86495af117
In commit 9011e49d54dc ("modules: only allow symbol_get of EXPORT_SYMBOL_GPL modules") the use of symbol_get is properly restricted to GPL-only marked symbols. This interacts oddly with the DVB logic which only uses dvb_attach() to load the dvb driver which then uses symbol_get(). Fix this up by properly marking all of the dvb_attach attach symbols as EXPORT_SYMBOL_GPL(). Fixes: 9011e49d54dc ("modules: only allow symbol_get of EXPORT_SYMBOL_GPL modules") Cc: stable <stable@kernel.org> Reported-by: Stefan Lippers-Hollmann <s.l-h@gmx.de> Cc: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: linux-media@vger.kernel.org Cc: linux-modules@vger.kernel.org Acked-by: Luis Chamberlain <mcgrof@kernel.org> Acked-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Link: https://lore.kernel.org/r/20230908092035.3815268-2-gregkh@linuxfoundation.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2669 lines
76 KiB
C
2669 lines
76 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
|
|
*
|
|
* Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
|
|
*
|
|
* This code is more or less generated from another driver, please
|
|
* excuse some codingstyle oddities.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/mutex.h>
|
|
|
|
#include <media/dvb_frontend.h>
|
|
|
|
#include "dib0090.h"
|
|
#include "dibx000_common.h"
|
|
|
|
static int debug;
|
|
module_param(debug, int, 0644);
|
|
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
|
|
|
|
#define dprintk(fmt, arg...) do { \
|
|
if (debug) \
|
|
printk(KERN_DEBUG pr_fmt("%s: " fmt), \
|
|
__func__, ##arg); \
|
|
} while (0)
|
|
|
|
#define CONFIG_SYS_DVBT
|
|
#define CONFIG_SYS_ISDBT
|
|
#define CONFIG_BAND_CBAND
|
|
#define CONFIG_BAND_VHF
|
|
#define CONFIG_BAND_UHF
|
|
#define CONFIG_DIB0090_USE_PWM_AGC
|
|
|
|
#define EN_LNA0 0x8000
|
|
#define EN_LNA1 0x4000
|
|
#define EN_LNA2 0x2000
|
|
#define EN_LNA3 0x1000
|
|
#define EN_MIX0 0x0800
|
|
#define EN_MIX1 0x0400
|
|
#define EN_MIX2 0x0200
|
|
#define EN_MIX3 0x0100
|
|
#define EN_IQADC 0x0040
|
|
#define EN_PLL 0x0020
|
|
#define EN_TX 0x0010
|
|
#define EN_BB 0x0008
|
|
#define EN_LO 0x0004
|
|
#define EN_BIAS 0x0001
|
|
|
|
#define EN_IQANA 0x0002
|
|
#define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */
|
|
#define EN_CRYSTAL 0x0002
|
|
|
|
#define EN_UHF 0x22E9
|
|
#define EN_VHF 0x44E9
|
|
#define EN_LBD 0x11E9
|
|
#define EN_SBD 0x44E9
|
|
#define EN_CAB 0x88E9
|
|
|
|
/* Calibration defines */
|
|
#define DC_CAL 0x1
|
|
#define WBD_CAL 0x2
|
|
#define TEMP_CAL 0x4
|
|
#define CAPTRIM_CAL 0x8
|
|
|
|
#define KROSUS_PLL_LOCKED 0x800
|
|
#define KROSUS 0x2
|
|
|
|
/* Use those defines to identify SOC version */
|
|
#define SOC 0x02
|
|
#define SOC_7090_P1G_11R1 0x82
|
|
#define SOC_7090_P1G_21R1 0x8a
|
|
#define SOC_8090_P1G_11R1 0x86
|
|
#define SOC_8090_P1G_21R1 0x8e
|
|
|
|
/* else use thos ones to check */
|
|
#define P1A_B 0x0
|
|
#define P1C 0x1
|
|
#define P1D_E_F 0x3
|
|
#define P1G 0x7
|
|
#define P1G_21R2 0xf
|
|
|
|
#define MP001 0x1 /* Single 9090/8096 */
|
|
#define MP005 0x4 /* Single Sband */
|
|
#define MP008 0x6 /* Dual diversity VHF-UHF-LBAND */
|
|
#define MP009 0x7 /* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */
|
|
|
|
#define pgm_read_word(w) (*w)
|
|
|
|
struct dc_calibration;
|
|
|
|
struct dib0090_tuning {
|
|
u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
|
|
u8 switch_trim;
|
|
u8 lna_tune;
|
|
u16 lna_bias;
|
|
u16 v2i;
|
|
u16 mix;
|
|
u16 load;
|
|
u16 tuner_enable;
|
|
};
|
|
|
|
struct dib0090_pll {
|
|
u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
|
|
u8 vco_band;
|
|
u8 hfdiv_code;
|
|
u8 hfdiv;
|
|
u8 topresc;
|
|
};
|
|
|
|
struct dib0090_identity {
|
|
u8 version;
|
|
u8 product;
|
|
u8 p1g;
|
|
u8 in_soc;
|
|
};
|
|
|
|
struct dib0090_state {
|
|
struct i2c_adapter *i2c;
|
|
struct dvb_frontend *fe;
|
|
const struct dib0090_config *config;
|
|
|
|
u8 current_band;
|
|
enum frontend_tune_state tune_state;
|
|
u32 current_rf;
|
|
|
|
u16 wbd_offset;
|
|
s16 wbd_target; /* in dB */
|
|
|
|
s16 rf_gain_limit; /* take-over-point: where to split between bb and rf gain */
|
|
s16 current_gain; /* keeps the currently programmed gain */
|
|
u8 agc_step; /* new binary search */
|
|
|
|
u16 gain[2]; /* for channel monitoring */
|
|
|
|
const u16 *rf_ramp;
|
|
const u16 *bb_ramp;
|
|
|
|
