// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include "evlist.h" #include "evsel.h" #include "memswap.h" #include "session.h" #include "tool.h" #include "sort.h" #include "util.h" #include "cpumap.h" #include "perf_regs.h" #include "asm/bug.h" #include "auxtrace.h" #include "thread.h" #include "thread-stack.h" #include "stat.h" #include "arch/common.h" static int perf_session__deliver_event(struct perf_session *session, union perf_event *event, struct perf_tool *tool, u64 file_offset); static int perf_session__open(struct perf_session *session) { struct perf_data *data = session->data; if (perf_session__read_header(session) < 0) { pr_err("incompatible file format (rerun with -v to learn more)\n"); return -1; } if (perf_data__is_pipe(data)) return 0; if (perf_header__has_feat(&session->header, HEADER_STAT)) return 0; if (!perf_evlist__valid_sample_type(session->evlist)) { pr_err("non matching sample_type\n"); return -1; } if (!perf_evlist__valid_sample_id_all(session->evlist)) { pr_err("non matching sample_id_all\n"); return -1; } if (!perf_evlist__valid_read_format(session->evlist)) { pr_err("non matching read_format\n"); return -1; } return 0; } void perf_session__set_id_hdr_size(struct perf_session *session) { u16 id_hdr_size = perf_evlist__id_hdr_size(session->evlist); machines__set_id_hdr_size(&session->machines, id_hdr_size); } int perf_session__create_kernel_maps(struct perf_session *session) { int ret = machine__create_kernel_maps(&session->machines.host); if (ret >= 0) ret = machines__create_guest_kernel_maps(&session->machines); return ret; } static void perf_session__destroy_kernel_maps(struct perf_session *session) { machines__destroy_kernel_maps(&session->machines); } static bool perf_session__has_comm_exec(struct perf_session *session) { struct perf_evsel *evsel; evlist__for_each_entry(session->evlist, evsel) { if (evsel->attr.comm_exec) return true; } return false; } static void perf_session__set_comm_exec(struct perf_session *session) { bool comm_exec = perf_session__has_comm_exec(session); machines__set_comm_exec(&session->machines, comm_exec); } static int ordered_events__deliver_event(struct ordered_events *oe, struct ordered_event *event) { struct perf_session *session = container_of(oe, struct perf_session, ordered_events); return perf_session__deliver_event(session, event->event, session->tool, event->file_offset); } struct perf_session *perf_session__new(struct perf_data *data, bool repipe, struct perf_tool *tool) { struct perf_session *session = zalloc(sizeof(*session)); if (!session) goto out; session->repipe = repipe; session->tool = tool; INIT_LIST_HEAD(&session->auxtrace_index); machines__init(&session->machines); ordered_events__init(&session->ordered_events, ordered_events__deliver_event, NULL); if (data) { if (perf_data__open(data)) goto out_delete; session->data = data; if (perf_data__is_read(data)) { if (perf_session__open(session) < 0) goto out_close; /* * set session attributes that are present in perf.data * but not in pipe-mode. */ if (!data->is_pipe) { perf_session__set_id_hdr_size(session); perf_session__set_comm_exec(session); } } } else { session->machines.host.env = &perf_env; } session->machines.host.single_address_space = perf_env__single_address_space(session->machines.host.env); if (!data || perf_data__is_write(data)) { /* * In O_RDONLY mode this will be performed when reading the * kernel MMAP event, in perf_event__process_mmap(). */ if (perf_session__create_kernel_maps(session) < 0) pr_warning("Cannot read kernel map\n"); } /* * In pipe-mode, evlist is empty until PERF_RECORD_HEADER_ATTR is * processed, so perf_evlist__sample_id_all is not meaningful here. */ if ((!data || !data->is_pipe) && tool && tool->ordering_requires_timestamps && tool->ordered_events && !perf_evlist__sample_id_all(session->evlist)) { dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n"); tool->ordered_events = false; } return session; out_close: perf_data__close(data); out_delete: perf_session__delete(session); out: return NULL; } static void perf_session__delete_threads(struct perf_session *session) { machine__delete_threads(&session->machines.host); } void perf_session__delete(struct perf_session *session) { if (session == NULL) return; auxtrace__free(session); auxtrace_index__free(&session->auxtrace_index); perf_session__destroy_kernel_maps(session); perf_session__delete_threads(session); perf_env__exit(&session->header.env); machines__exit(&session->machines); if (session->data) perf_data__close(session->data); free(session); } static int process_event_synth_tracing_data_stub(struct perf_session *session __maybe_unused, union perf_event *event __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_event_synth_attr_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_evlist **pevlist __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_event_synth_event_update_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_evlist **pevlist __maybe_unused) { if (dump_trace) perf_event__fprintf_event_update(event, stdout); dump_printf(": unhandled!\n"); return 0; } static int process_event_sample_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_sample *sample __maybe_unused, struct perf_evsel *evsel __maybe_unused, struct machine *machine __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_event_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_finished_round_stub(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct ordered_events *oe __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_finished_round(struct perf_tool *tool, union perf_event *event, struct ordered_events *oe); static int skipn(int fd, off_t n) { char buf[4096]; ssize_t ret; while (n > 0) { ret = read(fd, buf, min(n, (off_t)sizeof(buf))); if (ret <= 0) return ret; n -= ret; } return 0; } static s64 process_event_auxtrace_stub(struct perf_session *session __maybe_unused, union perf_event *event) { dump_printf(": unhandled!\n"); if (perf_data__is_pipe(session->data)) skipn(perf_data__fd(session->data), event->auxtrace.size); return event->auxtrace.size; } static int process_event_op2_stub(struct perf_session *session __maybe_unused, union perf_event *event __maybe_unused) { dump_printf(": unhandled!\n"); return 0; } static int process_event_thread_map_stub(struct perf_session *session __maybe_unused, union perf_event *event __maybe_unused) { if (dump_trace) perf_event__fprintf_thread_map(event, stdout); dump_printf(": unhandled!\n"); return 0; } static int process_event_cpu_map_stub(struct perf_session *session __maybe_unused, union perf_event *event __maybe_unused) { if (dump_trace) perf_event__fprintf_cpu_map(event, stdout); dump_printf(": unhandled!\n"); return 0; } static int process_event_stat_config_stub(struct perf_session *session __maybe_unused, union perf_event *event __maybe_unused) { if (dump_trace) perf_event__fprintf_stat_config(event, stdout); dump_printf(": unhandled!\n"); return 0; } static int process_stat_stub(struct perf_session *perf_session __maybe_unused, union perf_event *event) { if (dump_trace) perf_event__fprintf_stat(event, stdout); dump_printf(": unhandled!