/* * Suspend support specific for i386. * * Distribute under GPLv2 * * Copyright (c) 2002 Pavel Machek * Copyright (c) 2001 Patrick Mochel */ #include #include #include #include #include #include /* References to section boundaries */ extern const void __nosave_begin, __nosave_end; struct saved_context saved_context; /** * __save_processor_state - save CPU registers before creating a * hibernation image and before restoring the memory state from it * @ctxt - structure to store the registers contents in * * NOTE: If there is a CPU register the modification of which by the * boot kernel (ie. the kernel used for loading the hibernation image) * might affect the operations of the restored target kernel (ie. the one * saved in the hibernation image), then its contents must be saved by this * function. In other words, if kernel A is hibernated and different * kernel B is used for loading the hibernation image into memory, the * kernel A's __save_processor_state() function must save all registers * needed by kernel A, so that it can operate correctly after the resume * regardless of what kernel B does in the meantime. */ void __save_processor_state(struct saved_context *ctxt) { kernel_fpu_begin(); /* * descriptor tables */ store_gdt((struct desc_ptr *)&ctxt->gdt_limit); store_idt((struct desc_ptr *)&ctxt->idt_limit); store_tr(ctxt->tr); /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ /* * segment registers */ asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds)); asm volatile ("movw %%es, %0" : "=m" (ctxt->es)); asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs)); asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs)); asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss)); rdmsrl(MSR_FS_BASE, ctxt->fs_base); rdmsrl(MSR_GS_BASE, ctxt->gs_base); rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base); mtrr_save_fixed_ranges(NULL); /* * control registers */ rdmsrl(MSR_EFER, ctxt->efer); ctxt->cr0 = read_cr0(); ctxt->cr2 = read_cr2(); ctxt->cr3 = read_cr3(); ctxt->cr4 = read_cr4(); ctxt->cr8 = read_cr8(); } void save_processor_state(void) { __save_processor_state(&saved_context); } static void do_fpu_end(void) { /* * Restore FPU regs if necessary */ kernel_fpu_end(); } /** * __restore_processor_state - restore the contents of CPU registers saved * by __save_processor_state() * @ctxt - structure to load the registers contents from */ void __restore_processor_state(struct saved_context *ctxt) { /* * control registers */ wrmsrl(MSR_EFER, ctxt->efer); write_cr8(ctxt->cr8); write_cr4(ctxt->cr4); write_cr3(ctxt->cr3); write_cr2(ctxt->cr2); write_cr0(ctxt->cr0); /* * now restore the descriptor tables to their proper values * ltr is done i fix_processor_context(). */ load_gdt((const struct desc_ptr *)&ctxt->gdt_limit); load_idt((const struct desc_ptr *)&ctxt->idt_limit); /* * segment registers */ asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds)); asm volatile ("movw %0, %%es" :: "r" (ctxt->es)); asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs)); load_gs_index(ctxt->gs); asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss)); wrmsrl(MSR_FS_BASE, ctxt->fs_base); wrmsrl(MSR_GS_BASE, ctxt->gs_base); wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base); fix_processor_context(); do_fpu_end(); mtrr_ap_init(); } void restore_processor_state(void) { __restore_processor_state(&saved_context); } void fix_processor_context(void) { int cpu = smp_processor_id(); struct tss_struct *t = &per_cpu(init_tss, cpu); set_tss_desc(cpu,t); /* This just modifies memory; should not be necessary. But... This is necessary, because 386 hardware has concept of busy TSS or some similar stupidity. */ get_cpu_gdt_table(cpu)[GDT_ENTRY_TSS].type = 9; syscall_init(); /* This sets MSR_*STAR and related */ load_TR_desc(); /* This does ltr */ load_LDT(¤t->active_mm->context); /* This