, GFP_KERNEL, &c->ec_bioset), struct ec_bio, bio); ec_bio->ca = ca; ec_bio->buf = buf; ec_bio->idx = idx; ec_bio->bio.bi_iter.bi_sector = ptr->offset + buf->offset + (offset >> 9); ec_bio->bio.bi_end_io = ec_block_endio; ec_bio->bio.bi_private = cl; bch2_bio_map(&ec_bio->bio, buf->data[idx] + offset, b); closure_get(cl); percpu_ref_get(&ca->io_ref); submit_bio(&ec_bio->bio); offset += b; } percpu_ref_put(&ca->io_ref); } /* recovery read path: */ int bch2_ec_read_extent(struct bch_fs *c, struct bch_read_bio *rbio) { struct btree_trans trans; struct btree_iter *iter; struct ec_stripe_buf *buf; struct closure cl; struct bkey_s_c k; struct bch_stripe *v; unsigned stripe_idx; unsigned offset, end; unsigned i, nr_data, csum_granularity; int ret = 0, idx; closure_init_stack(&cl); BUG_ON(!rbio->pick.idx || rbio->pick.idx - 1 >= rbio->pick.ec_nr); stripe_idx = rbio->pick.ec[rbio->pick.idx - 1].idx; buf = kzalloc(sizeof(*buf), GFP_NOIO); if (!buf) return -ENOMEM; bch2_trans_init(&trans, c, 0, 0); iter = bch2_trans_get_iter(&trans, BTREE_ID_EC, POS(0, stripe_idx), BTREE_ITER_SLOTS); k = bch2_btree_iter_peek_slot(iter); if (bkey_err(k) || k.k->type != KEY_TYPE_stripe) { __bcache_io_error(c, "error doing reconstruct read: stripe not found"); kfree(buf); return bch2_trans_exit(&trans) ?: -EIO; } bkey_reassemble(&buf->key.k_i, k); bch2_trans_exit(&trans); v = &buf->key.v; nr_data = v->nr_blocks - v->nr_redundant; idx = ptr_matches_stripe(c, v, &rbio->pick.ptr); BUG_ON(idx < 0); csum_granularity = 1U << v->csum_granularity_bits; offset = rbio->bio.bi_iter.bi_sector - v->ptrs[idx].offset; end = offset + bio_sectors(&rbio->bio); BUG_ON(end > le16_to_cpu(v->sectors)); buf->offset = round_down(offset, csum_granularity); buf->size = min_t(unsigned, le16_to_cpu(v->sectors), round_up(end, csum_granularity)) - buf->offset; for (i = 0; i < v->nr_blocks; i++) { buf->data[i] = kmalloc(buf->size << 9, GFP_NOIO); if (!buf->data[i]) { ret = -ENOMEM; goto err; } } memset(buf->valid, 0xFF, sizeof(buf->valid)); for (i = 0; i < v->nr_blocks; i++) { struct bch_extent_ptr *ptr = v->ptrs + i; struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); if (ptr_stale(ca, ptr)) { __bcache_io_error(c, "error doing reconstruct read: stale pointer"); clear_bit(i, buf->valid); continue; } ec_block_io(c, buf, REQ_OP_READ, i, &cl); } closure_sync(&cl); if (ec_nr_failed(buf) > v->nr_redundant) { __bcache_io_error(c, "error doing reconstruct read: unable to read enough blocks"); ret = -EIO; goto err; } ec_validate_checksums(c, buf); ret = ec_do_recov(c, buf); if (ret) goto err; memcpy_to_bio(&rbio->bio, rbio->bio.bi_iter, buf->data[idx] + ((offset - buf->offset) << 9)); err: for (i = 0; i < v->nr_blocks; i++) kfree(buf->data[i]); kfree(buf); return ret; } /* stripe bucket accounting: */ static int __ec_stripe_mem_alloc(struct bch_fs *c, size_t idx, gfp_t gfp) { ec_stripes_heap n, *h = &c->ec_stripes_heap; if (idx >= h->size) { if (!init_heap(&n, max(1024UL, roundup_pow_of_two(idx + 1)), gfp)) return -ENOMEM; spin_lock(&c->ec_stripes_heap_lock); if (n.size > h->size) { memcpy(n.data, h->data, h->used * sizeof(h->data[0])); n.used = h->used; swap(*h, n); } spin_unlock(&c->ec_stripes_heap_lock); free_heap(&n); } if (!genradix_ptr_alloc(&c->stripes[0], idx, gfp)) return -ENOMEM; if (c->gc_pos.phase != GC_PHASE_NOT_RUNNING && !genradix_ptr_alloc(&c->stripes[1], idx, gfp)) return -ENOMEM; return 0; } static int ec_stripe_mem_alloc(struct bch_fs *c, struct btree_iter *iter) { size_t idx = iter->pos.offset; int ret = 0; if (!