\n"); return 0; } static int process_stat_round_stub(struct perf_session *perf_session __maybe_unused, union perf_event *event) { if (dump_trace) perf_event__fprintf_stat_round(event, stdout); dump_printf(": unhandled!\n"); return 0; } void perf_tool__fill_defaults(struct perf_tool *tool) { if (tool->sample == NULL) tool->sample = process_event_sample_stub; if (tool->mmap == NULL) tool->mmap = process_event_stub; if (tool->mmap2 == NULL) tool->mmap2 = process_event_stub; if (tool->comm == NULL) tool->comm = process_event_stub; if (tool->namespaces == NULL) tool->namespaces = process_event_stub; if (tool->fork == NULL) tool->fork = process_event_stub; if (tool->exit == NULL) tool->exit = process_event_stub; if (tool->lost == NULL) tool->lost = perf_event__process_lost; if (tool->lost_samples == NULL) tool->lost_samples = perf_event__process_lost_samples; if (tool->aux == NULL) tool->aux = perf_event__process_aux; if (tool->itrace_start == NULL) tool->itrace_start = perf_event__process_itrace_start; if (tool->context_switch == NULL) tool->context_switch = perf_event__process_switch; if (tool->read == NULL) tool->read = process_event_sample_stub; if (tool->throttle == NULL) tool->throttle = process_event_stub; if (tool->unthrottle == NULL) tool->unthrottle = process_event_stub; if (tool->attr == NULL) tool->attr = process_event_synth_attr_stub; if (tool->event_update == NULL) tool->event_update = process_event_synth_event_update_stub; if (tool->tracing_data == NULL) tool->tracing_data = process_event_synth_tracing_data_stub; if (tool->build_id == NULL) tool->build_id = process_event_op2_stub; if (tool->finished_round == NULL) { if (tool->ordered_events) tool->finished_round = process_finished_round; else tool->finished_round = process_finished_round_stub; } if (tool->id_index == NULL) tool->id_index = process_event_op2_stub; if (tool->auxtrace_info == NULL) tool->auxtrace_info = process_event_op2_stub; if (tool->auxtrace == NULL) tool->auxtrace = process_event_auxtrace_stub; if (tool->auxtrace_error == NULL) tool->auxtrace_error = process_event_op2_stub; if (tool->thread_map == NULL) tool->thread_map = process_event_thread_map_stub; if (tool->cpu_map == NULL) tool->cpu_map = process_event_cpu_map_stub; if (tool->stat_config == NULL) tool->stat_config = process_event_stat_config_stub; if (tool->stat == NULL) tool->stat = process_stat_stub; if (tool->stat_round == NULL) tool->stat_round = process_stat_round_stub; if (tool->time_conv == NULL) tool->time_conv = process_event_op2_stub; if (tool->feature == NULL) tool->feature = process_event_op2_stub; } static void swap_sample_id_all(union perf_event *event, void *data) { void *end = (void *) event + event->header.size; int size = end - data; BUG_ON(size % sizeof(u64)); mem_bswap_64(data, size); } static void perf_event__all64_swap(union perf_event *event, bool sample_id_all __maybe_unused) { struct perf_event_header *hdr = &event->header; mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr)); } static void perf_event__comm_swap(union perf_event *event, bool sample_id_all) { event->comm.pid = bswap_32(event->comm.pid); event->comm.tid = bswap_32(event->comm.tid); if (sample_id_all) { void *data = &event->comm.comm; data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); swap_sample_id_all(event, data); } } static void perf_event__mmap_swap(union perf_event *event, bool sample_id_all) { event->mmap.pid = bswap_32(event->mmap.pid); event->mmap.tid = bswap_32(event->mmap.tid); event->mmap.start = bswap_64(event->mmap.start); event->mmap.len = bswap_64(event->mmap.len); event->mmap.pgoff = bswap_64(event->mmap.pgoff); if (sample_id_all) { void *data = &event->mmap.filename; data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); swap_sample_id_all(event, data); } } static void perf_event__mmap2_swap(union perf_event *event, bool sample_id_all) { event->mmap2.pid = bswap_32(event->mmap2.pid); event->mmap2.tid = bswap_32(event->mmap2.tid); event->mmap2.start = bswap_64(event->mmap2.start); event->mmap2.len = bswap_64(event->mmap2.len); event->mmap2.pgoff = bswap_64(event->mmap2.pgoff); event->mmap2.maj = bswap_32(event->mmap2.maj); event->mmap2.min = bswap_32(event->mmap2.min); event->mmap2.ino = bswap_64(event->mmap2.ino); if (sample_id_all) { void *data = &event->mmap2.filename; data += PERF_ALIGN(strlen(data) + 1, sizeof(u64)); swap_sample_id_all(event, data); } } static void perf_event__task_swap(union perf_event *event, bool sample_id_all) { event->fork.pid = bswap_32(event->fork.pid); event->fork.tid = bswap_32(event->fork.tid); event->fork.ppid = bswap_32(event->fork.ppid); event->fork.ptid = bswap_32(event->fork.ptid); event->fork.time = bswap_64(event->fork.time); if (sample_id_all) swap_sample_id_all(event, &event->fork + 1); } static void perf_event__read_swap(union perf_event *event, bool sample_id_all) { event->read.pid = bswap_32(event->read.pid); event->read.tid = bswap_32(event->read.tid); event->read.value = bswap_64(event->read.value); event->read.time_enabled = bswap_64(event->read.time_enabled); event->read.time_running = bswap_64(event->read.time_running); event->read.id = bswap_64(event->read.id); if (sample_id_all) swap_sample_id_all(event, &event->read + 1); } static void perf_event__aux_swap(union perf_event *event, bool sample_id_all) { event->aux.aux_offset = bswap_64(event->aux.aux_offset); event->aux.aux_size = bswap_64(event->aux.aux_size); event->aux.flags = bswap_64(event->aux.flags); if (sample_id_all) swap_sample_id_all(event, &event->aux + 1); } static void perf_event__itrace_start_swap(union perf_event *event, bool sample_id_all) { event->itrace_start.pid = bswap_32(event->itrace_start.pid); event->itrace_start.tid = bswap_32(event->itrace_start.tid); if (sample_id_all) swap_sample_id_all(event, &event->itrace_start + 1); } static void perf_event__switch_swap(union perf_event *event, bool sample_id_all) { if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) { event->context_switch.next_prev_pid = bswap_32(event->context_switch.next_prev_pid); event->context_switch.next_prev_tid = bswap_32(event->context_switch.next_prev_tid); } if (sample_id_all) swap_sample_id_all(event, &event->context_switch + 1); } static void perf_event__throttle_swap(union perf_event *event, bool sample_id_all) { event->throttle.time = bswap_64(event->throttle.time); event->throttle.id = bswap_64(event->throttle.id); event->throttle.stream_id = bswap_64(event->throttle.stream_id); if (sample_id_all) swap_sample_id_all(event, &event->throttle + 1); } static u8 revbyte(u8 b) { int rev = (b >> 4) | ((b & 0xf) << 4); rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2); rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1); return (u8) rev; } /* * XXX this is hack in attempt to carry flags bitfield * through endian village. ABI says: * * Bit-fields are allocated from right to left (least to most significant) * on little-endian implementations and from left to right (most to least * significant) on big-endian implementations. * * The above seems to be byte specific, so we need to reverse each * byte of the bitfield. 