/* for the software AGC ramps */
|
|
u16 bb_1_def;
|
|
u16 rf_lt_def;
|
|
u16 gain_reg[4];
|
|
|
|
/* for the captrim/dc-offset search */
|
|
s8 step;
|
|
s16 adc_diff;
|
|
s16 min_adc_diff;
|
|
|
|
s8 captrim;
|
|
s8 fcaptrim;
|
|
|
|
const struct dc_calibration *dc;
|
|
u16 bb6, bb7;
|
|
|
|
const struct dib0090_tuning *current_tune_table_index;
|
|
const struct dib0090_pll *current_pll_table_index;
|
|
|
|
u8 tuner_is_tuned;
|
|
u8 agc_freeze;
|
|
|
|
struct dib0090_identity identity;
|
|
|
|
u32 rf_request;
|
|
u8 current_standard;
|
|
|
|
u8 calibrate;
|
|
u32 rest;
|
|
u16 bias;
|
|
s16 temperature;
|
|
|
|
u8 wbd_calibration_gain;
|
|
const struct dib0090_wbd_slope *current_wbd_table;
|
|
u16 wbdmux;
|
|
|
|
/* for the I2C transfer */
|
|
struct i2c_msg msg[2];
|
|
u8 i2c_write_buffer[3];
|
|
u8 i2c_read_buffer[2];
|
|
struct mutex i2c_buffer_lock;
|
|
};
|
|
|
|
struct dib0090_fw_state {
|
|
struct i2c_adapter *i2c;
|
|
struct dvb_frontend *fe;
|
|
struct dib0090_identity identity;
|
|
const struct dib0090_config *config;
|
|
|
|
/* for the I2C transfer */
|
|
struct i2c_msg msg;
|
|
u8 i2c_write_buffer[2];
|
|
u8 i2c_read_buffer[2];
|
|
struct mutex i2c_buffer_lock;
|
|
};
|
|
|
|
static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg)
|
|
{
|
|
u16 ret;
|
|
|
|
if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
|
|
dprintk("could not acquire lock\n");
|
|
return 0;
|
|
}
|
|
|
|
state->i2c_write_buffer[0] = reg;
|
|
|
|
memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
|
|
state->msg[0].addr = state->config->i2c_address;
|
|
state->msg[0].flags = 0;
|
|
state->msg[0].buf = state->i2c_write_buffer;
|
|
state->msg[0].len = 1;
|
|
state->msg[1].addr = state->config->i2c_address;
|
|
state->msg[1].flags = I2C_M_RD;
|
|
state->msg[1].buf = state->i2c_read_buffer;
|
|
state->msg[1].len = 2;
|
|
|
|
if (i2c_transfer(state->i2c, state->msg, 2) != 2) {
|
|
pr_warn("DiB0090 I2C read failed\n");
|
|
ret = 0;
|
|
} else
|
|
ret = (state->i2c_read_buffer[0] << 8)
|
|
| state->i2c_read_buffer[1];
|
|
|
|
mutex_unlock(&state->i2c_buffer_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
|
|
dprintk("could not acquire lock\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
state->i2c_write_buffer[0] = reg & 0xff;
|
|
state->i2c_write_buffer[1] = val >> 8;
|
|
state->i2c_write_buffer[2] = val & 0xff;
|
|
|
|
memset(state->msg, 0, sizeof(struct i2c_msg));
|
|
state->msg[0].addr = state->config->i2c_address;
|
|
state->msg[0].flags = 0;
|
|
state->msg[0].buf = state->i2c_write_buffer;
|
|
state->msg[0].len = 3;
|
|
|
|
if (i2c_transfer(state->i2c, state->msg, 1) != 1) {
|
|
pr_warn("DiB0090 I2C write failed\n");
|
|
ret = -EREMOTEIO;
|
|
} else
|
|
ret = 0;
|
|
|
|
mutex_unlock(&state->i2c_buffer_lock);
|
|
return ret;
|
|
}
|
|
|
|
static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg)
|
|
{
|
|
u16 ret;
|
|
|
|
if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
|
|
dprintk("could not acquire lock\n");
|
|
return 0;
|
|
}
|
|
|
|
state->i2c_write_buffer[0] = reg;
|
|
|
|
memset(&state->msg, 0, sizeof(struct i2c_msg));
|
|
state->msg.addr = reg;
|
|
state->msg.flags = I2C_M_RD;
|
|
state->msg.buf = state->i2c_read_buffer;
|
|
state->msg.len = 2;
|
|
if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
|
|
pr_warn("DiB0090 I2C read failed\n");
|
|
ret = 0;
|
|
} else
|
|
ret = (state->i2c_read_buffer[0] << 8)
|
|
| state->i2c_read_buffer[1];
|
|
|
|
mutex_unlock(&state->i2c_buffer_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
|
|
dprintk("could not acquire lock\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
state->i2c_write_buffer[0] = val >> 8;
|
|
state->i2c_write_buffer[1] = val & 0xff;
|
|
|
|
memset(&state->msg, 0, sizeof(struct i2c_msg));
|
|
state->msg.addr = reg;
|
|
state->msg.flags = 0;
|
|
state->msg.buf = state->i2c_write_buffer;
|
|
state->msg.len = 2;
|
|
if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
|
|
pr_warn("DiB0090 I2C write failed\n");
|
|
ret = -EREMOTEIO;
|
|
} else
|
|
ret = 0;
|
|
|
|
mutex_unlock(&state->i2c_buffer_lock);
|
|
return ret;
|
|
}
|
|
|
|
#define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0)
|
|
#define ADC_TARGET -220
|
|
#define GAIN_ALPHA 5
|
|
#define WBD_ALPHA 6
|
|
#define LPF 100
|
|
static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c)
|
|
{
|
|
do {
|
|