__ec_stripe_mem_alloc(c, idx, GFP_NOWAIT|__GFP_NOWARN)) return ret; bch2_trans_unlock(iter->trans); ret = -EINTR; if (!__ec_stripe_mem_alloc(c, idx, GFP_KERNEL)) return ret; return -ENOMEM; } static ssize_t stripe_idx_to_delete(struct bch_fs *c) { ec_stripes_heap *h = &c->ec_stripes_heap; return h->used && h->data[0].blocks_nonempty == 0 ? h->data[0].idx : -1; } static inline int ec_stripes_heap_cmp(ec_stripes_heap *h, struct ec_stripe_heap_entry l, struct ec_stripe_heap_entry r) { return ((l.blocks_nonempty > r.blocks_nonempty) - (l.blocks_nonempty < r.blocks_nonempty)); } static inline void ec_stripes_heap_set_backpointer(ec_stripes_heap *h, size_t i) { struct bch_fs *c = container_of(h, struct bch_fs, ec_stripes_heap); genradix_ptr(&c->stripes[0], h->data[i].idx)->heap_idx = i; } static void heap_verify_backpointer(struct bch_fs *c, size_t idx) { ec_stripes_heap *h = &c->ec_stripes_heap; struct stripe *m = genradix_ptr(&c->stripes[0], idx); BUG_ON(!m->alive); BUG_ON(m->heap_idx >= h->used); BUG_ON(h->data[m->heap_idx].idx != idx); } void bch2_stripes_heap_update(struct bch_fs *c, struct stripe *m, size_t idx) { ec_stripes_heap *h = &c->ec_stripes_heap; size_t i; if (m->alive) { heap_verify_backpointer(c, idx); h->data[m->heap_idx].blocks_nonempty = m->blocks_nonempty; i = m->heap_idx; heap_sift_up(h, i, ec_stripes_heap_cmp, ec_stripes_heap_set_backpointer); heap_sift_down(h, i, ec_stripes_heap_cmp, ec_stripes_heap_set_backpointer); heap_verify_backpointer(c, idx); } else { bch2_stripes_heap_insert(c, m, idx); } if (stripe_idx_to_delete(c) >= 0 && !percpu_ref_is_dying(&c->writes)) schedule_work(&c->ec_stripe_delete_work); } void bch2_stripes_heap_del(struct bch_fs *c, struct stripe *m, size_t idx) { heap_verify_backpointer(c, idx); m->alive = false; heap_del(&c->ec_stripes_heap, m->heap_idx, ec_stripes_heap_cmp, ec_stripes_heap_set_backpointer); } void bch2_stripes_heap_insert(struct bch_fs *c, struct stripe *m, size_t idx) { BUG_ON(heap_full(&c->ec_stripes_heap)); heap_add(&c->ec_stripes_heap, ((struct ec_stripe_heap_entry) { .idx = idx, .blocks_nonempty = m->blocks_nonempty, }), ec_stripes_heap_cmp, ec_stripes_heap_set_backpointer); m->alive = true; heap_verify_backpointer(c, idx); } /* stripe deletion */ static int ec_stripe_delete(struct bch_fs *c, size_t idx) { return bch2_btree_delete_range(c, BTREE_ID_EC, POS(0, idx), POS(0, idx + 1), NULL); } static void ec_stripe_delete_work(struct work_struct *work) { struct bch_fs *c = container_of(work, struct bch_fs, ec_stripe_delete_work); ssize_t idx; down_read(&c->gc_lock); mutex_lock(&c->ec_stripe_create_lock); while (1) { spin_lock(&c->ec_stripes_heap_lock); idx = stripe_idx_to_delete(c); spin_unlock(&c->ec_stripes_heap_lock); if (idx < 0) break; if (ec_stripe_delete(c, idx)) break; } mutex_unlock(&c->ec_stripe_create_lock); up_read(&c->gc_lock); } /* stripe creation: */ static int ec_stripe_bkey_insert(struct bch_fs *c, struct bkey_i_stripe *stripe) { struct btree_trans trans; struct btree_iter *iter; struct