'Internet' also says this might be implementation * specific and we probably need proper fix and carry perf_event_attr * bitfield flags in separate data file FEAT_ section. Thought this seems * to work for now. */ static void swap_bitfield(u8 *p, unsigned len) { unsigned i; for (i = 0; i < len; i++) { *p = revbyte(*p); p++; } } /* exported for swapping attributes in file header */ void perf_event__attr_swap(struct perf_event_attr *attr) { attr->type = bswap_32(attr->type); attr->size = bswap_32(attr->size); #define bswap_safe(f, n) \ (attr->size > (offsetof(struct perf_event_attr, f) + \ sizeof(attr->f) * (n))) #define bswap_field(f, sz) \ do { \ if (bswap_safe(f, 0)) \ attr->f = bswap_##sz(attr->f); \ } while(0) #define bswap_field_16(f) bswap_field(f, 16) #define bswap_field_32(f) bswap_field(f, 32) #define bswap_field_64(f) bswap_field(f, 64) bswap_field_64(config); bswap_field_64(sample_period); bswap_field_64(sample_type); bswap_field_64(read_format); bswap_field_32(wakeup_events); bswap_field_32(bp_type); bswap_field_64(bp_addr); bswap_field_64(bp_len); bswap_field_64(branch_sample_type); bswap_field_64(sample_regs_user); bswap_field_32(sample_stack_user); bswap_field_32(aux_watermark); bswap_field_16(sample_max_stack); /* * After read_format are bitfields. Check read_format because * we are unable to use offsetof on bitfield. */ if (bswap_safe(read_format, 1)) swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64)); #undef bswap_field_64 #undef bswap_field_32 #undef bswap_field #undef bswap_safe } static void perf_event__hdr_attr_swap(union perf_event *event, bool sample_id_all __maybe_unused) { size_t size; perf_event__attr_swap(&event->attr.attr); size = event->header.size; size -= (void *)&event->attr.id - (void *)event; mem_bswap_64(event->attr.id, size); } static void perf_event__event_update_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->event_update.type = bswap_64(event->event_update.type); event->event_update.id = bswap_64(event->event_update.id); } static void perf_event__event_type_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->event_type.event_type.event_id = bswap_64(event->event_type.event_type.event_id); } static void perf_event__tracing_data_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->tracing_data.size = bswap_32(event->tracing_data.size); } static void perf_event__auxtrace_info_swap(union perf_event *event, bool sample_id_all __maybe_unused) { size_t size; event->auxtrace_info.type = bswap_32(event->auxtrace_info.type); size = event->header.size; size -= (void *)&event->auxtrace_info.priv - (void *)event; mem_bswap_64(event->auxtrace_info.priv, size); } static void perf_event__auxtrace_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->auxtrace.size = bswap_64(event->auxtrace.size); event->auxtrace.offset = bswap_64(event->auxtrace.offset); event->auxtrace.reference = bswap_64(event->auxtrace.reference); event->auxtrace.idx = bswap_32(event->auxtrace.idx); event->auxtrace.tid = bswap_32(event->auxtrace.tid); event->auxtrace.cpu = bswap_32(event->auxtrace.cpu); } static void perf_event__auxtrace_error_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->auxtrace_error.type = bswap_32(event->auxtrace_error.type); event->auxtrace_error.code = bswap_32(event->auxtrace_error.code); event->auxtrace_error.cpu = bswap_32(event->auxtrace_error.cpu); event->auxtrace_error.pid = bswap_32(event->auxtrace_error.pid); event->auxtrace_error.tid = bswap_32(event->auxtrace_error.tid); event->auxtrace_error.ip = bswap_64(event->auxtrace_error.ip); } static void perf_event__thread_map_swap(union perf_event *event, bool sample_id_all __maybe_unused) { unsigned i; event->thread_map.nr = bswap_64(event->thread_map.nr); for (i = 0; i < event->thread_map.nr; i++) event->thread_map.entries[i].pid = bswap_64(event->thread_map.entries[i].pid); } static void perf_event__cpu_map_swap(union perf_event *event, bool sample_id_all __maybe_unused) { struct cpu_map_data *data = &event->cpu_map.data; struct cpu_map_entries *cpus; struct cpu_map_mask *mask; unsigned i; data->type = bswap_64(data->type); switch (data->type) { case PERF_CPU_MAP__CPUS: cpus = (struct cpu_map_entries *)data->data; cpus->nr = bswap_16(cpus->nr); for (i = 0; i < cpus->nr; i++) cpus->cpu[i] = bswap_16(cpus->cpu[i]); break; case PERF_CPU_MAP__MASK: mask = (struct cpu_map_mask *) data->data; mask->nr = bswap_16(mask->nr); mask->long_size = bswap_16(mask->long_size); switch (mask->long_size) { case 4: mem_bswap_32(&mask->mask, mask->nr); break; case 8: mem_bswap_64(&mask->mask, mask->nr); break; default: pr_err("cpu_map swap: unsupported long size\n"); } default: break; } } static void perf_event__stat_config_swap(union perf_event *event, bool sample_id_all __maybe_unused) { u64 size; size = event->stat_config.nr * sizeof(event->stat_config.data[0]); size += 1; /* nr item itself */ mem_bswap_64(&event->stat_config.nr, size); } static void perf_event__stat_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->stat.id = bswap_64(event->stat.id); event->stat.thread = bswap_32(event->stat.thread); event->stat.cpu = bswap_32(event->stat.cpu); event->stat.val = bswap_64(event->stat.val); event->stat.ena = bswap_64(event->stat.ena); event->stat.run = bswap_64(event->stat.run); } static void perf_event__stat_round_swap(union perf_event *event, bool sample_id_all __maybe_unused) { event->stat_round.type = bswap_64(event->stat_round.type); event->stat_round.time = bswap_64(event->stat_round.time); } typedef void (*perf_event__swap_op)(union perf_event *event, bool sample_id_all); static perf_event__swap_op perf_event__swap_ops[] = { [PERF_RECORD_MMAP] = perf_event__mmap_swap, [PERF_RECORD_MMAP2] = perf_event__mmap2_swap, [PERF_RECORD_COMM] = perf_event__comm_swap, [PERF_RECORD_FORK] = perf_event__task_swap, [PERF_RECORD_EXIT] = perf_event__task_swap, [PERF_RECORD_LOST] = perf_event__all64_swap, [PERF_RECORD_READ] = perf_event__read_swap, [PERF_RECORD_THROTTLE] = perf_event__throttle_swap, [PERF_RECORD_UNTHROTTLE] = perf_event__throttle_swap, [PERF_RECORD_SAMPLE] = perf_event__all64_swap, [PERF_RECORD_AUX] = perf_event__aux_swap, [PERF_RECORD_ITRACE_START] = perf_event__itrace_start_swap, [PERF_RECORD_LOST_SAMPLES] = perf_event__all64_swap, [PERF_RECORD_SWITCH] = perf_event__switch_swap, [PERF_RECORD_SWITCH_CPU_WIDE] = perf_event__switch_swap, [PERF_RECORD_HEADER_ATTR] = perf_event__hdr_attr_swap, [PERF_RECORD_HEADER_EVENT_TYPE] = perf_event__event_type_swap, [PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap, [PERF_RECORD_HEADER_BUILD_ID] = NULL, [PERF_RECORD_ID_INDEX] = perf_event__all64_swap, [PERF_RECORD_AUXTRACE_INFO] = perf_event__auxtrace_info_swap, [PERF_RECORD_AUXTRACE] = perf_event__auxtrace_swap, [PERF_RECORD_AUXTRACE_ERROR] = perf_event__auxtrace_error_swap, [PERF_RECORD_THREAD_MAP] = perf_event__thread_map_swap, [PERF_RECORD_CPU_MAP] = perf_event__cpu_map_swap, [PERF_RECORD_STAT_CONFIG] = perf_event__stat_config_swap, [PERF_RECORD_STAT] = perf_event__stat_swap, [PERF_RECORD_STAT_ROUND] = perf_event__stat_round_swap, [PERF_RECORD_EVENT_UPDATE] = perf_event__event_update_swap, [PERF_RECORD_TIME_CONV] = perf_event__all64_swap, [PERF_RECORD_HEADER_MAX] = NULL, }; /* * When