/* * SPDX-License-Identifier: MIT * * Copyright © 2018 Intel Corporation */ #include #include "i915_drv.h" #include "i915_request.h" #include "i915_scheduler.h" static struct i915_global_scheduler { struct kmem_cache *slab_dependencies; struct kmem_cache *slab_priorities; } global; static DEFINE_SPINLOCK(schedule_lock); static const struct i915_request * node_to_request(const struct i915_sched_node *node) { return container_of(node, const struct i915_request, sched); } static inline bool node_started(const struct i915_sched_node *node) { return i915_request_started(node_to_request(node)); } static inline bool node_signaled(const struct i915_sched_node *node) { return i915_request_completed(node_to_request(node)); } void i915_sched_node_init(struct i915_sched_node *node) { INIT_LIST_HEAD(&node->signalers_list); INIT_LIST_HEAD(&node->waiters_list); INIT_LIST_HEAD(&node->link); node->attr.priority = I915_PRIORITY_INVALID; node->flags = 0; } static struct i915_dependency * i915_dependency_alloc(void) { return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL); } static void i915_dependency_free(struct i915_dependency *dep) { kmem_cache_free(global.slab_dependencies, dep); } bool __i915_sched_node_add_dependency(struct i915_sched_node *node, struct i915_sched_node *signal, struct i915_dependency *dep, unsigned long flags) { bool ret = false; spin_lock(&schedule_lock); if (!node_signaled(signal)) { INIT_LIST_HEAD(&dep->dfs_link); list_add(&dep->wait_link, &signal->waiters_list); list_add(&dep->signal_link, &node->signalers_list); dep->signaler = signal; dep->flags = flags; /* Keep track of whether anyone on this chain has a semaphore */ if (signal->flags & I915_SCHED_HAS_SEMAPHORE && !node_started(signal)) node->flags |= I915_SCHED_HAS_SEMAPHORE; ret = true; } spin_unlock(&schedule_lock); return ret; } int i915_sched_node_add_dependency(struct i915_sched_node *node, struct i915_sched_node *signal) { struct i915_dependency *dep; dep = i915_dependency_alloc(); if (!dep) return -ENOMEM; if (!__i915_sched_node_add_dependency(node, signal, dep, I915_DEPENDENCY_ALLOC)) i915_dependency_free(dep); return 0; } void i915_sched_node_fini(struct i915_sched_node *node) { struct i915_dependency *dep, *tmp; GEM_BUG_ON(!list_empty(&node->link)); spin_lock(&schedule_lock); /* * Everyone we depended upon (the fences we wait to be signaled) * should retire before us and remove themselves from our list. * However, retirement is run independently on each timeline and * so we may be called out-of-order. */ list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) { GEM_BUG_ON(!node_signaled(dep->signaler)); GEM_BUG_ON(!list_empty(&dep->dfs_link)); list_del(&dep->wait_link); if (dep->flags & I915_DEPENDENCY_ALLOC) i915_dependency_free(dep); } /* Remove ourselves from everyone who depends upon us */ list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) { GEM_BUG_ON(dep->signaler != node); GEM_BUG_ON(!list_empty(&dep->dfs_link)); list_del(&dep->signal_link); if (dep->flags & I915_DEPENDENCY_ALLOC) i915_dependency_free(dep); } spin_unlock(&schedule_lock); } static inline struct i915_priolist *to_priolist(struct rb_node *rb) { return rb_entry(rb, struct i915_priolist, node); } static void assert_priolists(struct intel_engine_execlists * const execlists) { struct rb_node *rb; long last_prio, i; if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) return; GEM_BUG_ON(rb_first_cached(&execlists->queue) != rb_first(&execlists->queue.rb_root)); last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1; for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) { const struct i915_priolist *p = to_priolist(rb); GEM_BUG_ON(p->priority >= last_prio); last_prio = p->priority; GEM_BUG_ON(!p->used); for (i = 0; i < ARRAY_SIZE(p->requests); i++) { if (list_empty(&p->requests[i])) continue; GEM_BUG_ON(!