/* * Copyright © 2014 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include "uapi/drm/vc4_drm.h" #include "vc4_drv.h" #include "vc4_regs.h" #include "vc4_trace.h" static void vc4_queue_hangcheck(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); mod_timer(&vc4->hangcheck.timer, round_jiffies_up(jiffies + msecs_to_jiffies(100))); } struct vc4_hang_state { struct drm_vc4_get_hang_state user_state; u32 bo_count; struct drm_gem_object **bo; }; static void vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state) { unsigned int i; for (i = 0; i < state->user_state.bo_count; i++) drm_gem_object_put_unlocked(state->bo[i]); kfree(state); } int vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vc4_get_hang_state *get_state = data; struct drm_vc4_get_hang_state_bo *bo_state; struct vc4_hang_state *kernel_state; struct drm_vc4_get_hang_state *state; struct vc4_dev *vc4 = to_vc4_dev(dev); unsigned long irqflags; u32 i; int ret = 0; spin_lock_irqsave(&vc4->job_lock, irqflags); kernel_state = vc4->hang_state; if (!kernel_state) { spin_unlock_irqrestore(&vc4->job_lock, irqflags); return -ENOENT; } state = &kernel_state->user_state; /* If the user's array isn't big enough, just return the * required array size. */ if (get_state->bo_count < state->bo_count) { get_state->bo_count = state->bo_count; spin_unlock_irqrestore(&vc4->job_lock, irqflags); return 0; } vc4->hang_state = NULL; spin_unlock_irqrestore(&vc4->job_lock, irqflags); /* Save the user's BO pointer, so we don't stomp it with the memcpy. */ state->bo = get_state->bo; memcpy(get_state, state, sizeof(*state)); bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL); if (!bo_state) { ret = -ENOMEM; goto err_free; } for (i = 0; i < state->bo_count; i++) { struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]); u32 handle; ret = drm_gem_handle_create(file_priv, kernel_state->bo[i], &handle); if (ret) { state->bo_count = i; goto err_delete_handle; } bo_state[i].handle = handle; bo_state[i].paddr = vc4_bo->base.paddr; bo_state[i].size = vc4_bo->base.base.size; } if (copy_to_user(u64_to_user_ptr(get_state->bo), bo_state, state->bo_count * sizeof(*bo_state))) ret = -EFAULT; err_delete_handle: if (ret) { for (i = 0; i < state->bo_count; i++) drm_gem_handle_delete(file_priv, bo_state[i].handle); } err_free: vc4_free_hang_state(dev, kernel_state); kfree(bo_state); return ret; } static void vc4_save_hang_state(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_vc4_get_hang_state *state; struct vc4_hang_state *kernel_state; struct vc4_exec_info *exec[2]; struct vc4_bo *bo; unsigned long irqflags; unsigned int i, j, unref_list_count, prev_idx; kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL); if (!kernel_state) return; state = &kernel_state->user_state; spin_lock_irqsave(&vc4->job_lock, irqflags); exec[0] = vc4_first_bin_job(vc4); exec[1] = vc4_first_render_job(vc4); if (!exec[0] && !exec[1]) { spin_unlock_irqrestore(&vc4->job_lock, irqflags); return; } /* Get the bos from both binner and renderer into hang state. */ state->bo_count = 0; for (i = 0; i < 2; i++) { if (!exec[i]) continue; unref_list_count = 0; list_for_each_entry(bo, &exec[i]->unref_list, unref_head) unref_list_count++; state->bo_count += exec[i]->bo_count + unref_list_count; } kernel_state->bo = kcalloc(state->bo_count, sizeof(*kernel_state->bo), GFP_ATOMIC); if (!kernel_state->bo) { spin_unlock_irqrestore(&vc4->job_lock, irqflags); return; } prev_idx = 0; for (i = 0; i < 2; i++) { if (!exec[i]) continue; for (j = 0; j < exec[i]->bo_count; j++) { drm_gem_object_get(&exec[i]->bo[j]->base); kernel_state->bo[j + prev_idx] = &exec[i]->bo[j]->base; } list_for_each_entry(bo, &exec[i]->unref_list, unref_head) { drm_gem_object_get(&bo->base.base); kernel_state->bo[j + prev_idx] = &bo->base.base; j++; } prev_idx = j + 1; } if (exec[0]) state->start_bin = exec[0]->ct0ca; if (exec[1]) state->start_render = exec[1]->ct1ca; spin_unlock_irqrestore(&vc4->job_lock, irqflags); state->ct0ca = V3D_READ(V3D_CTNCA(0)); state->ct0ea = V3D_READ(V3D_CTNEA(0)); state->ct1ca = V3D_READ(V3D_CTNCA(1)); state->ct1ea = V3D_READ(V3D_CTNEA(1)); state->ct0cs = V3D_READ(V3D_CTNCS(0)); state->ct1cs = V3D_READ(V3D_CTNCS(1)); state->ct0ra0 = V3D_READ(V3D_CT00RA0); state->ct1ra0 = V3D_READ(V3D_CT01RA0); state->bpca = V3D_READ(V3D_BPCA); state->bpcs = V3D_READ(V3D_BPCS); state->bpoa = V3D_READ(V3D_BPOA); state->bpos = V3D_READ(V3D_BPOS); state->vpmbase = V3D_READ(V3D_VPMBASE); state->dbge = V3D_READ(V3D_DBGE); state->fdbgo = V3D_READ(V3D_FDBGO); state->fdbgb = V3D_READ(V3D_FDBGB); state->fdbgr = V3D_READ(V3D_FDBGR); state->fdbgs = V3D_READ(V3D_FDBGS); state->errstat = V3D_READ(V3D_ERRSTAT); spin_lock_irqsave(&vc4->job_lock, irqflags); if (vc4->hang_state) { spin_unlock_irqrestore(&vc4->job_lock, irqflags); vc4_free_hang_state(dev, kernel_state); } else { vc4->hang_state = kernel_state; spin_unlock_irqrestore(&vc4->job_lock, irqflags); } } static void vc4_reset(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); DRM_INFO("Resetting GPU.\n"); mutex_lock(&vc4->power_lock); if (vc4->power_refcount) { /* Power the device off and back on the by dropping the * reference on runtime PM. */ pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev); pm_runtime_get_sync(&vc4->v3d->pdev->dev); } mutex_unlock(&vc4->power_lock); vc4_irq_reset(dev); /* Rearm the hangcheck -- another job might have been waiting * for our hung one to get kicked off, and vc4_irq_reset() * would have started it. */ vc4_queue_hangcheck(dev); } static void vc4_reset_work(struct work_struct *work) { struct vc4_dev *vc4 = container_of(work, struct vc4_dev, hangcheck.reset_work); vc4_save_hang_state(vc4->dev); vc4_reset(vc4->dev); } static void vc4_hangcheck_elapsed(unsigned long data) { struct drm_device *dev = (struct drm_device *)data; struct vc4_dev *vc4 = to_vc4_dev(dev); uint32_t ct0ca, ct1ca; unsigned long irqflags; struct vc4_exec_info *bin_exec, *render_exec; spin_lock_irqsave(&vc4->job_lock, irqflags); bin_exec = vc4_first_bin_job(vc4); render_exec = vc4_first_render_job(vc4); /* If idle, we can stop watching for hangs. */ if (!bin_exec && !render_exec) { spin_unlock_irqrestore(&vc4->job_lock, irqflags); return; } ct0ca = V3D_READ(V3D_CTNCA(0)); ct1ca = V3D_READ(V3D_CTNCA(1)); /* If we've made any progress in execution, rearm the timer * and wait. */ if ((bin_exec && ct0ca != bin_exec->last_ct0ca) || (render_exec && ct1ca != render_exec->last_ct1ca)) { if (bin_exec) bin_exec->last_ct0ca = ct0ca; if (render_exec) render_exec->last_ct1ca = ct1ca; spin_unlock_irqrestore(&vc4->job_lock, irqflags); vc4_queue_hangcheck(dev); return; } spin_unlock_irqrestore(&vc4->job_lock, irqflags); /* We've gone too long with no progress, reset. This has to * be done from a work struct, since resetting can sleep and * this timer hook isn't allowed to. */ schedule_work(&vc4->hangcheck.reset_work); } static void submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end) { struct vc4_dev *vc4 = to_vc4_dev(dev); /* Set the current and end address of the control list. * Writing the end register is what starts the job. */ V3D_WRITE(V3D_CTNCA(thread), start); V3D_WRITE(V3D_CTNEA(thread), end); } int vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns, bool interruptible) { struct vc4_dev *vc4 = to_vc4_dev(dev); int ret = 0; unsigned long timeout_expire; DEFINE_WAIT(wait); if (vc4->finished_seqno >= seqno) return 0; if (timeout_ns == 0) return -ETIME; timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns); trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns); for (;;) { prepare_to_wait(&vc4->job_wait_queue, &wait, interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); if (interruptible && signal_pending(current)) { ret = -ERESTARTSYS; break; } if (vc4->finished_seqno >= seqno) break; if (timeout_ns != ~0ull) { if (time_after_eq(jiffies, timeout_expire)) { ret = -ETIME; break; } schedule_timeout(timeout_expire - jiffies); } else { schedule(); } } finish_wait(&vc4->job_wait_queue, &wait); trace_vc4_wait_for_seqno_end(dev, seqno); return ret; } static void vc4_flush_caches(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); /* Flush the GPU L2 caches. These caches sit on top of system * L3 (the 128kb or so shared with