dib0090_write_reg(state, r++, *b++);
|
|
} while (--c);
|
|
}
|
|
|
|
static int dib0090_identify(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
u16 v;
|
|
struct dib0090_identity *identity = &state->identity;
|
|
|
|
v = dib0090_read_reg(state, 0x1a);
|
|
|
|
identity->p1g = 0;
|
|
identity->in_soc = 0;
|
|
|
|
dprintk("Tuner identification (Version = 0x%04x)\n", v);
|
|
|
|
/* without PLL lock info */
|
|
v &= ~KROSUS_PLL_LOCKED;
|
|
|
|
identity->version = v & 0xff;
|
|
identity->product = (v >> 8) & 0xf;
|
|
|
|
if (identity->product != KROSUS)
|
|
goto identification_error;
|
|
|
|
if ((identity->version & 0x3) == SOC) {
|
|
identity->in_soc = 1;
|
|
switch (identity->version) {
|
|
case SOC_8090_P1G_11R1:
|
|
dprintk("SOC 8090 P1-G11R1 Has been detected\n");
|
|
identity->p1g = 1;
|
|
break;
|
|
case SOC_8090_P1G_21R1:
|
|
dprintk("SOC 8090 P1-G21R1 Has been detected\n");
|
|
identity->p1g = 1;
|
|
break;
|
|
case SOC_7090_P1G_11R1:
|
|
dprintk("SOC 7090 P1-G11R1 Has been detected\n");
|
|
identity->p1g = 1;
|
|
break;
|
|
case SOC_7090_P1G_21R1:
|
|
dprintk("SOC 7090 P1-G21R1 Has been detected\n");
|
|
identity->p1g = 1;
|
|
break;
|
|
default:
|
|
goto identification_error;
|
|
}
|
|
} else {
|
|
switch ((identity->version >> 5) & 0x7) {
|
|
case MP001:
|
|
dprintk("MP001 : 9090/8096\n");
|
|
break;
|
|
case MP005:
|
|
dprintk("MP005 : Single Sband\n");
|
|
break;
|
|
case MP008:
|
|
dprintk("MP008 : diversity VHF-UHF-LBAND\n");
|
|
break;
|
|
case MP009:
|
|
dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND\n");
|
|
break;
|
|
default:
|
|
goto identification_error;
|
|
}
|
|
|
|
switch (identity->version & 0x1f) {
|
|
case P1G_21R2:
|
|
dprintk("P1G_21R2 detected\n");
|
|
identity->p1g = 1;
|
|
break;
|
|
case P1G:
|
|
dprintk("P1G detected\n");
|
|
identity->p1g = 1;
|
|
break;
|
|
case P1D_E_F:
|
|
dprintk("P1D/E/F detected\n");
|
|
break;
|
|
case P1C:
|
|
dprintk("P1C detected\n");
|
|
break;
|
|
case P1A_B:
|
|
dprintk("P1-A/B detected: driver is deactivated - not available\n");
|
|
goto identification_error;
|
|
break;
|
|
default:
|
|
goto identification_error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
identification_error:
|
|
return -EIO;
|
|
}
|
|
|
|
static int dib0090_fw_identify(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_fw_state *state = fe->tuner_priv;
|
|
struct dib0090_identity *identity = &state->identity;
|
|
|
|
u16 v = dib0090_fw_read_reg(state, 0x1a);
|
|
identity->p1g = 0;
|
|
identity->in_soc = 0;
|
|
|
|
dprintk("FE: Tuner identification (Version = 0x%04x)\n", v);
|
|
|
|
/* without PLL lock info */
|
|
v &= ~KROSUS_PLL_LOCKED;
|
|
|
|
identity->version = v & 0xff;
|
|
identity->product = (v >> 8) & 0xf;
|
|
|
|
if (identity->product != KROSUS)
|
|
goto identification_error;
|
|
|
|
if ((identity->version & 0x3) == SOC) {
|
|
identity->in_soc = 1;
|
|
switch (identity->version) {
|
|
case SOC_8090_P1G_11R1:
|
|
dprintk("SOC 8090 P1-G11R1 Has been detected\n");
|
|
identity->p1g = 1;
|
|
break;
|
|
case SOC_8090_P1G_21R1:
|
|
dprintk("SOC 8090 P1-G21R1 Has been detected\n");
|
|
identity->p1g = 1;
|
|
break;
|
|
case SOC_7090_P1G_11R1:
|
|
dprintk("SOC 7090 P1-G11R1 Has been detected\n");
|
|
identity->p1g = 1;
|
|
break;
|
|
case SOC_7090_P1G_21R1:
|
|
dprintk("SOC 7090 P1-G21R1 Has been detected\n");
|
|
identity->p1g = 1;
|
|
break;
|
|
default:
|
|
goto identification_error;
|
|
}
|
|
} else {
|
|
switch ((identity->version >> 5) & 0x7) {
|
|
case MP001:
|
|
dprintk("MP001 : 9090/8096\n");
|
|
break;
|
|
case MP005:
|
|
dprintk("MP005 : Single Sband\n");
|
|
break;
|
|
case MP008:
|
|
dprintk("MP008 : diversity VHF-UHF-LBAND\n");
|
|
break;
|
|
case MP009:
|
|
dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND\n");
|
|
break;
|
|
default:
|
|
goto identification_error;
|
|
}
|
|
|
|
switch (identity->version & 0x1f) {
|
|
case P1G_21R2:
|
|
dprintk("P1G_21R2 detected\n");
|
|
identity->p1g = 1;
|
|
break;
|
|
case P1G:
|
|
dprintk("P1G detected\n");
|
|
identity->p1g = 1;
|
|
break;
|
|
case P1D_E_F:
|
|
dprintk("P1D/E/F detected\n");
|
|
break;
|
|
case P1C:
|
|
dprintk("P1C detected\n");
|
|
break;
|
|
case P1A_B:
|
|
dprintk("P1-A/B detected: driver is deactivated - not available\n");
|
|
goto identification_error;
|
|
break;
|
|
default:
|
|
goto identification_error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