bkey_s_c k; int ret; bch2_trans_init(&trans, c, 0, 0); retry: bch2_trans_begin(&trans); /* XXX: start pos hint */ for_each_btree_key(&trans, iter, BTREE_ID_EC, POS_MIN, BTREE_ITER_SLOTS|BTREE_ITER_INTENT, k, ret) { if (bkey_cmp(k.k->p, POS(0, U32_MAX)) > 0) break; if (bkey_deleted(k.k)) goto found_slot; } if (!ret) ret = -ENOSPC; goto err; found_slot: ret = ec_stripe_mem_alloc(c, iter); if (ret) goto err; stripe->k.p = iter->pos; bch2_trans_update(&trans, BTREE_INSERT_ENTRY(iter, &stripe->k_i)); ret = bch2_trans_commit(&trans, NULL, NULL, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOFAIL); err: if (ret == -EINTR) goto retry; bch2_trans_exit(&trans); return ret; } static void extent_stripe_ptr_add(struct bkey_s_extent e, struct ec_stripe_buf *s, struct bch_extent_ptr *ptr, unsigned block) { struct bch_extent_stripe_ptr *dst = (void *) ptr; union bch_extent_entry *end = extent_entry_last(e); memmove_u64s_up(dst + 1, dst, (u64 *) end - (u64 *) dst); e.k->u64s += sizeof(*dst) / sizeof(u64); *dst = (struct bch_extent_stripe_ptr) { .type = 1 << BCH_EXTENT_ENTRY_stripe_ptr, .block = block, .idx = s->key.k.p.offset, }; } static int ec_stripe_update_ptrs(struct bch_fs *c, struct ec_stripe_buf *s, struct bkey *pos) { struct btree_trans trans; struct btree_iter *iter; struct bkey_s_c k; struct bkey_s_extent e; struct bch_extent_ptr *ptr; BKEY_PADDED(k) tmp; int ret = 0, dev, idx; bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, bkey_start_pos(pos), BTREE_ITER_INTENT); while ((k = bch2_btree_iter_peek(iter)).k && !(ret = bkey_err(k)) && bkey_cmp(bkey_start_pos(k.k), pos->p) < 0) { if (extent_has_stripe_ptr(k, s->key.k.p.offset)) { bch2_btree_iter_next(iter); continue; } idx = extent_matches_stripe(c, &s->key.v, k); if (idx < 0) { bch2_btree_iter_next(iter); continue; } bch2_btree_iter_set_pos(iter, bkey_start_pos(k.k)); dev = s->key.v.ptrs[idx].dev; bkey_reassemble(&tmp.k, k); e = bkey_i_to_s_extent(&tmp.k); extent_for_each_ptr(e, ptr) if (ptr->dev != dev) ptr->cached = true; ptr = (void *) bch2_extent_has_device(e.c, dev); BUG_ON(!ptr); extent_stripe_ptr_add(e, s, ptr, idx); bch2_trans_update(&trans, BTREE_INSERT_ENTRY(iter, &tmp.k)); ret = bch2_trans_commit(&trans, NULL, NULL, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE); if (ret == -EINTR) ret = 0; if (ret) break; } bch2_trans_exit(&trans); return ret; } /* * data buckets of new stripe all written: create the stripe */ static void ec_stripe_create(struct ec_stripe_new *s) { struct bch_fs *c = s->c; struct open_bucket *ob; struct bkey_i *k; struct bch_stripe *v = &s->stripe.key.v; unsigned i, nr_data = v->nr_blocks - v->nr_redundant; struct closure cl; int ret; BUG_ON(s->h->s == s); closure_init_stack(&cl); if (s->err) { bch_err(c, "error creating stripe: error writing data buckets"); goto err; } if (!percpu_ref_tryget(&c->writes)) goto err; BUG_ON(bitmap_weight(s->blocks_allocated, s->blocks.nr) != s->blocks.nr); ec_generate_ec(&s->stripe); ec_generate_checksums(&s->stripe); /* write p/q: */ for (i = nr_data; i < v->nr_blocks; i++) ec_block_io(c, &s->stripe, REQ_OP_WRITE, i, &cl); closure_sync(&cl); for (i = nr_data; i < v->nr_blocks; i++) if (!test_bit(i, s->stripe.valid)) { bch_err(c, "error creating stripe: error writing redundancy buckets"); goto