the CPU), and are * non-allocating in the L3. */ V3D_WRITE(V3D_L2CACTL, V3D_L2CACTL_L2CCLR); V3D_WRITE(V3D_SLCACTL, VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) | VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) | VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) | VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC)); } /* Sets the registers for the next job to be actually be executed in * the hardware. * * The job_lock should be held during this. */ void vc4_submit_next_bin_job(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_exec_info *exec; again: exec = vc4_first_bin_job(vc4); if (!exec) return; vc4_flush_caches(dev); /* Either put the job in the binner if it uses the binner, or * immediately move it to the to-be-rendered queue. */ if (exec->ct0ca != exec->ct0ea) { submit_cl(dev, 0, exec->ct0ca, exec->ct0ea); } else { vc4_move_job_to_render(dev, exec); goto again; } } void vc4_submit_next_render_job(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_exec_info *exec = vc4_first_render_job(vc4); if (!exec) return; submit_cl(dev, 1, exec->ct1ca, exec->ct1ea); } void vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec) { struct vc4_dev *vc4 = to_vc4_dev(dev); bool was_empty = list_empty(&vc4->render_job_list); list_move_tail(&exec->head, &vc4->render_job_list); if (was_empty) vc4_submit_next_render_job(dev); } static void vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno) { struct vc4_bo *bo; unsigned i; for (i = 0; i < exec->bo_count; i++) { bo = to_vc4_bo(&exec->bo[i]->base); bo->seqno = seqno; reservation_object_add_shared_fence(bo->resv, exec->fence); } list_for_each_entry(bo, &exec->unref_list, unref_head) { bo->seqno = seqno; } for (i = 0; i < exec->rcl_write_bo_count; i++) { bo = to_vc4_bo(&exec->rcl_write_bo[i]->base); bo->write_seqno = seqno; reservation_object_add_excl_fence(bo->resv, exec->fence); } } static void vc4_unlock_bo_reservations(struct drm_device *dev, struct vc4_exec_info *exec, struct ww_acquire_ctx *acquire_ctx) { int i; for (i = 0; i < exec->bo_count; i++) { struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base); ww_mutex_unlock(&bo->resv->lock); } ww_acquire_fini(acquire_ctx); } /* Takes the reservation lock on all the BOs being referenced, so that * at queue submit time we can update the reservations. * * We don't lock the RCL the tile alloc/state BOs, or overflow memory * (all of which are on exec->unref_list). They're entirely private * to vc4, so we don't attach dma-buf fences to them. */ static int vc4_lock_bo_reservations(struct drm_device *dev, struct vc4_exec_info *exec, struct ww_acquire_ctx *acquire_ctx) { int contended_lock = -1; int i, ret; struct vc4_bo *bo; ww_acquire_init(acquire_ctx, &reservation_ww_class); retry: if (contended_lock != -1) { bo = to_vc4_bo(&exec->bo[contended_lock]->base); ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock, acquire_ctx); if (ret) { ww_acquire_done(acquire_ctx); return ret; } } for (i = 0; i < exec->bo_count; i++) { if (i == contended_lock) continue; bo = to_vc4_bo(&exec->bo[i]->base); ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx); if (ret) { int j; for (j = 0; j < i; j++) { bo = to_vc4_bo(&exec->bo[j]->base); ww_mutex_unlock(&bo->resv->lock); } if (contended_lock != -1 && contended_lock >= i) { bo = to_vc4_bo(&exec->bo[contended_lock]->base); ww_mutex_unlock(&bo->resv->lock); } if (ret == -EDEADLK) { contended_lock = i; goto retry; } ww_acquire_done(acquire_ctx); return ret; } } ww_acquire_done(acquire_ctx); /* Reserve space for our shared (read-only) fence references, * before we commit the CL to the hardware. */ for (i = 0; i < exec->bo_count; i++) { bo = to_vc4_bo(&exec->bo[i]->base); ret = reservation_object_reserve_shared(bo->resv); if (ret) { vc4_unlock_bo_reservations(dev, exec, acquire_ctx); return ret; } } return 0; } /* Queues a struct vc4_exec_info for execution. If no job is * currently executing, then submits it. * * Unlike most GPUs, our hardware only handles one command list at a * time. To queue multiple jobs at once, we'd need to edit the * previous command list to have a jump to