identification_error:
|
|
return -EIO;
|
|
}
|
|
|
|
static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
u16 PllCfg, i, v;
|
|
|
|
HARD_RESET(state);
|
|
dib0090_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
|
|
if (cfg->in_soc)
|
|
return;
|
|
|
|
dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */
|
|
/* adcClkOutRatio=8->7, release reset */
|
|
dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
|
|
if (cfg->clkoutdrive != 0)
|
|
dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
|
|
| (cfg->clkoutdrive << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
|
|
else
|
|
dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
|
|
| (7 << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
|
|
|
|
/* Read Pll current config * */
|
|
PllCfg = dib0090_read_reg(state, 0x21);
|
|
|
|
/** Reconfigure PLL if current setting is different from default setting **/
|
|
if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && (!cfg->in_soc)
|
|
&& !cfg->io.pll_bypass) {
|
|
|
|
/* Set Bypass mode */
|
|
PllCfg |= (1 << 15);
|
|
dib0090_write_reg(state, 0x21, PllCfg);
|
|
|
|
/* Set Reset Pll */
|
|
PllCfg &= ~(1 << 13);
|
|
dib0090_write_reg(state, 0x21, PllCfg);
|
|
|
|
/*** Set new Pll configuration in bypass and reset state ***/
|
|
PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
|
|
dib0090_write_reg(state, 0x21, PllCfg);
|
|
|
|
/* Remove Reset Pll */
|
|
PllCfg |= (1 << 13);
|
|
dib0090_write_reg(state, 0x21, PllCfg);
|
|
|
|
/*** Wait for PLL lock ***/
|
|
i = 100;
|
|
do {
|
|
v = !!(dib0090_read_reg(state, 0x1a) & 0x800);
|
|
if (v)
|
|
break;
|
|
} while (--i);
|
|
|
|
if (i == 0) {
|
|
dprintk("Pll: Unable to lock Pll\n");
|
|
return;
|
|
}
|
|
|
|
/* Finally Remove Bypass mode */
|
|
PllCfg &= ~(1 << 15);
|
|
dib0090_write_reg(state, 0x21, PllCfg);
|
|
}
|
|
|
|
if (cfg->io.pll_bypass) {
|
|
PllCfg |= (cfg->io.pll_bypass << 15);
|
|
dib0090_write_reg(state, 0x21, PllCfg);
|
|
}
|
|
}
|
|
|
|
static int dib0090_fw_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
|
|
{
|
|
struct dib0090_fw_state *state = fe->tuner_priv;
|
|
u16 PllCfg;
|
|
u16 v;
|
|
int i;
|
|
|
|
dprintk("fw reset digital\n");
|
|
HARD_RESET(state);
|
|
|
|
dib0090_fw_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
|
|
dib0090_fw_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */
|
|
|
|
dib0090_fw_write_reg(state, 0x20,
|
|
((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg->data_tx_drv << 4) | cfg->ls_cfg_pad_drv);
|
|
|
|
v = (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 9) | (0 << 8) | (cfg->clkouttobamse << 4) | (0 << 2) | (0);
|
|
if (cfg->clkoutdrive != 0)
|
|
v |= cfg->clkoutdrive << 5;
|
|
else
|
|
v |= 7 << 5;
|
|
|
|
v |= 2 << 10;
|
|
dib0090_fw_write_reg(state, 0x23, v);
|
|
|
|
/* Read Pll current config * */
|
|
PllCfg = dib0090_fw_read_reg(state, 0x21);
|
|
|
|
/** Reconfigure PLL if current setting is different from default setting **/
|
|
if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && !cfg->io.pll_bypass) {
|
|
|
|
/* Set Bypass mode */
|
|
PllCfg |= (1 << 15);
|
|
dib0090_fw_write_reg(state, 0x21, PllCfg);
|
|
|
|
/* Set Reset Pll */
|
|
PllCfg &= ~(1 << 13);
|
|
dib0090_fw_write_reg(state, 0x21, PllCfg);
|
|
|
|
/*** Set new Pll configuration in bypass and reset state ***/
|
|
PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
|
|
dib0090_fw_write_reg(state, 0x21, PllCfg);
|
|
|
|
/* Remove Reset Pll */
|
|
PllCfg |= (1 << 13);
|
|
dib0090_fw_write_reg(state, 0x21, PllCfg);
|
|
|
|
/*** Wait for PLL lock ***/
|
|
i = 100;
|
|
do {
|
|
v = !!(dib0090_fw_read_reg(state, 0x1a) & 0x800);
|
|
if (v)
|
|
break;
|
|
} while (--i);
|
|
|
|
if (i == 0) {
|
|
dprintk("Pll: Unable to lock Pll\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Finally Remove Bypass mode */
|
|
PllCfg &= ~(1 << 15);
|
|
dib0090_fw_write_reg(state, 0x21, PllCfg);
|
|
}
|
|
|
|
if (cfg->io.pll_bypass) {
|
|
PllCfg |= (cfg->io.pll_bypass << 15);
|
|
dib0090_fw_write_reg(state, 0x21, PllCfg);
|
|
}
|
|
|
|
return dib0090_fw_identify(fe);
|
|
}
|
|
|
|
static int dib0090_wakeup(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
if (state->config->sleep)
|
|
state->config->sleep(fe, 0);
|
|
|
|
/* enable dataTX in case we have been restarted in the wrong moment */
|
|
dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