err_put_writes; } mutex_lock(&c->ec_stripe_create_lock); ret = ec_stripe_bkey_insert(c, &s->stripe.key); if (ret) { bch_err(c, "error creating stripe: error creating stripe key"); goto err_unlock; } for_each_keylist_key(&s->keys, k) { ret = ec_stripe_update_ptrs(c, &s->stripe, &k->k); if (ret) break; } err_unlock: mutex_unlock(&c->ec_stripe_create_lock); err_put_writes: percpu_ref_put(&c->writes); err: open_bucket_for_each(c, &s->blocks, ob, i) { ob->ec = NULL; __bch2_open_bucket_put(c, ob); } bch2_open_buckets_put(c, &s->parity); bch2_keylist_free(&s->keys, s->inline_keys); mutex_lock(&s->h->lock); list_del(&s->list); mutex_unlock(&s->h->lock); for (i = 0; i < s->stripe.key.v.nr_blocks; i++) kvpfree(s->stripe.data[i], s->stripe.size << 9); kfree(s); } static struct ec_stripe_new *ec_stripe_set_pending(struct ec_stripe_head *h) { struct ec_stripe_new *s = h->s; list_add(&s->list, &h->stripes); h->s = NULL; return s; } static void ec_stripe_new_put(struct ec_stripe_new *s) { BUG_ON(atomic_read(&s->pin) <= 0); if (atomic_dec_and_test(&s->pin)) ec_stripe_create(s); } /* have a full bucket - hand it off to be erasure coded: */ void bch2_ec_bucket_written(struct bch_fs *c, struct open_bucket *ob) { struct ec_stripe_new *s = ob->ec; if (ob->sectors_free) s->err = -1; ec_stripe_new_put(s); } void bch2_ec_bucket_cancel(struct bch_fs *c, struct open_bucket *ob) { struct ec_stripe_new *s = ob->ec; s->err = -EIO; } void *bch2_writepoint_ec_buf(struct bch_fs *c, struct write_point *wp) { struct open_bucket *ob = ec_open_bucket(c, &wp->ptrs); struct bch_dev *ca; unsigned offset; if (!ob) return NULL; ca = bch_dev_bkey_exists(c, ob->ptr.dev); offset = ca->mi.bucket_size - ob->sectors_free; return ob->ec->stripe.data[ob->ec_idx] + (offset << 9); } void bch2_ec_add_backpointer(struct bch_fs *c, struct write_point *wp, struct bpos pos, unsigned sectors) { struct open_bucket *ob = ec_open_bucket(c, &wp->ptrs); struct ec_stripe_new *ec; if (!ob) return; ec = ob->ec; mutex_lock(&ec->lock); if (bch2_keylist_realloc(&ec->keys, ec->inline_keys, ARRAY_SIZE(ec->inline_keys), BKEY_U64s)) { BUG(); } bkey_init(&ec->keys.top->k); ec->keys.top->k.p = pos; bch2_key_resize(&ec->keys.top->k, sectors); bch2_keylist_push(&ec->keys); mutex_unlock(&ec->lock); } static int unsigned_cmp(const void *_l, const void *_r) { unsigned l = *((const unsigned *) _l); unsigned r = *((const unsigned *) _r); return cmp_int(l, r); } /* pick most common bucket size: */ static unsigned pick_blocksize(struct bch_fs *c, struct bch_devs_mask *devs) { struct bch_dev *ca; unsigned i, nr = 0, sizes[BCH_SB_MEMBERS_MAX]; struct { unsigned nr, size; } cur = { 0, 0 }, best = { 0, 0 }; for_each_member_device_rcu(ca, c, i, devs) sizes[nr++] = ca->mi.bucket_size; sort(sizes, nr, sizeof(unsigned), unsigned_cmp, NULL); for (i = 0; i < nr; i++) { if (sizes[i] != cur.size) { if (cur.nr > best.nr) best = cur; cur.nr = 0; cur.size = sizes[i]; } cur.nr++; } if (cur.nr > best.nr) best = cur; return best.size; } int bch2_ec_stripe_new_alloc(struct bch_fs *c, struct ec_stripe_head *h) { struct ec_stripe_new *s; unsigned i; BUG_ON(h->parity.nr != h->redundancy); BUG_ON(!h->blocks.nr); BUG_ON(h->parity.nr + h->blocks.nr > EC_STRIPE_MAX); lockdep_assert_held(&h->lock); s = kzalloc(sizeof(*s), GFP_KERNEL); if (!s) return -ENOMEM; mutex_init(&s->lock); atomic_set(&s->pin, 1); s->c = c; s->h = h; s->blocks = h->blocks; s->parity = h->parity; memset(&h->blocks, 0, sizeof(h->blocks)); memset(&h->parity, 0, sizeof(h->parity)); bch2_keylist_init(&s->keys, s->inline_keys); s->stripe.offset = 0; s->stripe.size = h->blocksize; memset(s->stripe.valid, 0xFF, sizeof(s->stripe.valid)); ec_stripe_key_init(c, &s->stripe.key, &s->blocks, &s->parity, h->blocksize); for (i = 0; i < s->stripe.key.v.nr_blocks; i++) { s->stripe.data[i] = kvpmalloc(s->stripe.size << 9, GFP_KERNEL); if (!s->stripe.data[i]) goto err; } h->s = s; return 0; err: for (i = 0; i < s->stripe.key.v.nr_blocks; i++) kvpfree(s->stripe.data[i], s->stripe.size << 9); kfree(s); return -ENOMEM; } static struct ec_stripe_head * ec_new_stripe_head_alloc(struct bch_fs *c, unsigned target, unsigned algo, unsigned redundancy) { struct ec_stripe_head *h; struct bch_dev *ca; unsigned i; h = kzalloc(sizeof(*h), GFP_KERNEL); if (!h) return NULL; mutex_init(&h->lock); mutex_lock(&h->lock); INIT_LIST_HEAD(&h->stripes); h->target = target; h->algo = algo; h->redundancy = redundancy; rcu_read_lock(); h->devs = target_rw_devs(c, BCH_DATA_USER, target); for_each_member_device_rcu(ca, c, i, &h->devs) if (!ca->mi.durability) __clear_bit(i, h->devs.d); h->blocksize = pick_blocksize(c, &h->devs); for_each_member_device_rcu(ca, c, i, &h->devs) if (ca->mi.bucket_size == h->blocksize) h->nr_active_devs++; rcu_read_unlock(); list_add(&h->list, &c->ec_new_stripe_list); return h; } void bch2_ec_stripe_head_put(struct ec_stripe_head *h) { struct ec_stripe_new *s = NULL; if (h->s && bitmap_weight(h->s->blocks_allocated, h->s->blocks.nr) == h->s->blocks.nr) s = ec_stripe_set_pending(h); mutex_unlock(&h->lock); if (s) ec_stripe_new_put(s); } struct ec_stripe_head *bch2_ec_stripe_head_get(struct bch_fs *c, unsigned target, unsigned algo, unsigned redundancy) { struct ec_stripe_head *h; if (!redundancy) return NULL; mutex_lock(&c->ec_new_stripe_lock); list_for_each_entry(h, &c->ec_new_stripe_list, list) if (h->target == target && h->algo == algo && h->redundancy == redundancy) { mutex_lock(&h->lock); goto found; } h = ec_new_stripe_head_alloc(c, target, algo, redundancy); found: mutex_unlock(&c->ec_new_stripe_lock); return h; } void bch2_ec_stop_dev(struct bch_fs *c, struct bch_dev *ca) { struct ec_stripe_head *h; struct open_bucket *ob; unsigned i; mutex_lock(&c->ec_new_stripe_lock); list_for_each_entry(h, &c->ec_new_stripe_list, list) { struct ec_stripe_new *s = NULL; mutex_lock(&h->lock); bch2_open_buckets_stop_dev(c, ca, &h->blocks, BCH_DATA_USER); bch2_open_buckets_stop_dev(c, ca, &h->parity, BCH_DATA_USER); if (!h->s) goto unlock; open_bucket_for_each(c, &h->s->blocks, ob, i) if (ob->ptr.dev == ca->dev_idx) goto found; open_bucket_for_each(c, &h->s->parity, ob, i) if (ob->ptr.dev == ca->dev_idx) goto found; goto unlock; found: h->s->err = -1; s = ec_stripe_set_pending(h); unlock: mutex_unlock(&h->lock); if (s) ec_stripe_new_put(s); } mutex_unlock(&c->ec_new_stripe_lock); } static int __bch2_stripe_write_key(struct btree_trans *trans, struct btree_iter *iter, struct stripe *m, size_t idx, struct bkey_i_stripe *new_key, unsigned flags) { struct bch_fs *c = trans->c; struct bkey_s_c k; unsigned i; int