(p->used & BIT(i))); } } } struct list_head * i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio) { struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_priolist *p; struct rb_node **parent, *rb; bool first = true; int idx, i; lockdep_assert_held(&engine->timeline.lock); assert_priolists(execlists); /* buckets sorted from highest [in slot 0] to lowest priority */ idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1; prio >>= I915_USER_PRIORITY_SHIFT; if (unlikely(execlists->no_priolist)) prio = I915_PRIORITY_NORMAL; find_priolist: /* most positive priority is scheduled first, equal priorities fifo */ rb = NULL; parent = &execlists->queue.rb_root.rb_node; while (*parent) { rb = *parent; p = to_priolist(rb); if (prio > p->priority) { parent = &rb->rb_left; } else if (prio < p->priority) { parent = &rb->rb_right; first = false; } else { goto out; } } if (prio == I915_PRIORITY_NORMAL) { p = &execlists->default_priolist; } else { p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC); /* Convert an allocation failure to a priority bump */ if (unlikely(!p)) { prio = I915_PRIORITY_NORMAL; /* recurses just once */ /* To maintain ordering with all rendering, after an * allocation failure we have to disable all scheduling. * Requests will then be executed in fifo, and schedule * will ensure that dependencies are emitted in fifo. * There will be still some reordering with existing * requests, so if userspace lied about their * dependencies that reordering may be visible. */ execlists->no_priolist = true; goto find_priolist; } } p->priority = prio; for (i = 0; i < ARRAY_SIZE(p->requests); i++) INIT_LIST_HEAD(&p->requests[i]); rb_link_node(&p->node, rb, parent); rb_insert_color_cached(&p->node, &execlists->queue, first); p->used = 0; out: p->used |= BIT(idx); return &p->requests[idx]; } struct sched_cache { struct list_head *priolist; }; static struct intel_engine_cs * sched_lock_engine(const struct i915_sched_node *node, struct intel_engine_cs *locked, struct sched_cache *cache) { struct intel_engine_cs *engine = node_to_request(node)->engine; GEM_BUG_ON(!locked); if (engine != locked) { spin_unlock(&locked->timeline.lock); memset(cache, 0, sizeof(*cache)); spin_lock(&engine->timeline.lock); } return engine; } static bool inflight(const struct i915_request *rq, const struct intel_engine_cs *engine) { const struct i915_request *active; if (!i915_request_is_active(rq)) return false; active = port_request(engine->execlists.port); return active->hw_context == rq->hw_context; } static void __i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr) { struct intel_engine_cs *engine; struct i915_dependency *dep, *p; struct i915_dependency stack; const int prio = attr->priority; struct sched_cache cache; LIST_HEAD(dfs); /* Needed in order to use the temporary link inside i915_dependency */ lockdep_assert_held(&schedule_lock); GEM_BUG_ON(prio == I915_PRIORITY_INVALID); if (i915_request_completed(rq)) return; if (prio <= READ_ONCE(rq->sched.attr.priority)) return; stack.signaler = &rq->sched; list_add(&stack.dfs_link, &dfs); /* * Recursively bump all dependent priorities to match the new request. * * A naive approach would be to use recursion: * static void update_priorities(struct i915_sched_node *node, prio) { * list_for_each_entry(dep, &node->signalers_list, signal_link) * update_priorities(dep->signal, prio) * queue_request(node); * } * but that may have unlimited recursion depth and so runs a very * real risk of overunning the kernel stack. Instead, we build * a flat list of all dependencies starting with the current request. * As we walk the list of dependencies, we add all of its dependencies * to the end of the list (this may include an already visited * request) and continue to walk onwards onto the new dependencies. The * end result is a topological list of requests in reverse order, the * last element