|
|
return 0;
|
|
}
|
|
|
|
static int dib0090_sleep(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
if (state->config->sleep)
|
|
state->config->sleep(fe, 1);
|
|
return 0;
|
|
}
|
|
|
|
void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
if (fast)
|
|
dib0090_write_reg(state, 0x04, 0);
|
|
else
|
|
dib0090_write_reg(state, 0x04, 1);
|
|
}
|
|
|
|
EXPORT_SYMBOL(dib0090_dcc_freq);
|
|
|
|
static const u16 bb_ramp_pwm_normal_socs[] = {
|
|
550, /* max BB gain in 10th of dB */
|
|
(1<<9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
|
|
440,
|
|
(4 << 9) | 0, /* BB_RAMP3 = 26dB */
|
|
(0 << 9) | 208, /* BB_RAMP4 */
|
|
(4 << 9) | 208, /* BB_RAMP5 = 29dB */
|
|
(0 << 9) | 440, /* BB_RAMP6 */
|
|
};
|
|
|
|
static const u16 rf_ramp_pwm_cband_7090p[] = {
|
|
280, /* max RF gain in 10th of dB */
|
|
18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
|
|
504, /* ramp_max = maximum X used on the ramp */
|
|
(29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */
|
|
(0 << 10) | 504, /* RF_RAMP6, LNA 1 */
|
|
(60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */
|
|
(0 << 10) | 364, /* RF_RAMP8, LNA 2 */
|
|
(34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */
|
|
(0 << 10) | 228, /* GAIN_4_2, LNA 3 */
|
|
(37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */
|
|
(0 << 10) | 109, /* RF_RAMP4, LNA 4 */
|
|
};
|
|
|
|
static const u16 rf_ramp_pwm_cband_7090e_sensitivity[] = {
|
|
186, /* max RF gain in 10th of dB */
|
|
40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
|
|
746, /* ramp_max = maximum X used on the ramp */
|
|
(10 << 10) | 345, /* RF_RAMP5, LNA 1 = 10dB */
|
|
(0 << 10) | 746, /* RF_RAMP6, LNA 1 */
|
|
(0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
|
|
(0 << 10) | 0, /* RF_RAMP8, LNA 2 */
|
|
(28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
|
|
(0 << 10) | 345, /* GAIN_4_2, LNA 3 */
|
|
(20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
|
|
(0 << 10) | 200, /* RF_RAMP4, LNA 4 */
|
|
};
|
|
|
|
static const u16 rf_ramp_pwm_cband_7090e_aci[] = {
|
|
86, /* max RF gain in 10th of dB */
|
|
40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
|
|
345, /* ramp_max = maximum X used on the ramp */
|
|
(0 << 10) | 0, /* RF_RAMP5, LNA 1 = 8dB */ /* 7.47 dB */
|
|
(0 << 10) | 0, /* RF_RAMP6, LNA 1 */
|
|
(0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
|
|
(0 << 10) | 0, /* RF_RAMP8, LNA 2 */
|
|
(28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
|
|
(0 << 10) | 345, /* GAIN_4_2, LNA 3 */
|
|
(20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
|
|
(0 << 10) | 200, /* RF_RAMP4, LNA 4 */
|
|
};
|
|
|
|
static const u16 rf_ramp_pwm_cband_8090[] = {
|
|
345, /* max RF gain in 10th of dB */
|
|
29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
|
|
1000, /* ramp_max = maximum X used on the ramp */
|
|
(35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */
|
|
(0 << 10) | 1000, /* RF_RAMP4, LNA 1 */
|
|
(58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */
|
|
(0 << 10) | 772, /* RF_RAMP6, LNA 2 */
|
|
(27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */
|
|
(0 << 10) | 496, /* RF_RAMP8, LNA 3 */
|
|
(40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */
|
|
(0 << 10) | 200, /* GAIN_4_2, LNA 4 */
|
|
};
|
|
|
|
static const u16 rf_ramp_pwm_uhf_7090[] = {
|
|
407, /* max RF gain in 10th of dB */
|
|
13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
|
|
529, /* ramp_max = maximum X used on the ramp */
|
|
(23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
|
|
(0 << 10) | 176, /* RF_RAMP4, LNA 1 */
|
|
(63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */
|
|
(0 << 10) | 529, /* RF_RAMP6, LNA 2 */
|
|
(48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */
|
|
(0 << 10) | 400, /* RF_RAMP8, LNA 3 */
|
|
(29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */
|
|
(0 << 10) | 316, /* GAIN_4_2, LNA 4 */
|
|
};
|
|
|
|
static const u16 rf_ramp_pwm_uhf_8090[] = {
|
|
388, /* max RF gain in 10th of dB */
|
|
26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
|
|
1008, /* ramp_max = maximum X used on the ramp */
|
|
(11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
|
|
(0 << 10) | 369, /* RF_RAMP4, LNA 1 */
|
|
(41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */
|
|
(0 << 10) | 1008, /* RF_RAMP6, LNA 2 */
|
|