the new one at the end, and * then bump the end address. That's a change for a later date, * though. */ static int vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec, struct ww_acquire_ctx *acquire_ctx) { struct vc4_dev *vc4 = to_vc4_dev(dev); uint64_t seqno; unsigned long irqflags; struct vc4_fence *fence; fence = kzalloc(sizeof(*fence), GFP_KERNEL); if (!fence) return -ENOMEM; fence->dev = dev; spin_lock_irqsave(&vc4->job_lock, irqflags); seqno = ++vc4->emit_seqno; exec->seqno = seqno; dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock, vc4->dma_fence_context, exec->seqno); fence->seqno = exec->seqno; exec->fence = &fence->base; vc4_update_bo_seqnos(exec, seqno); vc4_unlock_bo_reservations(dev, exec, acquire_ctx); list_add_tail(&exec->head, &vc4->bin_job_list); /* If no job was executing, kick ours off. Otherwise, it'll * get started when the previous job's flush done interrupt * occurs. */ if (vc4_first_bin_job(vc4) == exec) { vc4_submit_next_bin_job(dev); vc4_queue_hangcheck(dev); } spin_unlock_irqrestore(&vc4->job_lock, irqflags); return 0; } /** * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects * referenced by the job. * @dev: DRM device * @file_priv: DRM file for this fd * @exec: V3D job being set up * * The command validator needs to reference BOs by their index within * the submitted job's BO list. This does the validation of the job's * BO list and reference counting for the lifetime of the job. * * Note that this function doesn't need to unreference the BOs on * failure, because that will happen at vc4_complete_exec() time. */ static int vc4_cl_lookup_bos(struct drm_device *dev, struct drm_file *file_priv, struct vc4_exec_info *exec) { struct drm_vc4_submit_cl *args = exec->args; uint32_t *handles; int ret = 0; int i; exec->bo_count = args->bo_handle_count; if (!exec->bo_count) { /* See comment on bo_index for why we have to check * this. */ DRM_DEBUG("Rendering requires BOs to validate\n"); return -EINVAL; } exec->bo = kvmalloc_array(exec->bo_count, sizeof(struct drm_gem_cma_object *), GFP_KERNEL | __GFP_ZERO); if (!exec->bo) { DRM_ERROR("Failed to allocate validated BO pointers\n"); return -ENOMEM; } handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL); if (!handles) { ret = -ENOMEM; DRM_ERROR("Failed to allocate incoming GEM handles\n"); goto fail; } if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles), exec->bo_count * sizeof(uint32_t))) { ret = -EFAULT; DRM_ERROR("Failed to copy in GEM handles\n"); goto fail; } spin_lock(&file_priv->table_lock); for (i = 0; i < exec->bo_count; i++) { struct drm_gem_object *bo = idr_find(&file_priv->object_idr, handles[i]); if (!bo) { DRM_DEBUG("Failed to look up GEM BO %d: %d\n", i, handles[i]); ret = -EINVAL; spin_unlock(&file_priv->table_lock); goto fail; } drm_gem_object_get(bo); exec->bo[i] = (struct drm_gem_cma_object *)bo; } spin_unlock(&file_priv->table_lock); fail: kvfree(handles); return ret; } static int vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec) { struct drm_vc4_submit_cl *args = exec->args; void *temp = NULL; void *bin; int ret = 0; uint32_t bin_offset = 0; uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size, 16); uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size; uint32_t exec_size = uniforms_offset + args->uniforms_size; uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) * args->shader_rec_count); struct vc4_bo *bo; if (shader_rec_offset < args->bin_cl_size || uniforms_offset < shader_rec_offset || exec_size < uniforms_offset || args->shader_rec_count >= (UINT_MAX / sizeof(struct vc4_shader_state)) || temp_size < exec_size) { DRM_DEBUG("overflow in exec arguments\n"); ret = -EINVAL; goto fail; } /* Allocate space where we'll store the copied in user command lists * and shader records. * * We don't just copy directly into the BOs because we need to * read the contents back for validation, and I think the * bo->vaddr is uncached access. */ temp = kvmalloc_array(temp_size, 1, GFP_KERNEL); if (!temp) { DRM_ERROR("Failed to allocate storage for copying " "in bin/render CLs.