in the list is the request we must execute first. */ list_for_each_entry(dep, &dfs, dfs_link) { struct i915_sched_node *node = dep->signaler; /* If we are already flying, we know we have no signalers */ if (node_started(node)) continue; /* * Within an engine, there can be no cycle, but we may * refer to the same dependency chain multiple times * (redundant dependencies are not eliminated) and across * engines. */ list_for_each_entry(p, &node->signalers_list, signal_link) { GEM_BUG_ON(p == dep); /* no cycles! */ if (node_signaled(p->signaler)) continue; if (prio > READ_ONCE(p->signaler->attr.priority)) list_move_tail(&p->dfs_link, &dfs); } } /* * If we didn't need to bump any existing priorities, and we haven't * yet submitted this request (i.e. there is no potential race with * execlists_submit_request()), we can set our own priority and skip * acquiring the engine locks. */ if (rq->sched.attr.priority == I915_PRIORITY_INVALID) { GEM_BUG_ON(!list_empty(&rq->sched.link)); rq->sched.attr = *attr; if (stack.dfs_link.next == stack.dfs_link.prev) return; __list_del_entry(&stack.dfs_link); } memset(&cache, 0, sizeof(cache)); engine = rq->engine; spin_lock_irq(&engine->timeline.lock); /* Fifo and depth-first replacement ensure our deps execute before us */ list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) { struct i915_sched_node *node = dep->signaler; INIT_LIST_HEAD(&dep->dfs_link); engine = sched_lock_engine(node, engine, &cache); lockdep_assert_held(&engine->timeline.lock); /* Recheck after acquiring the engine->timeline.lock */ if (prio <= node->attr.priority || node_signaled(node)) continue; node->attr.priority = prio; if (!list_empty(&node->link)) { if (!cache.priolist) cache.priolist = i915_sched_lookup_priolist(engine, prio); list_move_tail(&node->link, cache.priolist); } else { /* * If the request is not in the priolist queue because * it is not yet runnable, then it doesn't contribute * to our preemption decisions. On the other hand, * if the request is on the HW, it too is not in the * queue; but in that case we may still need to reorder * the inflight requests. */ if (!i915_sw_fence_done(&node_to_request(node)->submit)) continue; } if (prio <= engine->execlists.queue_priority_hint) continue; engine->execlists.queue_priority_hint = prio; /* * If we are already the currently executing context, don't * bother evaluating if we should preempt ourselves. */ if (inflight(node_to_request(node), engine)) continue; /* Defer (tasklet) submission until after all of our updates. */ tasklet_hi_schedule(&engine->execlists.tasklet); } spin_unlock_irq(&engine->timeline.lock); } void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr) { spin_lock(&schedule_lock); __i915_schedule(rq, attr); spin_unlock(&schedule_lock); } void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump) { struct i915_sched_attr attr; GEM_BUG_ON(bump & ~I915_PRIORITY_MASK); if (READ_ONCE(rq->sched.attr.priority) == I915_PRIORITY_INVALID) return; spin_lock_bh(&schedule_lock); attr = rq->sched.attr; attr.priority |= bump; __i915_schedule(rq, &attr); spin_unlock_bh(&schedule_lock); } void __i915_priolist_free(struct i915_priolist *p) { kmem_cache_free(global.slab_priorities, p); } int __init i915_global_scheduler_init(void) { global.slab_dependencies = KMEM_CACHE(i915_dependency, SLAB_HWCACHE_ALIGN); if (!global.slab_dependencies) return -ENOMEM; global.slab_priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN); if (!global.slab_priorities) goto err_priorities; return 0; err_priorities: kmem_cache_destroy(global.slab_priorities); return -ENOMEM; } void i915_global_scheduler_shrink(void) { kmem_cache_shrink(global.slab_dependencies); kmem_cache_shrink(global.slab_priorities); } void i915_global_scheduler_exit(void) { kmem_cache_destroy(global.slab_dependencies); kmem_cache_destroy(global.slab_priorities); }