perf record finishes a pass on every buffers, it records this pseudo * event. * We record the max timestamp t found in the pass n. * Assuming these timestamps are monotonic across cpus, we know that if * a buffer still has events with timestamps below t, they will be all * available and then read in the pass n + 1. * Hence when we start to read the pass n + 2, we can safely flush every * events with timestamps below t. * * ============ PASS n ================= * CPU 0 | CPU 1 * | * cnt1 timestamps | cnt2 timestamps * 1 | 2 * 2 | 3 * - | 4 <--- max recorded * * ============ PASS n + 1 ============== * CPU 0 | CPU 1 * | * cnt1 timestamps | cnt2 timestamps * 3 | 5 * 4 | 6 * 5 | 7 <---- max recorded * * Flush every events below timestamp 4 * * ============ PASS n + 2 ============== * CPU 0 | CPU 1 * | * cnt1 timestamps | cnt2 timestamps * 6 | 8 * 7 | 9 * - | 10 * * Flush every events below timestamp 7 * etc... */ static int process_finished_round(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct ordered_events *oe) { if (dump_trace) fprintf(stdout, "\n"); return ordered_events__flush(oe, OE_FLUSH__ROUND); } int perf_session__queue_event(struct perf_session *s, union perf_event *event, u64 timestamp, u64 file_offset) { return ordered_events__queue(&s->ordered_events, event, timestamp, file_offset); } static void callchain__lbr_callstack_printf(struct perf_sample *sample) { struct ip_callchain *callchain = sample->callchain; struct branch_stack *lbr_stack = sample->branch_stack; u64 kernel_callchain_nr = callchain->nr; unsigned int i; for (i = 0; i < kernel_callchain_nr; i++) { if (callchain->ips[i] == PERF_CONTEXT_USER) break; } if ((i != kernel_callchain_nr) && lbr_stack->nr) { u64 total_nr; /* * LBR callstack can only get user call chain, * i is kernel call chain number, * 1 is PERF_CONTEXT_USER. * * The user call chain is stored in LBR registers. * LBR are pair registers. The caller is stored * in "from" register, while the callee is stored * in "to" register. * For example, there is a call stack * "A"->"B"->"C"->"D". * The LBR registers will recorde like * "C"->"D", "B"->"C", "A"->"B". * So only the first "to" register and all "from" * registers are needed to construct the whole stack. */ total_nr = i + 1 + lbr_stack->nr + 1; kernel_callchain_nr = i + 1; printf("... LBR call chain: nr:%" PRIu64 "\n", total_nr); for (i = 0; i < kernel_callchain_nr; i++) printf("..... %2d: %016" PRIx64 "\n", i, callchain->ips[i]); printf("..... %2d: %016" PRIx64 "\n", (int)(kernel_callchain_nr), lbr_stack->entries[0].to); for (i = 0; i < lbr_stack->nr; i++) printf("..... %2d: %016" PRIx64 "\n", (int)(i + kernel_callchain_nr + 1), lbr_stack->entries[i].from); } } static void callchain__printf(struct perf_evsel *evsel, struct perf_sample *sample) { unsigned int i; struct ip_callchain *callchain = sample->callchain; if (perf_evsel__has_branch_callstack(evsel)) callchain__lbr_callstack_printf(sample); printf("... FP chain: nr:%" PRIu64 "\n", callchain->nr); for (i = 0; i < callchain->nr; i++) printf("..... %2d: %016" PRIx64 "\n", i, callchain->ips[i]); } static void branch_stack__printf(struct perf_sample *sample) { uint64_t i; printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr); for (i = 0; i < sample->branch_stack->nr; i++) { struct branch_entry *e = &sample->branch_stack->entries[i]; printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 " %hu cycles %s%s%s%s %x\n", i, e->from, e->to, (unsigned short)e->flags.cycles, e->flags.mispred ? "M" : " ", e->flags.predicted ? "P" : " ", e->flags.abort ? "A" : " ", e->flags.in_tx ? "T" : " ", (unsigned)e->flags.reserved); } } static void regs_dump__printf(u64 mask, u64 *regs) { unsigned rid, i = 0; for_each_set_bit(rid, (unsigned long *) &mask, sizeof(mask) * 8) { u64 val = regs[i++]; printf(".... %-5s 0x%" PRIx64 "\n", perf_reg_name(rid), val); } } static const char *regs_abi[] = { [PERF_SAMPLE_REGS_ABI_NONE] = "none", [PERF_SAMPLE_REGS_ABI_32] = "32-bit", [PERF_SAMPLE_REGS_ABI_64] = "64-bit", }; static inline const char *regs_dump_abi(struct regs_dump *d) { if (d->abi > PERF_SAMPLE_REGS_ABI_64) return "unknown"; return regs_abi[d->abi]; } static void regs__printf(const char *type, struct regs_dump *regs) { u64 mask = regs->mask; printf("... %s regs: mask 0x%" PRIx64 " ABI %s\n", type, mask, regs_dump_abi(regs)); regs_dump__printf(mask, regs->regs); } static void regs_user__printf(struct perf_sample *sample) { struct regs_dump *user_regs = &sample->user_regs; if (user_regs->regs) regs__printf("user", user_regs); } static void regs_intr__printf(struct perf_sample *sample) { struct regs_dump *intr_regs = &sample->intr_regs; if (intr_regs->regs) regs__printf("intr", intr_regs); } static void stack_user__printf(struct stack_dump *dump) { printf("... ustack: size %" PRIu64 ", offset 0x%x\n", dump->size, dump->offset); } static void perf_evlist__print_tstamp(struct perf_evlist *evlist, union perf_event *event, struct perf_sample *sample) { u64 sample_type = __perf_evlist__combined_sample_type(evlist); if (event->header.type != PERF_RECORD_SAMPLE && !perf_evlist__sample_id_all(evlist)) { fputs("-1 -1 ", stdout); return; } if ((sample_type & PERF_SAMPLE_CPU)) printf("%u ", sample->cpu); if (sample_type & PERF_SAMPLE_TIME) printf("%" PRIu64 " ", sample->time); } static void sample_read__printf(struct perf_sample *sample, u64 read_format) { printf("... sample_read:\n"); if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) printf("...... time enabled %016" PRIx64 "\n", sample->read.time_enabled); if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) printf("...... time running %016" PRIx64 "\n", sample->read.time_running); if (read_format & PERF_FORMAT_GROUP) { u64 i; printf(".... group nr %" PRIu64 "\n", sample->read.group.nr); for (i = 0; i < sample->read.group.nr; i++) { struct sample_read_value *value; value = &sample->read.group.values[i]; printf("..... id %016" PRIx64 ", value %016" PRIx64 "\n", value->id, value->value); } } else printf("..... id %016" PRIx64 ", value %016" PRIx64 "\n", sample->read.one.id, sample->read.one.value); } static void dump_event(struct perf_evlist *evlist, union perf_event *event, u64 file_offset, struct perf_sample *sample) { if (!dump_trace) return; printf("\n%#" PRIx64 " [%#x]: event: %d\n", file_offset, event->header.size, event->header.type); trace_event(event); if (sample) perf_evlist__print_tstamp(evlist, event, sample); printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset, event->header.size, perf_event__name(event->header.type)); } static void dump_sample(struct perf_evsel *evsel, union perf_event *event, struct perf_sample *sample) { u64 