\n"); ret = -ENOMEM; goto fail; } bin = temp + bin_offset; exec->shader_rec_u = temp + shader_rec_offset; exec->uniforms_u = temp + uniforms_offset; exec->shader_state = temp + exec_size; exec->shader_state_size = args->shader_rec_count; if (copy_from_user(bin, u64_to_user_ptr(args->bin_cl), args->bin_cl_size)) { ret = -EFAULT; goto fail; } if (copy_from_user(exec->shader_rec_u, u64_to_user_ptr(args->shader_rec), args->shader_rec_size)) { ret = -EFAULT; goto fail; } if (copy_from_user(exec->uniforms_u, u64_to_user_ptr(args->uniforms), args->uniforms_size)) { ret = -EFAULT; goto fail; } bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL); if (IS_ERR(bo)) { DRM_ERROR("Couldn't allocate BO for binning\n"); ret = PTR_ERR(bo); goto fail; } exec->exec_bo = &bo->base; list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head, &exec->unref_list); exec->ct0ca = exec->exec_bo->paddr + bin_offset; exec->bin_u = bin; exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset; exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset; exec->shader_rec_size = args->shader_rec_size; exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset; exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset; exec->uniforms_size = args->uniforms_size; ret = vc4_validate_bin_cl(dev, exec->exec_bo->vaddr + bin_offset, bin, exec); if (ret) goto fail; ret = vc4_validate_shader_recs(dev, exec); if (ret) goto fail; /* Block waiting on any previous rendering into the CS's VBO, * IB, or textures, so that pixels are actually written by the * time we try to read them. */ ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true); fail: kvfree(temp); return ret; } static void vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec) { struct vc4_dev *vc4 = to_vc4_dev(dev); unsigned long irqflags; unsigned i; /* If we got force-completed because of GPU reset rather than * through our IRQ handler, signal the fence now. */ if (exec->fence) dma_fence_signal(exec->fence); if (exec->bo) { for (i = 0; i < exec->bo_count; i++) drm_gem_object_put_unlocked(&exec->bo[i]->base); kvfree(exec->bo); } while (!list_empty(&exec->unref_list)) { struct vc4_bo *bo = list_first_entry(&exec->unref_list, struct vc4_bo, unref_head); list_del(&bo->unref_head); drm_gem_object_put_unlocked(&bo->base.base); } /* Free up the allocation of any bin slots we used. */ spin_lock_irqsave(&vc4->job_lock, irqflags); vc4->bin_alloc_used &= ~exec->bin_slots; spin_unlock_irqrestore(&vc4->job_lock, irqflags); mutex_lock(&vc4->power_lock); if (--vc4->power_refcount == 0) { pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev); pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev); } mutex_unlock(&vc4->power_lock); kfree(exec); } void vc4_job_handle_completed(struct vc4_dev *vc4) { unsigned long irqflags; struct vc4_seqno_cb *cb, *cb_temp; spin_lock_irqsave(&vc4->job_lock, irqflags); while (!list_empty(&vc4->job_done_list)) { struct vc4_exec_info *exec = list_first_entry(&vc4->job_done_list, struct vc4_exec_info, head); list_del(&exec->head); spin_unlock_irqrestore(&vc4->job_lock, irqflags); vc4_complete_exec(vc4->dev, exec); spin_lock_irqsave(&vc4->job_lock, irqflags); } list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) { if (cb->seqno <= vc4->finished_seqno) { list_del_init(&cb->work.entry); schedule_work(&cb->work); } } spin_unlock_irqrestore(&vc4->job_lock, irqflags); } static void vc4_seqno_cb_work(struct work_struct *work) { struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work); cb->func(cb); } int vc4_queue_seqno_cb(struct drm_device *dev, struct vc4_seqno_cb *cb, uint64_t seqno, void (*func)(struct vc4_seqno_cb *cb)) { struct vc4_dev *vc4 = to_vc4_dev(dev); int ret = 0; unsigned long irqflags; cb->func = func; INIT_WORK(&cb->work, vc4_seqno_cb_work); spin_lock_irqsave(&vc4->job_lock, irqflags); if (seqno > vc4->finished_seqno) { cb->seqno = seqno; list_add_tail(&cb->work.entry, &vc4->seqno_cb_list); } else { schedule_work(&cb->work); } spin_unlock_irqrestore(&vc4->job_lock, irqflags); return ret; } /* Scheduled when any job has been completed, this walks the list of * jobs that had completed and unrefs their BOs and