// SPDX-License-Identifier: GPL-2.0-or-later /* NFS filesystem cache interface * * Copyright (C) 2008 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "iostat.h" #include "fscache.h" #define NFSDBG_FACILITY NFSDBG_FSCACHE #define NFS_MAX_KEY_LEN 1000 static bool nfs_append_int(char *key, int *_len, unsigned long long x) { if (*_len > NFS_MAX_KEY_LEN) return false; if (x == 0) key[(*_len)++] = ','; else *_len += sprintf(key + *_len, ",%llx", x); return true; } /* * Get the per-client index cookie for an NFS client if the appropriate mount * flag was set * - We always try and get an index cookie for the client, but get filehandle * cookies on a per-superblock basis, depending on the mount flags */ static bool nfs_fscache_get_client_key(struct nfs_client *clp, char *key, int *_len) { const struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) &clp->cl_addr; const struct sockaddr_in *sin = (struct sockaddr_in *) &clp->cl_addr; *_len += snprintf(key + *_len, NFS_MAX_KEY_LEN - *_len, ",%u.%u,%x", clp->rpc_ops->version, clp->cl_minorversion, clp->cl_addr.ss_family); switch (clp->cl_addr.ss_family) { case AF_INET: if (!nfs_append_int(key, _len, sin->sin_port) || !nfs_append_int(key, _len, sin->sin_addr.s_addr)) return false; return true; case AF_INET6: if (!nfs_append_int(key, _len, sin6->sin6_port) || !nfs_append_int(key, _len, sin6->sin6_addr.s6_addr32[0]) || !nfs_append_int(key, _len, sin6->sin6_addr.s6_addr32[1]) || !nfs_append_int(key, _len, sin6->sin6_addr.s6_addr32[2]) || !nfs_append_int(key, _len, sin6->sin6_addr.s6_addr32[3])) return false; return true; default: printk(KERN_WARNING "NFS: Unknown network family '%d'\n", clp->cl_addr.ss_family); return false; } } /* * Get the cache cookie for an NFS superblock. * * The default uniquifier is just an empty string, but it may be overridden * either by the 'fsc=xxx' option to mount, or by inheriting it from the parent * superblock across an automount point of some nature. */ int nfs_fscache_get_super_cookie(struct super_block *sb, const char *uniq, int ulen) { struct fscache_volume *vcookie; struct nfs_server *nfss = NFS_SB(sb); unsigned int len = 3; char *key; if (uniq) { nfss->fscache_uniq = kmemdup_nul(uniq, ulen, GFP_KERNEL); if (!nfss->fscache_uniq) return -ENOMEM; } key = kmalloc(NFS_MAX_KEY_LEN + 24, GFP_KERNEL); if (!key) return -ENOMEM; memcpy(key, "nfs", 3); if (!nfs_fscache_get_client_key(nfss->nfs_client, key, &len) || !nfs_append_int(key, &len, nfss->fsid.major) || !nfs_append_int(key, &len, nfss->fsid.minor) || !nfs_append_int(key, &len, sb->s_flags & NFS_SB_MASK) || !nfs_append_int(key, &len, nfss->flags) || !nfs_append_int(key, &len, nfss->rsize) || !nfs_append_int(key, &len, nfss->wsize) || !nfs_append_int(key, &len, nfss->acregmin) || !nfs_append_int(key, &len, nfss->acregmax) || !nfs_append_int(key, &len, nfss->acdirmin) || !nfs_append_int(key, &len, nfss->acdirmax) || !nfs_append_int(key, &len, nfss->client->cl_auth->au_flavor)) goto out; if (ulen > 0) { if (ulen > NFS_MAX_KEY_LEN - len) goto out; key[len++] = ','; memcpy(key + len, uniq, ulen); len += ulen; } key[len] = 0; /* create a cache index for looking up filehandles */ vcookie = fscache_acquire_volume(key, NULL, /* preferred_cache */ NULL, 0 /* coherency_data */); dfprintk(FSCACHE, "NFS: get superblock cookie (0x%p/0x%p)\n", nfss, vcookie); if (IS_ERR(vcookie)) { if (vcookie != ERR_PTR(-EBUSY)) { kfree(key); return PTR_ERR(vcookie); } pr_err("NFS: Cache volume key already in use (%s)\n", key); vcookie = NULL; } nfss->fscache = vcookie; out: kfree(key); return 0; } /* * release a per-superblock cookie */ void nfs_fscache_release_super_cookie(struct super_block *sb) { struct nfs_server *nfss = NFS_SB(sb); dfprintk(FSCACHE, "NFS: releasing superblock cookie (0x%p/0x%p)\n", nfss, nfss->fscache); fscache_relinquish_volume(nfss->fscache, NULL, false); nfss->fscache = NULL; kfree(nfss->fscache_uniq); } /* * Initialise the per-inode cache cookie pointer for an NFS inode. */ void nfs_fscache_init_inode(struct inode *inode) { struct nfs_fscache_inode_auxdata auxdata; struct nfs_server *nfss = NFS_SERVER(inode); struct nfs_inode *nfsi = NFS_I(inode); nfsi->fscache = NULL; if (!(nfss->fscache && S_ISREG(inode->i_mode))) return; nfs_fscache_update_auxdata(&auxdata, inode); nfsi->fscache = fscache_acquire_cookie(NFS_SB(inode->i_sb)->fscache, 0, nfsi->fh.data, /* index_key */ nfsi->fh.size, &auxdata, /* aux_data */ sizeof(auxdata), i_size_read(inode)); } /* * Release a per-inode cookie. */ void nfs_fscache_clear_inode(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); struct fscache_cookie *cookie = nfs_i_fscache(inode); dfprintk(FSCACHE, "NFS: clear cookie (0x%p/0x%p)\n", nfsi, cookie); fscache_relinquish_cookie(cookie, false); nfsi->fscache = NULL; } /* * Enable or disable caching for a file that is being opened as appropriate. * The cookie is allocated when the inode is initialised, but is not enabled at * that time. Enablement is deferred to file-open time to avoid stat() and * access() thrashing the cache. * * For now, with NFS, only regular files that are open read-only will be able * to use the cache. * * We enable the cache for an inode if we open it read-only and it isn't * currently open for writing. We disable the cache if the inode is open * write-only. * * The caller uses the file struct to pin i_writecount on the inode before * calling us when a file is opened for writing, so we can make use of that. * * Note that this may be invoked multiple times in parallel by parallel * nfs_open() functions. */ void nfs_fscache_open_file(struct inode *inode, struct file *filp) { struct nfs_fscache_inode_auxdata auxdata; struct fscache_cookie *cookie = nfs_i_fscache(inode); bool open_for_write = inode_is_open_for_write(inode); if (!fscache_cookie_valid(cookie)) return; fscache_use_cookie(cookie, open_for_write); if (open_for_write) { dfprintk(FSCACHE, "NFS: nfsi 0x%p disabling cache\n", nfsi); nfs_fscache_update_auxdata(&auxdata, inode); fscache_invalidate(cookie, &auxdata, i_size_read(inode), FSCACHE_INVAL_DIO_WRITE); } } EXPORT_SYMBOL_GPL(nfs_fscache_open_file); void nfs_fscache_release_file(struct inode *inode, struct file *filp) { struct nfs_fscache_inode_auxdata auxdata; struct fscache_cookie *cookie = nfs_i_fscache(inode); if (fscache_cookie_valid(cookie)) { nfs_fscache_update_auxdata(&auxdata, inode); fscache_unuse_cookie(cookie, &auxdata, NULL); } } static