sample_type; if (!dump_trace) return; printf("(IP, 0x%x): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n", event->header.misc, sample->pid, sample->tid, sample->ip, sample->period, sample->addr); sample_type = evsel->attr.sample_type; if (evsel__has_callchain(evsel)) callchain__printf(evsel, sample); if ((sample_type & PERF_SAMPLE_BRANCH_STACK) && !perf_evsel__has_branch_callstack(evsel)) branch_stack__printf(sample); if (sample_type & PERF_SAMPLE_REGS_USER) regs_user__printf(sample); if (sample_type & PERF_SAMPLE_REGS_INTR) regs_intr__printf(sample); if (sample_type & PERF_SAMPLE_STACK_USER) stack_user__printf(&sample->user_stack); if (sample_type & PERF_SAMPLE_WEIGHT) printf("... weight: %" PRIu64 "\n", sample->weight); if (sample_type & PERF_SAMPLE_DATA_SRC) printf(" . data_src: 0x%"PRIx64"\n", sample->data_src); if (sample_type & PERF_SAMPLE_PHYS_ADDR) printf(" .. phys_addr: 0x%"PRIx64"\n", sample->phys_addr); if (sample_type & PERF_SAMPLE_TRANSACTION) printf("... transaction: %" PRIx64 "\n", sample->transaction); if (sample_type & PERF_SAMPLE_READ) sample_read__printf(sample, evsel->attr.read_format); } static void dump_read(struct perf_evsel *evsel, union perf_event *event) { struct read_event *read_event = &event->read; u64 read_format; if (!dump_trace) return; printf(": %d %d %s %" PRIu64 "\n", event->read.pid, event->read.tid, evsel ? perf_evsel__name(evsel) : "FAIL", event->read.value); read_format = evsel->attr.read_format; if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) printf("... time enabled : %" PRIu64 "\n", read_event->time_enabled); if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) printf("... time running : %" PRIu64 "\n", read_event->time_running); if (read_format & PERF_FORMAT_ID) printf("... id : %" PRIu64 "\n", read_event->id); } static struct machine *machines__find_for_cpumode(struct machines *machines, union perf_event *event, struct perf_sample *sample) { struct machine *machine; if (perf_guest && ((sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL) || (sample->cpumode == PERF_RECORD_MISC_GUEST_USER))) { u32 pid; if (event->header.type == PERF_RECORD_MMAP || event->header.type == PERF_RECORD_MMAP2) pid = event->mmap.pid; else pid = sample->pid; machine = machines__find(machines, pid); if (!machine) machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID); return machine; } return &machines->host; } static int deliver_sample_value(struct perf_evlist *evlist, struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct sample_read_value *v, struct machine *machine) { struct perf_sample_id *sid = perf_evlist__id2sid(evlist, v->id); if (sid) { sample->id = v->id; sample->period = v->value - sid->period; sid->period = v->value; } if (!sid || sid->evsel == NULL) { ++evlist->stats.nr_unknown_id; return 0; } return tool->sample(tool, event, sample, sid->evsel, machine); } static int deliver_sample_group(struct perf_evlist *evlist, struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct machine *machine) { int ret = -EINVAL; u64 i; for (i = 0; i < sample->read.group.nr; i++) { ret = deliver_sample_value(evlist, tool, event, sample, &sample->read.group.values[i], machine); if (ret) break; } return ret; } static int perf_evlist__deliver_sample(struct perf_evlist *evlist, struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct perf_evsel *evsel, struct machine *machine) { /* We know evsel != NULL. */ u64 sample_type = evsel->attr.sample_type; u64 read_format = evsel->attr.read_format; /* Standard sample delivery. */ if (!(sample_type & PERF_SAMPLE_READ)) return tool->sample(tool, event, sample, evsel, machine); /* For PERF_SAMPLE_READ we have either single or group mode. */ if (read_format & PERF_FORMAT_GROUP) return deliver_sample_group(evlist, tool, event, sample, machine); else return deliver_sample_value(evlist, tool, event, sample, &sample->read.one, machine); } static int machines__deliver_event(struct machines *machines, struct perf_evlist *evlist, union perf_event *event, struct perf_sample *sample, struct perf_tool *tool, u64 file_offset) { struct perf_evsel *evsel; struct machine *machine; dump_event(evlist, event, file_offset, sample); evsel = perf_evlist__id2evsel(evlist, sample->id); machine = machines__find_for_cpumode(machines, event, sample); switch (event->header.type) { case PERF_RECORD_SAMPLE: if (evsel == NULL) { ++evlist->stats.nr_unknown_id; return 0; } dump_sample(evsel, event, sample); if (machine == NULL) { ++evlist->stats.nr_unprocessable_samples; return 0; } return perf_evlist__deliver_sample(evlist, tool, event, sample, evsel, machine); case PERF_RECORD_MMAP: return tool->mmap(tool, event, sample, machine); case PERF_RECORD_MMAP2: if (event->header.misc & PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT) ++evlist->stats.nr_proc_map_timeout; return tool->mmap2(tool, event, sample, machine); case PERF_RECORD_COMM: return tool->comm(tool, event, sample, machine); case PERF_RECORD_NAMESPACES: return tool->namespaces(tool, event, sample, machine); case PERF_RECORD_FORK: return tool->fork(tool, event, sample, machine); case PERF_RECORD_EXIT: return tool->exit(tool, event, sample, machine); case PERF_RECORD_LOST: if (tool->lost == perf_event__process_lost) evlist->stats.total_lost += event->lost.lost; return tool->lost(tool, event, sample, machine); case PERF_RECORD_LOST_SAMPLES: if (tool->lost_samples == perf_event__process_lost_samples) evlist->stats.total_lost_samples += event->lost_samples.lost; return tool->lost_samples(tool, event, sample, machine); case PERF_RECORD_READ: dump_read(evsel, event); return tool->read(tool, event, sample, evsel, machine); case PERF_RECORD_THROTTLE: return tool->throttle(tool, event, sample, machine); case PERF_RECORD_UNTHROTTLE: return tool->unthrottle(tool, event, sample, machine); case PERF_RECORD_AUX: if (tool->aux == perf_event__process_aux) { if (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) evlist->stats.total_aux_lost += 1; if (event->aux.flags & PERF_AUX_FLAG_PARTIAL) evlist->stats.total_aux_partial += 1; } return tool->aux(tool, event, sample, machine); case PERF_RECORD_ITRACE_START: return tool->itrace_start(tool, event, sample, machine); case PERF_RECORD_SWITCH: case PERF_RECORD_SWITCH_CPU_WIDE: return tool->context_switch(tool, event, sample, machine); default: ++evlist->stats.nr_unknown_events; return -1; } } static int perf_session__deliver_event(struct perf_session *session, union perf_event *event, struct perf_tool *tool, u64 file_offset) { struct perf_sample sample; int ret; ret = perf_evlist__parse_sample(session->evlist, event, &sample); if (ret) { pr_err("Can't parse sample, err = %d\n", ret); return ret; } ret = auxtrace__process_event(session, event, &sample, tool); if (ret < 0) return ret; if (ret > 0) return 0; return machines__deliver_event(&session->machines, session->evlist, event, &sample, tool, file_offset); } static s64 perf_session__process_user_event(struct perf_session *session, union perf_event *event, u64 file_offset) { struct ordered_events *oe = &session->ordered_events; struct perf_tool *tool = session->tool; struct perf_sample sample = { .time = 0, }; int fd = perf_data__fd(session->data); int err; dump_event(session->evlist, event, file_offset, &sample); /* These events are processed right away */ switch (event->header.type) { case PERF_RECORD_HEADER_ATTR: err = tool->attr(tool, event, &session->evlist); if (err == 0) { perf_session__set_id_hdr_size(session); perf_session__set_comm_exec(session); } return err; case PERF_RECORD_EVENT_UPDATE: return tool->event_update(tool, event, &session->evlist); case PERF_RECORD_HEADER_EVENT_TYPE: /* * Depreceated, but we need to handle it for sake * of old data files create in pipe mode. */ return 0; case PERF_RECORD_HEADER_TRACING_DATA: /* setup for reading amidst mmap */ lseek(fd, file_offset, SEEK_SET); return tool->tracing_data(session, event); case PERF_RECORD_HEADER_BUILD_ID: return tool->build_id(session, event); case PERF_RECORD_FINISHED_ROUND: return tool->finished_round(tool, event, oe); case PERF_RECORD_ID_INDEX: return tool->id_index(session, event); case PERF_RECORD_AUXTRACE_INFO: return tool->auxtrace_info(session, event); case PERF_RECORD_AUXTRACE: /* setup for reading amidst mmap */ lseek(fd, file_offset + event->header.size, SEEK_SET); return tool->auxtrace(session, event); case PERF_RECORD_AUXTRACE_ERROR: perf_session__auxtrace_error_inc(session, event); return tool->auxtrace_error(session, event); case PERF_RECORD_THREAD_MAP: return tool->thread_map(session, event); case PERF_RECORD_CPU_MAP: return tool->cpu_map(session, event); case PERF_RECORD_STAT_CONFIG: return tool->stat_config(session, event); case PERF_RECORD_STAT: return tool->stat(session, event); case PERF_RECORD_STAT_ROUND: return tool->stat_round(session, event); case PERF_RECORD_TIME_CONV: session->time_conv = event->time_conv; return tool->time_conv(session, event); case PERF_RECORD_HEADER_FEATURE: return tool->feature(session, event); default: return -EINVAL; } } int perf_session__deliver_synth_event(struct perf_session *session, union perf_event *event, struct perf_sample *sample) { struct perf_evlist *evlist = session->evlist; struct perf_tool *tool = session->tool; events_stats__inc(&evlist->stats, event->header.type); if (event->header.type >= PERF_RECORD_USER_TYPE_START) return perf_session__process_user_event(session, event, 0); return machines__deliver_event(&session->machines, evlist, event, sample, tool, 0); } static void event_swap(union perf_event *event, bool sample_id_all) { perf_event__swap_op swap; swap = perf_event__swap_ops[event->header.type]; if (swap) swap(event, sample_id_all); } int perf_session__peek_event(struct perf_session *session, off_t file_offset, void *buf, size_t buf_sz, union perf_event **event_ptr, struct perf_sample *sample) { union perf_event *event; size_t hdr_sz, rest; int fd; if (session->one_mmap && !session->header.needs_swap) { event = file_offset - session->one_mmap_offset + session->one_mmap_addr; goto out_parse_sample; } if (perf_data__is_pipe(session->data)) return -1; fd = perf_data__fd(session->data); hdr_sz = sizeof(struct perf_event_header); if (buf_sz < hdr_sz) return -1; if (lseek(fd, file_offset, SEEK_SET) == (off_t)-1 || readn(fd, buf, hdr_sz) != (ssize_t)hdr_sz) return -1; event = (union perf_event *)buf; if (session->header.needs_swap) perf_event_header__bswap(&event->header); if (event->header.size < hdr_sz || event->header.size > buf_sz) return -1; rest = event->header.size - hdr_sz; if (readn(fd, buf, rest) != (ssize_t)rest) return -1; if (session->header.needs_swap) event_swap(event, perf_evlist__sample_id_all(session->evlist)); out_parse_sample: if (sample && event->header.type < PERF_RECORD_USER_TYPE_START && perf_evlist__parse_sample(session->evlist, event, sample)) return -1; *event_ptr = event; return 0; } static s64 perf_session__process_event(struct perf_session *session, union perf_event *event, u64 file_offset) { struct perf_evlist *evlist = session->evlist; struct perf_tool *tool = session->tool; int ret; if (session->header.needs_swap) event_swap(event, perf_evlist__sample_id_all(evlist)); if (event->header.type >= PERF_RECORD_HEADER_MAX) return -EINVAL; events_stats__inc(&evlist->stats, event->header.type); if (event->header.type >= PERF_RECORD_USER_TYPE_START) return perf_session__process_user_event(session, event, file_offset); if (tool->ordered_events) { u64 timestamp = -1ULL; ret = perf_evlist__parse_sample_timestamp(evlist, event, ×tamp); if (ret && ret != -1) return ret; ret = perf_session__queue_event(session, event, timestamp, file_offset); if (ret != -ETIME) return ret; } return perf_session__deliver_event(session, event, tool, file_offset); } void perf_event_header__bswap(struct perf_event_header *hdr) { hdr->type = bswap_32(hdr->type); hdr->misc = bswap_16(hdr->misc); hdr->size = bswap_16(hdr->size); } struct thread *perf_session__findnew(struct perf_session *session, pid_t pid) { return machine__findnew_thread(&session->machines.host, -1, pid); } /* * Threads are identified by pid and tid, and the idle task has pid == tid == 0. * So here a single thread is created for that, but actually there is a separate * idle task per cpu, so there should be one 'struct thread' per cpu, but there * is only 1. That causes problems for some tools, requiring workarounds. For * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu(). */ int perf_session__register_idle_thread(struct perf_session *session) { struct thread *thread; int err = 0; thread = machine__findnew_thread(&session->machines.host, 0, 0); if (thread == NULL || thread__set_comm(thread, "swapper", 0)) { pr_err("problem inserting idle task.\n"); err = -1; } if (thread == NULL || thread__set_namespaces(thread, 0, NULL)) { pr_err("problem inserting idle task.\n"); err = -1; } /* machine__findnew_thread() got the thread, so put it */ thread__put(thread); return err; } static void perf_session__warn_order(const struct perf_session *session) { const struct ordered_events *oe = &session->ordered_events; struct perf_evsel *evsel; bool should_warn = true; evlist__for_each_entry(session->evlist, evsel) { if (evsel->attr.write_backward) should_warn = false; } if (!should_warn) return; if (oe->nr_unordered_events != 0) ui__warning("%u out of order events recorded.\n", oe->nr_unordered_events); } static void perf_session__warn_about_errors(const struct perf_session *session) { const struct events_stats *stats = &session->evlist->stats; if (session->tool->lost == perf_event__process_lost && stats->nr_events[PERF_RECORD_LOST] != 0) { ui__warning("Processed %d events and lost %d chunks!\n\n" "Check IO/CPU overload!\n\n", stats->nr_events[0], stats->nr_events[PERF_RECORD_LOST]); } if (session->tool->lost_samples == perf_event__process_lost_samples) { double drop_rate; drop_rate = (double)stats->total_lost_samples / (double) (stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples); if (drop_rate > 0.05) { ui__warning("Processed %" PRIu64 " samples and lost %3.2f%%!