frees their exec * structs. */ static void vc4_job_done_work(struct work_struct *work) { struct vc4_dev *vc4 = container_of(work, struct vc4_dev, job_done_work); vc4_job_handle_completed(vc4); } static int vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev, uint64_t seqno, uint64_t *timeout_ns) { unsigned long start = jiffies; int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true); if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) { uint64_t delta = jiffies_to_nsecs(jiffies - start); if (*timeout_ns >= delta) *timeout_ns -= delta; } return ret; } int vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vc4_wait_seqno *args = data; return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno, &args->timeout_ns); } int vc4_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { int ret; struct drm_vc4_wait_bo *args = data; struct drm_gem_object *gem_obj; struct vc4_bo *bo; if (args->pad != 0) return -EINVAL; gem_obj = drm_gem_object_lookup(file_priv, args->handle); if (!gem_obj) { DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle); return -EINVAL; } bo = to_vc4_bo(gem_obj); ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno, &args->timeout_ns); drm_gem_object_put_unlocked(gem_obj); return ret; } /** * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4. * @dev: DRM device * @data: ioctl argument * @file_priv: DRM file for this fd * * This is the main entrypoint for userspace to submit a 3D frame to * the GPU. Userspace provides the binner command list (if * applicable), and the kernel sets up the render command list to draw * to the framebuffer described in the ioctl, using the command lists * that the 3D engine's binner will produce. */ int vc4_submit_cl_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_vc4_submit_cl *args = data; struct vc4_exec_info *exec; struct ww_acquire_ctx acquire_ctx; int ret = 0; if ((args->flags & ~VC4_SUBMIT_CL_USE_CLEAR_COLOR) != 0) { DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags); return -EINVAL; } exec = kcalloc(1, sizeof(*exec), GFP_KERNEL); if (!exec) { DRM_ERROR("malloc failure on exec struct\n"); return -ENOMEM; } mutex_lock(&vc4->power_lock); if (vc4->power_refcount++ == 0) { ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev); if (ret < 0) { mutex_unlock(&vc4->power_lock); vc4->power_refcount--; kfree(exec); return ret; } } mutex_unlock(&vc4->power_lock); exec->args = args; INIT_LIST_HEAD(&exec->unref_list); ret = vc4_cl_lookup_bos(dev, file_priv, exec); if (ret) goto fail; if (exec->args->bin_cl_size != 0) { ret = vc4_get_bcl(dev, exec); if (ret) goto fail; } else { exec->ct0ca = 0; exec->ct0ea = 0; } ret = vc4_get_rcl(dev, exec); if (ret) goto fail; ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx); if (ret) goto fail; /* Clear this out of the struct we'll be putting in the queue, * since it's part of our stack. */ exec->args = NULL; ret = vc4_queue_submit(dev, exec, &acquire_ctx); if (ret) goto fail; /* Return the seqno for our job. */ args->seqno = vc4->emit_seqno; return 0; fail: vc4_complete_exec(vc4->dev, exec); return ret; } void vc4_gem_init(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); vc4->dma_fence_context = dma_fence_context_alloc(1); INIT_LIST_HEAD(&vc4->bin_job_list); INIT_LIST_HEAD(&vc4->render_job_list); INIT_LIST_HEAD(&vc4->job_done_list); INIT_LIST_HEAD(&vc4->seqno_cb_list); spin_lock_init(&vc4->job_lock); INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work); setup_timer(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, (unsigned long)dev); INIT_WORK(&vc4->job_done_work, vc4_job_done_work); mutex_init(&vc4->power_lock); } void vc4_gem_destroy(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); /* Waiting for exec to finish would need to be done before * unregistering V3D. */ WARN_ON(vc4->emit_seqno != vc4->finished_seqno); /* V3D should already have disabled its interrupt and cleared * the overflow allocation registers. Now free the object. */ if (vc4->bin_bo) { drm_gem_object_put_unlocked(&vc4->bin_bo->base.base); vc4->bin_bo = NULL; } if (vc4->hang_state) vc4_free_hang_state(dev, vc4->hang_state); }