(27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */
|
|
(0 << 10) | 809, /* RF_RAMP8, LNA 3 */
|
|
(14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */
|
|
(0 << 10) | 659, /* GAIN_4_2, LNA 4 */
|
|
};
|
|
|
|
/* GENERAL PWM ramp definition for all other Krosus */
|
|
static const u16 bb_ramp_pwm_normal[] = {
|
|
500, /* max BB gain in 10th of dB */
|
|
8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
|
|
400,
|
|
(2 << 9) | 0, /* BB_RAMP3 = 21dB */
|
|
(0 << 9) | 168, /* BB_RAMP4 */
|
|
(2 << 9) | 168, /* BB_RAMP5 = 29dB */
|
|
(0 << 9) | 400, /* BB_RAMP6 */
|
|
};
|
|
|
|
#if 0
|
|
/* Currently unused */
|
|
static const u16 bb_ramp_pwm_boost[] = {
|
|
550, /* max BB gain in 10th of dB */
|
|
8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
|
|
440,
|
|
(2 << 9) | 0, /* BB_RAMP3 = 26dB */
|
|
(0 << 9) | 208, /* BB_RAMP4 */
|
|
(2 << 9) | 208, /* BB_RAMP5 = 29dB */
|
|
(0 << 9) | 440, /* BB_RAMP6 */
|
|
};
|
|
#endif
|
|
|
|
static const u16 rf_ramp_pwm_cband[] = {
|
|
314, /* max RF gain in 10th of dB */
|
|
33, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
|
|
1023, /* ramp_max = maximum X used on the ramp */
|
|
(8 << 10) | 743, /* RF_RAMP3, LNA 1 = 0dB */
|
|
(0 << 10) | 1023, /* RF_RAMP4, LNA 1 */
|
|
(15 << 10) | 469, /* RF_RAMP5, LNA 2 = 0dB */
|
|
(0 << 10) | 742, /* RF_RAMP6, LNA 2 */
|
|
(9 << 10) | 234, /* RF_RAMP7, LNA 3 = 0dB */
|
|
(0 << 10) | 468, /* RF_RAMP8, LNA 3 */
|
|
(9 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
|
|
(0 << 10) | 233, /* GAIN_4_2, LNA 4 */
|
|
};
|
|
|
|
static const u16 rf_ramp_pwm_vhf[] = {
|
|
398, /* max RF gain in 10th of dB */
|
|
24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
|
|
954, /* ramp_max = maximum X used on the ramp */
|
|
(7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
|
|
(0 << 10) | 290, /* RF_RAMP4, LNA 1 */
|
|
(16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
|
|
(0 << 10) | 954, /* RF_RAMP6, LNA 2 */
|
|
(17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
|
|
(0 << 10) | 699, /* RF_RAMP8, LNA 3 */
|
|
(7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
|
|
(0 << 10) | 580, /* GAIN_4_2, LNA 4 */
|
|
};
|
|
|
|
static const u16 rf_ramp_pwm_uhf[] = {
|
|
398, /* max RF gain in 10th of dB */
|
|
24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
|
|
954, /* ramp_max = maximum X used on the ramp */
|
|
(7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
|
|
(0 << 10) | 290, /* RF_RAMP4, LNA 1 */
|
|
(16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
|
|
(0 << 10) | 954, /* RF_RAMP6, LNA 2 */
|
|
(17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
|
|
(0 << 10) | 699, /* RF_RAMP8, LNA 3 */
|
|
(7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
|
|
(0 << 10) | 580, /* GAIN_4_2, LNA 4 */
|
|
};
|
|
|
|
#if 0
|
|
/* Currently unused */
|
|
static const u16 rf_ramp_pwm_sband[] = {
|
|
253, /* max RF gain in 10th of dB */
|
|
38, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
|
|
961,
|
|
(4 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.1dB */
|
|
(0 << 10) | 508, /* RF_RAMP4, LNA 1 */
|
|
(9 << 10) | 508, /* RF_RAMP5, LNA 2 = 11.2dB */
|
|
(0 << 10) | 961, /* RF_RAMP6, LNA 2 */
|
|
(0 << 10) | 0, /* RF_RAMP7, LNA 3 = 0dB */
|
|
(0 << 10) | 0, /* RF_RAMP8, LNA 3 */
|
|
(0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
|
|
(0 << 10) | 0, /* GAIN_4_2, LNA 4 */
|
|
};
|
|
#endif
|
|
|
|
struct slope {
|
|
s16 range;
|
|
s16 slope;
|
|
};
|
|
static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val)
|
|
{
|
|
u8 i;
|
|
u16 rest;
|
|
u16 ret = 0;
|
|
for (i = 0; i < num; i++) {
|
|
if (val > slopes[i].range)
|
|
rest = slopes[i].range;
|
|
else
|
|
rest = val;
|
|
ret += (rest * slopes[i].slope) / slopes[i].range;
|
|
val -= rest;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static const struct slope dib0090_wbd_slopes[3] = {
|
|
{66, 120}, /* -64,-52: offset - 65 */
|
|
{600, 170}, /* -52,-35: 65 - 665 */
|
|
{170, 250}, /* -45,-10: 665 - 835 */
|
|
};
|
|
|
|
static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd)
|
|
{
|
|
wbd &= 0x3ff;
|
|
if (wbd < state->wbd_offset)
|
|
wbd = 0;
|
|
else
|
|
wbd -= state->wbd_offset;
|
|
/* -64dB is the floor */
|
|
return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd);
|
|
}
|
|
|
|
static void dib0090_wbd_target(struct dib0090_state *state, u32 rf)