\n\n", stats->nr_events[PERF_RECORD_SAMPLE] + stats->total_lost_samples, drop_rate * 100.0); } } if (session->tool->aux == perf_event__process_aux && stats->total_aux_lost != 0) { ui__warning("AUX data lost %" PRIu64 " times out of %u!\n\n", stats->total_aux_lost, stats->nr_events[PERF_RECORD_AUX]); } if (session->tool->aux == perf_event__process_aux && stats->total_aux_partial != 0) { bool vmm_exclusive = false; (void)sysfs__read_bool("module/kvm_intel/parameters/vmm_exclusive", &vmm_exclusive); ui__warning("AUX data had gaps in it %" PRIu64 " times out of %u!\n\n" "Are you running a KVM guest in the background?%s\n\n", stats->total_aux_partial, stats->nr_events[PERF_RECORD_AUX], vmm_exclusive ? "\nReloading kvm_intel module with vmm_exclusive=0\n" "will reduce the gaps to only guest's timeslices." : ""); } if (stats->nr_unknown_events != 0) { ui__warning("Found %u unknown events!\n\n" "Is this an older tool processing a perf.data " "file generated by a more recent tool?\n\n" "If that is not the case, consider " "reporting to linux-kernel@vger.kernel.org.\n\n", stats->nr_unknown_events); } if (stats->nr_unknown_id != 0) { ui__warning("%u samples with id not present in the header\n", stats->nr_unknown_id); } if (stats->nr_invalid_chains != 0) { ui__warning("Found invalid callchains!\n\n" "%u out of %u events were discarded for this reason.\n\n" "Consider reporting to linux-kernel@vger.kernel.org.\n\n", stats->nr_invalid_chains, stats->nr_events[PERF_RECORD_SAMPLE]); } if (stats->nr_unprocessable_samples != 0) { ui__warning("%u unprocessable samples recorded.\n" "Do you have a KVM guest running and not using 'perf kvm'?\n", stats->nr_unprocessable_samples); } perf_session__warn_order(session); events_stats__auxtrace_error_warn(stats); if (stats->nr_proc_map_timeout != 0) { ui__warning("%d map information files for pre-existing threads were\n" "not processed, if there are samples for addresses they\n" "will not be resolved, you may find out which are these\n" "threads by running with -v and redirecting the output\n" "to a file.\n" "The time limit to process proc map is too short?\n" "Increase it by --proc-map-timeout\n", stats->nr_proc_map_timeout); } } static int perf_session__flush_thread_stack(struct thread *thread, void *p __maybe_unused) { return thread_stack__flush(thread); } static int perf_session__flush_thread_stacks(struct perf_session *session) { return machines__for_each_thread(&session->machines, perf_session__flush_thread_stack, NULL); } volatile int session_done; static int __perf_session__process_pipe_events(struct perf_session *session) { struct ordered_events *oe = &session->ordered_events; struct perf_tool *tool = session->tool; int fd = perf_data__fd(session->data); union perf_event *event; uint32_t size, cur_size = 0; void *buf = NULL; s64 skip = 0; u64 head; ssize_t err; void *p; perf_tool__fill_defaults(tool); head = 0; cur_size = sizeof(union perf_event); buf = malloc(cur_size); if (!buf) return -errno; ordered_events__set_copy_on_queue(oe, true); more: event = buf; err = readn(fd, event, sizeof(struct perf_event_header)); if (err <= 0) { if (err == 0) goto done; pr_err("failed to read event header\n"); goto out_err; } if (session->header.needs_swap) perf_event_header__bswap(&event->header); size = event->header.size; if (size < sizeof(struct perf_event_header)) { pr_err("bad event header size\n"); goto out_err; } if (size > cur_size) { void *new = realloc(buf, size); if (!new) { pr_err("failed to allocate memory to read event\n"); goto out_err; } buf = new; cur_size = size; event = buf; } p = event; p += sizeof(struct perf_event_header); if (size - sizeof(struct perf_event_header)) { err = readn(fd, p, size - sizeof(struct perf_event_header)); if (err <= 0) { if (err == 0) { pr_err("unexpected end of event stream\n"); goto done; } pr_err("failed to read event data\n"); goto out_err; } } if ((skip = perf_session__process_event(session, event, head)) < 0) { pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n", head, event->header.size, event->header.type); err = -EINVAL; goto out_err; } head += size; if (skip > 0) head += skip; if (!session_done()) goto more; done: /* do the final flush for ordered samples */ err = ordered_events__flush(oe, OE_FLUSH__FINAL); if (err) goto out_err; err = auxtrace__flush_events(session, tool); if (err) goto out_err; err = perf_session__flush_thread_stacks(session); out_err: free(buf); if (!tool->no_warn) perf_session__warn_about_errors(session); ordered_events__free(&session->ordered_events); auxtrace__free_events(session); return err; } static union perf_event * fetch_mmaped_event(struct perf_session *session, u64 head, size_t mmap_size, char *buf) { union perf_event *event; /* * Ensure we have enough space remaining to read * the size of the event in the headers. */ if (head + sizeof(event->header) > mmap_size) return NULL; event = (union perf_event *)(buf + head); if (session->header.needs_swap) perf_event_header__bswap(&event->header); if (head + event->header.size > mmap_size) { /* We're not fetching the event so swap back again */ if (session->header.needs_swap) perf_event_header__bswap(&event->header); return NULL; } return event; } /* * On 64bit we can mmap the data file in one go. No need for tiny mmap * slices. On 32bit we use 32MB. */ #if BITS_PER_LONG == 64 #define MMAP_SIZE ULLONG_MAX #define NUM_MMAPS 1 #else #define MMAP_SIZE (32 * 1024 * 1024ULL) #define NUM_MMAPS 128 #endif struct reader { int fd; u64 data_size; }; static int __perf_session__process_events(struct perf_session *session) { struct reader rd = { .fd = perf_data__fd(session->data), .data_size = session->header.data_size, }; struct ordered_events *oe = &session->ordered_events; struct perf_tool *tool = session->tool; u64 data_offset = session->header.data_offset; u64 data_size = rd.data_size; u64 head, page_offset, file_offset, file_pos, size; int err, mmap_prot, mmap_flags, map_idx = 0; size_t mmap_size; char *buf, *mmaps[NUM_MMAPS]; union perf_event *event; struct ui_progress prog; s64 skip; perf_tool__fill_defaults(tool); page_offset = page_size * (data_offset / page_size); file_offset = page_offset; head = data_offset - page_offset; if (data_size == 0) goto out; ui_progress__init_size(&prog, data_size, "Processing events..."); data_size += data_offset; mmap_size = MMAP_SIZE; if (mmap_size > data_size) { mmap_size = data_size; session->one_mmap = true; } memset(mmaps, 0, sizeof(mmaps)); mmap_prot = PROT_READ; mmap_flags = MAP_SHARED; if (session->header.needs_swap) { mmap_prot |= PROT_WRITE; mmap_flags = MAP_PRIVATE; } remap: buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, rd.fd, file_offset); if (buf == MAP_FAILED) { pr_err("failed to mmap file\n"); err = -errno; goto out_err; } mmaps[map_idx] = buf; map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1); file_pos = file_offset + head; if (session->one_mmap) { session->one_mmap_addr = buf; session->one_mmap_offset = file_offset; } more: event = fetch_mmaped_event(session, head, mmap_size, buf); if (!event) { if (mmaps[map_idx]) { munmap(mmaps[map_idx], mmap_size); mmaps[map_idx] = NULL; } page_offset = page_size * (head / page_size); file_offset += page_offset; head -= page_offset; goto remap; } size = event->header.size; if (size < sizeof(struct perf_event_header) || (skip = perf_session__process_event(session, event, file_pos)) < 0) { pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n", file_offset + head, event->header.size, event->header.type); err = -EINVAL; goto out_err; } if (skip) size += skip; head += size; file_pos += size; ui_progress__update(&prog, size); if (session_done()) goto out; if (file_pos < data_size) goto more; out: /* do the final flush for ordered samples */ err = ordered_events__flush(oe, OE_FLUSH__FINAL); if (err) goto out_err; err = auxtrace__flush_events(session, tool); if (err) goto out_err; err = perf_session__flush_thread_stacks(session); out_err: ui_progress__finish(); if (!tool->no_warn) perf_session__warn_about_errors(session); /* * We may switching perf.data output, make ordered_events * reusable. */ ordered_events__reinit(&session->ordered_events); auxtrace__free_events(session); session->one_mmap = false; return err; } int perf_session__process_events(struct perf_session *session) { if (perf_session__register_idle_thread(session) < 0) return -ENOMEM; if (perf_data__is_pipe(session->data)) return __perf_session__process_pipe_events(session); return __perf_session__process_events(session); } bool perf_session__has_traces(struct perf_session *session, const char *msg) { struct perf_evsel *evsel; evlist__for_each_entry(session->evlist, evsel) { if (evsel->attr.type == PERF_TYPE_TRACEPOINT) return true; } pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg); return false; } int map__set_kallsyms_ref_reloc_sym(struct map *map, const char *symbol_name, u64 addr) { char *bracket; struct ref_reloc_sym *ref; struct kmap *kmap; ref = zalloc(sizeof(struct ref_reloc_sym)); if (ref == NULL) return -ENOMEM; ref->name = strdup(symbol_name); if (ref->name == NULL) { free(ref); return -ENOMEM; } bracket = strchr(ref->name, ']'); if (bracket) *bracket = '\0'; ref->addr = addr; kmap = map__kmap(map); if (kmap) kmap->ref_reloc_sym = ref; return 0; } size_t perf_session__fprintf_dsos(struct perf_session *session, FILE *fp) { return machines__fprintf_dsos(&session->machines, fp); } size_t perf_session__fprintf_dsos_buildid(struct perf_session *session, FILE *fp, bool (skip)(struct dso *dso, int parm), int parm) { return machines__fprintf_dsos_buildid(&session->machines, fp, skip, parm); } size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp) { size_t ret; const char *msg = ""; if (perf_header__has_feat(&session->header, HEADER_AUXTRACE)) msg = " (excludes AUX area (e.g. instruction trace) decoded / synthesized events)"; ret = fprintf(fp, "\nAggregated stats:%s\n", msg); ret += events_stats__fprintf(&session->evlist->stats, fp); return ret; } size_t perf_session__fprintf(struct perf_session *session, FILE *fp) { /* * FIXME: Here we have to actually print all the machines in this * session, not just the host... */ return machine__fprintf(&session->machines.host, fp); } struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session, unsigned int type) { struct perf_evsel *pos; evlist__for_each_entry(session->evlist, pos) { if (pos->attr.type == type) return pos; } return NULL; } int perf_session__cpu_bitmap(struct perf_session *session, const char *cpu_list, unsigned long *cpu_bitmap) { int i, err = -1; struct cpu_map *map; for (i = 0; i < PERF_TYPE_MAX; ++i) { struct perf_evsel *evsel; evsel = perf_session__find_first_evtype(session, i); if (!evsel) continue; if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) { pr_err("File does not contain CPU events. " "Remove -C option to proceed.\n"); return -1; } } map = cpu_map__new(cpu_list); if (map == NULL) { pr_err("Invalid cpu_list\n"); return -1; } for (i = 0; i < map->nr; i++) { int cpu = map->map[i]; if (cpu >= MAX_NR_CPUS) { pr_err("Requested CPU %d too large. " "Consider raising MAX_NR_CPUS\n", cpu); goto out_delete_map; } set_bit(cpu, cpu_bitmap); } err = 0; out_delete_map: cpu_map__put(map); return err; } void perf_session__fprintf_info(struct perf_session *session, FILE *fp, bool full) { if (session == NULL || fp == NULL) return; fprintf(fp, "# ========\n"); perf_header__fprintf_info(session, fp, full); fprintf(fp, "# ========\n#\n"); } int __perf_session__set_tracepoints_handlers(struct perf_session *session, const struct perf_evsel_str_handler *assocs, size_t nr_assocs) { struct perf_evsel *evsel; size_t i; int err; for (i = 0; i < nr_assocs; i++) { /* * Adding a handler for an event not in the session, * just ignore it. */ evsel = perf_evlist__find_tracepoint_by_name(session->evlist, assocs[i].name); if (evsel == NULL) continue; err = -EEXIST; if (evsel->handler != NULL) goto out; evsel->handler = assocs[i].handler; } err = 0; out: return err; } int perf_event__process_id_index(struct perf_session *session, union perf_event *event) { struct perf_evlist *evlist = session->evlist; struct id_index_event *ie = &event->id_index; size_t i, nr, max_nr; max_nr = (ie->header.size - sizeof(struct id_index_event)) / sizeof(struct id_index_entry); nr = ie->nr; if (nr > max_nr) return -EINVAL; if (dump_trace) fprintf(stdout, " nr: %zu\n", nr); for (i = 0; i < nr; i++) { struct id_index_entry *e = &ie->entries[i]; struct perf_sample_id *sid; if (dump_trace) { fprintf(stdout, " ... id: %"PRIu64, e->id); fprintf(stdout, " idx: %"PRIu64, e->idx); fprintf(stdout, " cpu: %"PRId64, e->cpu); fprintf(stdout, " tid: %"PRId64"\n", e->tid); } sid = perf_evlist__id2sid(evlist, e->id); if (!sid) return -ENOENT; sid->idx = e->idx; sid->cpu = e->cpu; sid->tid = e->tid; } return 0; } int perf_event__synthesize_id_index(struct perf_tool *tool, perf_event__handler_t process, struct perf_evlist *evlist, struct machine *machine) { union perf_event *ev; struct perf_evsel *evsel; size_t nr = 0, i = 0, sz, max_nr, n; int err; pr_debug2("Synthesizing id index\n"); max_nr = (UINT16_MAX - sizeof(struct id_index_event)) / sizeof(struct id_index_entry); evlist__for_each_entry(evlist, evsel) nr += evsel->ids; n = nr > max_nr ? max_nr : nr; sz = sizeof(struct id_index_event) + n * sizeof(struct id_index_entry); ev = zalloc(sz); if (!ev) return -ENOMEM; ev->id_index.header.type = PERF_RECORD_ID_INDEX; ev->id_index.header.size = sz; ev->id_index.nr = n; evlist__for_each_entry(evlist, evsel) { u32 j; for (j = 0; j < evsel->ids; j++) { struct id_index_entry *e; struct perf_sample_id *sid; if (i >= n) { err = process(tool, ev, NULL, machine); if (err) goto out_err; nr -= n; i = 0; } e = &ev->id_index.entries[i++]; e->id = evsel->id[j]; sid = perf_evlist__id2sid(evlist, e->id); if (!sid) { free(ev); return -ENOENT; } e->idx = sid->idx; e->cpu = sid->cpu; e->tid = sid->tid; } } sz = sizeof(struct id_index_event) + nr * sizeof(struct id_index_entry); ev->id_index.header.size = sz; ev->id_index.nr = nr; err = process(tool, ev, NULL, machine); out_err: free(ev); return err; }