does lldt */ /* * Now maybe reload the debug registers */ if (current->thread.debugreg7){ loaddebug(¤t->thread, 0); loaddebug(¤t->thread, 1); loaddebug(¤t->thread, 2); loaddebug(¤t->thread, 3); /* no 4 and 5 */ loaddebug(¤t->thread, 6); loaddebug(¤t->thread, 7); } } #ifdef CONFIG_HIBERNATION /* Defined in arch/x86_64/kernel/suspend_asm.S */ extern int restore_image(void); /* * Address to jump to in the last phase of restore in order to get to the image * kernel's text (this value is passed in the image header). */ unsigned long restore_jump_address; /* * Value of the cr3 register from before the hibernation (this value is passed * in the image header). */ unsigned long restore_cr3; pgd_t *temp_level4_pgt; void *relocated_restore_code; static int res_phys_pud_init(pud_t *pud, unsigned long address, unsigned long end) { long i, j; i = pud_index(address); pud = pud + i; for (; i < PTRS_PER_PUD; pud++, i++) { unsigned long paddr; pmd_t *pmd; paddr = address + i*PUD_SIZE; if (paddr >= end) break; pmd = (pmd_t *)get_safe_page(GFP_ATOMIC); if (!pmd) return -ENOMEM; set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); for (j = 0; j < PTRS_PER_PMD; pmd++, j++, paddr += PMD_SIZE) { unsigned long pe; if (paddr >= end) break; pe = __PAGE_KERNEL_LARGE_EXEC | paddr; pe &= __supported_pte_mask; set_pmd(pmd, __pmd(pe)); } } return 0; } static int set_up_temporary_mappings(void) { unsigned long start, end, next; int error; temp_level4_pgt = (pgd_t *)get_safe_page(GFP_ATOMIC); if (!temp_level4_pgt) return -ENOMEM; /* It is safe to reuse the original kernel mapping */ set_pgd(temp_level4_pgt + pgd_index(__START_KERNEL_map), init_level4_pgt[pgd_index(__START_KERNEL_map)]); /* Set up the direct mapping from scratch */ start = (unsigned long)pfn_to_kaddr(0); end = (unsigned long)pfn_to_kaddr(end_pfn); for (; start < end; start = next) { pud_t *pud = (pud_t *)get_safe_page(GFP_ATOMIC); if (!pud) return -ENOMEM; next = start + PGDIR_SIZE; if (next > end) next = end; if ((error = res_phys_pud_init(pud, __pa(start), __pa(next)))) return error; set_pgd(temp_level4_pgt + pgd_index(start), mk_kernel_pgd(__pa(pud))); } return 0; } int swsusp_arch_resume(void) { int error; /* We have got enough memory and from now on we cannot recover */ if ((error = set_up_temporary_mappings())) return error; relocated_restore_code = (void *)get_safe_page(GFP_ATOMIC); if (!relocated_restore_code) return -ENOMEM; memcpy(relocated_restore_code, &core_restore_code, &restore_registers - &core_restore_code); restore_image(); return 0; } /* * pfn_is_nosave - check if given pfn is in the 'nosave' section */ int pfn_is_nosave(unsigned long pfn) { unsigned long nosave_begin_pfn = __pa_symbol(&__nosave_begin) >> PAGE_SHIFT; unsigned long nosave_end_pfn = PAGE_ALIGN(__pa_symbol(&__nosave_end)) >> PAGE_SHIFT; return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn); } struct restore_data_record { unsigned long jump_address; unsigned long cr3; unsigned long magic; }; #define RESTORE_MAGIC 0x0123456789ABCDEFUL /** * arch_hibernation_header_save - populate the architecture specific part * of a hibernation image header * @addr: address to save the data at */ int arch_hibernation_header_save(void *addr, unsigned int max_size) { struct restore_data_record *rdr = addr; if (max_size < sizeof(struct restore_data_record)) return -EOVERFLOW; rdr->jump_address = restore_jump_address; rdr->cr3 = restore_cr3; rdr->magic = RESTORE_MAGIC; return 0; } /** * arch_hibernation_header_restore - read the architecture specific data * from the hibernation image header * @addr: address to read the data from */ int arch_hibernation_header_restore(void *addr) { struct restore_data_record *rdr = addr; restore_jump_address = rdr->jump_address; restore_cr3 = rdr->cr3; return (rdr->magic == RESTORE_MAGIC) ? 0 : -EINVAL; } #endif /* CONFIG_HIBERNATION */