|
|
{
|
|
u16 offset = 250;
|
|
|
|
/* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
|
|
|
|
if (state->current_band == BAND_VHF)
|
|
offset = 650;
|
|
#ifndef FIRMWARE_FIREFLY
|
|
if (state->current_band == BAND_VHF)
|
|
offset = state->config->wbd_vhf_offset;
|
|
if (state->current_band == BAND_CBAND)
|
|
offset = state->config->wbd_cband_offset;
|
|
#endif
|
|
|
|
state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset);
|
|
dprintk("wbd-target: %d dB\n", (u32) state->wbd_target);
|
|
}
|
|
|
|
static const int gain_reg_addr[4] = {
|
|
0x08, 0x0a, 0x0f, 0x01
|
|
};
|
|
|
|
static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force)
|
|
{
|
|
u16 rf, bb, ref;
|
|
u16 i, v, gain_reg[4] = { 0 }, gain;
|
|
const u16 *g;
|
|
|
|
if (top_delta < -511)
|
|
top_delta = -511;
|
|
if (top_delta > 511)
|
|
top_delta = 511;
|
|
|
|
if (force) {
|
|
top_delta *= (1 << WBD_ALPHA);
|
|
gain_delta *= (1 << GAIN_ALPHA);
|
|
}
|
|
|
|
if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit)) /* overflow */
|
|
state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
|
|
else
|
|
state->rf_gain_limit += top_delta;
|
|
|
|
if (state->rf_gain_limit < 0) /*underflow */
|
|
state->rf_gain_limit = 0;
|
|
|
|
/* use gain as a temporary variable and correct current_gain */
|
|
gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA;
|
|
if (gain_delta >= ((s16) gain - state->current_gain)) /* overflow */
|
|
state->current_gain = gain;
|
|
else
|
|
state->current_gain += gain_delta;
|
|
/* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
|
|
if (state->current_gain < 0)
|
|
state->current_gain = 0;
|
|
|
|
/* now split total gain to rf and bb gain */
|
|
gain = state->current_gain >> GAIN_ALPHA;
|
|
|
|
/* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
|
|
if (gain > (state->rf_gain_limit >> WBD_ALPHA)) {
|
|
rf = state->rf_gain_limit >> WBD_ALPHA;
|
|
bb = gain - rf;
|
|
if (bb > state->bb_ramp[0])
|
|
bb = state->bb_ramp[0];
|
|
} else { /* high signal level -> all gains put on RF */
|
|
rf = gain;
|
|
bb = 0;
|
|
}
|
|
|
|
state->gain[0] = rf;
|
|
state->gain[1] = bb;
|
|
|
|
/* software ramp */
|
|
/* Start with RF gains */
|
|
g = state->rf_ramp + 1; /* point on RF LNA1 max gain */
|
|
ref = rf;
|
|
for (i = 0; i < 7; i++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
|
|
if (g[0] == 0 || ref < (g[1] - g[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
|
|
v = 0; /* force the gain to write for the current amp to be null */
|
|
else if (ref >= g[1]) /* Gain to set is higher than the high working point of this amp */
|
|
v = g[2]; /* force this amp to be full gain */
|
|
else /* compute the value to set to this amp because we are somewhere in his range */
|
|
v = ((ref - (g[1] - g[0])) * g[2]) / g[0];
|
|
|
|
if (i == 0) /* LNA 1 reg mapping */
|
|
gain_reg[0] = v;
|
|
else if (i == 1) /* LNA 2 reg mapping */
|
|
gain_reg[0] |= v << 7;
|
|
else if (i == 2) /* LNA 3 reg mapping */
|
|
gain_reg[1] = v;
|
|
else if (i == 3) /* LNA 4 reg mapping */
|
|
gain_reg[1] |= v << 7;
|
|
else if (i == 4) /* CBAND LNA reg mapping */
|
|
gain_reg[2] = v | state->rf_lt_def;
|
|
else if (i == 5) /* BB gain 1 reg mapping */
|
|
gain_reg[3] = v << 3;
|
|
else if (i == 6) /* BB gain 2 reg mapping */
|
|
gain_reg[3] |= v << 8;
|
|
|
|
g += 3; /* go to next gain bloc */
|
|
|
|
/* When RF is finished, start with BB */
|
|
if (i == 4) {
|
|
g = state->bb_ramp + 1; /* point on BB gain 1 max gain */
|
|
ref = bb;
|
|
}
|
|
}
|
|
gain_reg[3] |= state->bb_1_def;
|
|
gain_reg[3] |= ((bb % 10) * 100) / 125;
|
|
|
|
#ifdef DEBUG_AGC
|
|
dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x\n", rf, bb, rf + bb,
|
|
gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]);
|
|
#endif
|
|
|
|
/* Write the amplifier regs */
|
|
for (i = 0; i < 4; i++) {
|
|
v = gain_reg[i];
|
|
if (force || state->gain_reg[i] != v) {
|
|
state->gain_reg[i] = v;
|
|
dib0090_write_reg(state, gain_reg_addr[i], v);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void dib0090_set_boost(struct dib0090_state *state, int onoff)
|
|
{
|
|
state->bb_1_def &= 0xdfff;
|
|
state->bb_1_def |= onoff << 13;
|
|
}
|
|
|
|
static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg)
|
|
{
|
|
state->rf_ramp = cfg;
|
|
}
|
|
|
|
static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg)
|
|
{
|
|