inline void fscache_end_operation(struct netfs_cache_resources *cres) { const struct netfs_cache_ops *ops = fscache_operation_valid(cres); if (ops) ops->end_operation(cres); } /* * Fallback page reading interface. */ static int fscache_fallback_read_page(struct inode *inode, struct page *page) { struct netfs_cache_resources cres; struct fscache_cookie *cookie = nfs_i_fscache(inode); struct iov_iter iter; struct bio_vec bvec[1]; int ret; memset(&cres, 0, sizeof(cres)); bvec[0].bv_page = page; bvec[0].bv_offset = 0; bvec[0].bv_len = PAGE_SIZE; iov_iter_bvec(&iter, READ, bvec, ARRAY_SIZE(bvec), PAGE_SIZE); ret = fscache_begin_read_operation(&cres, cookie); if (ret < 0) return ret; ret = fscache_read(&cres, page_offset(page), &iter, NETFS_READ_HOLE_FAIL, NULL, NULL); fscache_end_operation(&cres); return ret; } /* * Fallback page writing interface. */ static int fscache_fallback_write_page(struct inode *inode, struct page *page, bool no_space_allocated_yet) { struct netfs_cache_resources cres; struct fscache_cookie *cookie = nfs_i_fscache(inode); struct iov_iter iter; struct bio_vec bvec[1]; loff_t start = page_offset(page); size_t len = PAGE_SIZE; int ret; memset(&cres, 0, sizeof(cres)); bvec[0].bv_page = page; bvec[0].bv_offset = 0; bvec[0].bv_len = PAGE_SIZE; iov_iter_bvec(&iter, WRITE, bvec, ARRAY_SIZE(bvec), PAGE_SIZE); ret = fscache_begin_write_operation(&cres, cookie); if (ret < 0) return ret; ret = cres.ops->prepare_write(&cres, &start, &len, i_size_read(inode), no_space_allocated_yet); if (ret == 0) ret = fscache_write(&cres, page_offset(page), &iter, NULL, NULL); fscache_end_operation(&cres); return ret; } /* * Retrieve a page from fscache */ int __nfs_fscache_read_page(struct inode *inode, struct page *page) { int ret; dfprintk(FSCACHE, "NFS: readpage_from_fscache(fsc:%p/p:%p(i:%lx f:%lx)/0x%p)\n", nfs_i_fscache(inode), page, page->index, page->flags, inode); if (PageChecked(page)) { dfprintk(FSCACHE, "NFS: readpage_from_fscache: PageChecked\n"); ClearPageChecked(page); return 1; } ret = fscache_fallback_read_page(inode, page); if (ret < 0) { nfs_inc_fscache_stats(inode, NFSIOS_FSCACHE_PAGES_READ_FAIL); dfprintk(FSCACHE, "NFS: readpage_from_fscache failed %d\n", ret); SetPageChecked(page); return ret; } /* Read completed synchronously */ dfprintk(FSCACHE, "NFS: readpage_from_fscache: read successful\n"); nfs_inc_fscache_stats(inode, NFSIOS_FSCACHE_PAGES_READ_OK); SetPageUptodate(page); return 0; } /* * Store a newly fetched page in fscache. We can be certain there's no page * stored in the cache as yet otherwise we would've read it from there. */ void __nfs_fscache_write_page(struct inode *inode, struct page *page) { int ret; dfprintk(FSCACHE, "NFS: readpage_to_fscache(fsc:%p/p:%p(i:%lx f:%lx))\n", nfs_i_fscache(inode), page, page->index, page->flags); ret = fscache_fallback_write_page(inode, page, true); dfprintk(FSCACHE, "NFS: nfs_fscache_write_page: p:%p(i:%lu f:%lx) ret %d\n", page, page->index, page->flags, ret); if (ret != 0) { nfs_inc_fscache_stats(inode, NFSIOS_FSCACHE_PAGES_WRITTEN_FAIL); nfs_inc_fscache_stats(inode, NFSIOS_FSCACHE_PAGES_UNCACHED); } else { nfs_inc_fscache_stats(inode, NFSIOS_FSCACHE_PAGES_WRITTEN_OK); } }