ret; bch2_btree_iter_set_pos(iter, POS(0, idx)); k = bch2_btree_iter_peek_slot(iter); ret = bkey_err(k); if (ret) return ret; if (k.k->type != KEY_TYPE_stripe) return -EIO; bkey_reassemble(&new_key->k_i, k); spin_lock(&c->ec_stripes_heap_lock); for (i = 0; i < new_key->v.nr_blocks; i++) stripe_blockcount_set(&new_key->v, i, m->block_sectors[i]); m->dirty = false; spin_unlock(&c->ec_stripes_heap_lock); bch2_trans_update(trans, BTREE_INSERT_ENTRY(iter, &new_key->k_i)); return bch2_trans_commit(trans, NULL, NULL, BTREE_INSERT_NOFAIL|flags); } int bch2_stripes_write(struct bch_fs *c, unsigned flags, bool *wrote) { struct btree_trans trans; struct btree_iter *iter; struct genradix_iter giter; struct bkey_i_stripe *new_key; struct stripe *m; int ret = 0; new_key = kmalloc(255 * sizeof(u64), GFP_KERNEL); BUG_ON(!new_key); bch2_trans_init(&trans, c, 0, 0); iter = bch2_trans_get_iter(&trans, BTREE_ID_EC, POS_MIN, BTREE_ITER_SLOTS|BTREE_ITER_INTENT); genradix_for_each(&c->stripes[0], giter, m) { if (!m->dirty) continue; ret = __bch2_stripe_write_key(&trans, iter, m, giter.pos, new_key, flags); if (ret) break; *wrote = true; } bch2_trans_exit(&trans); kfree(new_key); return ret; } int bch2_stripes_read(struct bch_fs *c, struct journal_keys *journal_keys) { struct journal_key *i; struct btree_trans trans; struct btree_iter *iter; struct bkey_s_c k; int ret; ret = bch2_fs_ec_start(c); if (ret) return ret; bch2_trans_init(&trans, c, 0, 0); for_each_btree_key(&trans, iter, BTREE_ID_EC, POS_MIN, 0, k, ret) bch2_mark_key(c, k, 0, NULL, 0, BCH_BUCKET_MARK_ALLOC_READ| BCH_BUCKET_MARK_NOATOMIC); ret = bch2_trans_exit(&trans) ?: ret; if (ret) { bch_err(c, "error reading stripes: %i", ret); return ret; } for_each_journal_key(*journal_keys, i) if (i->btree_id == BTREE_ID_EC) bch2_mark_key(c, bkey_i_to_s_c(i->k), 0, NULL, 0, BCH_BUCKET_MARK_ALLOC_READ| BCH_BUCKET_MARK_NOATOMIC); return 0; } int bch2_ec_mem_alloc(struct bch_fs *c, bool gc) { struct btree_trans trans; struct btree_iter *iter; struct bkey_s_c k; size_t i, idx = 0; int ret = 0; bch2_trans_init(&trans, c, 0, 0); iter = bch2_trans_get_iter(&trans, BTREE_ID_EC, POS(0, U64_MAX), 0); k = bch2_btree_iter_prev(iter); if (!IS_ERR_OR_NULL(k.k)) idx = k.k->p.offset + 1; ret = bch2_trans_exit(&trans); if (ret) return ret; if (!gc && !init_heap(&c->ec_stripes_heap, roundup_pow_of_two(idx), GFP_KERNEL)) return -ENOMEM; #if 0 ret = genradix_prealloc(&c->stripes[gc], idx, GFP_KERNEL); #else for (i = 0; i < idx; i++) if (!genradix_ptr_alloc(&c->stripes[gc], i, GFP_KERNEL)) return -ENOMEM; #endif return 0; } int bch2_fs_ec_start(struct bch_fs *c) { return bch2_ec_mem_alloc(c, false); } void bch2_fs_ec_exit(struct bch_fs *c) { struct ec_stripe_head *h; while (1) { mutex_lock(&c->ec_new_stripe_lock); h = list_first_entry_or_null(&c->ec_new_stripe_list, struct ec_stripe_head, list); if (h) list_del(&h->list); mutex_unlock(&c->ec_new_stripe_lock); if (!h) break; BUG_ON(h->s); BUG_ON(!list_empty(&h->stripes)); kfree(h); } free_heap(&c->ec_stripes_heap); genradix_free(&c->stripes[0]); bioset_exit(&c->ec_bioset); } int bch2_fs_ec_init(struct bch_fs *c) { INIT_WORK(&c->ec_stripe_delete_work, ec_stripe_delete_work); return bioset_init(&c->ec_bioset, 1, offsetof(struct ec_bio, bio), BIOSET_NEED_BVECS); }