state->rf_ramp = cfg;
|
|
|
|
dib0090_write_reg(state, 0x2a, 0xffff);
|
|
|
|
dprintk("total RF gain: %ddB, step: %d\n", (u32) cfg[0], dib0090_read_reg(state, 0x2a));
|
|
|
|
dib0090_write_regs(state, 0x2c, cfg + 3, 6);
|
|
dib0090_write_regs(state, 0x3e, cfg + 9, 2);
|
|
}
|
|
|
|
static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg)
|
|
{
|
|
state->bb_ramp = cfg;
|
|
dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
|
|
}
|
|
|
|
static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg)
|
|
{
|
|
state->bb_ramp = cfg;
|
|
|
|
dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
|
|
|
|
dib0090_write_reg(state, 0x33, 0xffff);
|
|
dprintk("total BB gain: %ddB, step: %d\n", (u32) cfg[0], dib0090_read_reg(state, 0x33));
|
|
dib0090_write_regs(state, 0x35, cfg + 3, 4);
|
|
}
|
|
|
|
void dib0090_pwm_gain_reset(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
const u16 *bb_ramp = bb_ramp_pwm_normal; /* default baseband config */
|
|
const u16 *rf_ramp = NULL;
|
|
u8 en_pwm_rf_mux = 1;
|
|
|
|
/* reset the AGC */
|
|
if (state->config->use_pwm_agc) {
|
|
if (state->current_band == BAND_CBAND) {
|
|
if (state->identity.in_soc) {
|
|
bb_ramp = bb_ramp_pwm_normal_socs;
|
|
if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
|
|
rf_ramp = rf_ramp_pwm_cband_8090;
|
|
else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) {
|
|
if (state->config->is_dib7090e) {
|
|
if (state->rf_ramp == NULL)
|
|
rf_ramp = rf_ramp_pwm_cband_7090e_sensitivity;
|
|
else
|
|
rf_ramp = state->rf_ramp;
|
|
} else
|
|
rf_ramp = rf_ramp_pwm_cband_7090p;
|
|
}
|
|
} else
|
|
rf_ramp = rf_ramp_pwm_cband;
|
|
} else
|
|
|
|
if (state->current_band == BAND_VHF) {
|
|
if (state->identity.in_soc) {
|
|
bb_ramp = bb_ramp_pwm_normal_socs;
|
|
/* rf_ramp = &rf_ramp_pwm_vhf_socs; */ /* TODO */
|
|
} else
|
|
rf_ramp = rf_ramp_pwm_vhf;
|
|
} else if (state->current_band == BAND_UHF) {
|
|
if (state->identity.in_soc) {
|
|
bb_ramp = bb_ramp_pwm_normal_socs;
|
|
if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
|
|
rf_ramp = rf_ramp_pwm_uhf_8090;
|
|
else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
|
|
rf_ramp = rf_ramp_pwm_uhf_7090;
|
|
} else
|
|
rf_ramp = rf_ramp_pwm_uhf;
|
|
}
|
|
if (rf_ramp)
|
|
dib0090_set_rframp_pwm(state, rf_ramp);
|
|
dib0090_set_bbramp_pwm(state, bb_ramp);
|
|
|
|
/* activate the ramp generator using PWM control */
|
|
if (state->rf_ramp)
|
|
dprintk("ramp RF gain = %d BAND = %s version = %d\n",
|
|
state->rf_ramp[0],
|
|
(state->current_band == BAND_CBAND) ? "CBAND" : "NOT CBAND",
|
|
state->identity.version & 0x1f);
|
|
|
|
if (rf_ramp && ((state->rf_ramp && state->rf_ramp[0] == 0) ||
|
|
(state->current_band == BAND_CBAND &&
|
|
(state->identity.version & 0x1f) <= P1D_E_F))) {
|
|
dprintk("DE-Engage mux for direct gain reg control\n");
|
|
en_pwm_rf_mux = 0;
|
|
} else
|
|
dprintk("Engage mux for PWM control\n");
|
|
|
|
dib0090_write_reg(state, 0x32, (en_pwm_rf_mux << 12) | (en_pwm_rf_mux << 11));
|
|
|
|
/* Set fast servo cutoff to start AGC; 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast*/
|
|
if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
|
|
dib0090_write_reg(state, 0x04, 3);
|
|
else
|
|
dib0090_write_reg(state, 0x04, 1);
|
|
dib0090_write_reg(state, 0x39, (1 << 10)); /* 0 gain by default */
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(dib0090_pwm_gain_reset);
|
|
|
|
void dib0090_set_dc_servo(struct dvb_frontend *fe, u8 DC_servo_cutoff)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
if (DC_servo_cutoff < 4)
|
|
dib0090_write_reg(state, 0x04, DC_servo_cutoff);
|
|
}
|
|
EXPORT_SYMBOL(dib0090_set_dc_servo);
|
|
|
|
static u32 dib0090_get_slow_adc_val(struct dib0090_state *state)
|
|
{
|
|
u16 adc_val = dib0090_read_reg(state, 0x1d);
|
|
if (state->identity.in_soc)
|
|
adc_val >>= 2;
|
|
return adc_val;
|
|
}
|
|
|
|
int dib0090_gain_control(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
enum frontend_tune_state *tune_state = &state->tune_state;
|
|
int ret = 10;
|
|
|
|
u16 wbd_val = 0;
|
|
u8 apply_gain_immediatly = 1;
|
|
s16 wbd_error = 0, adc_error = 0;
|
|
|
|
if (*tune_state == CT_AGC_START) {
|
|
state->agc_freeze = 0;
|
|
dib0090_write_reg(state, 0x04, 0x0);
|
|
|
|
#ifdef CONFIG_BAND_SBAND
|
|
if (state->current_band == BAND_SBAND) {
|
|
dib0090_set_rframp(state, rf_ramp_sband);
|
|
dib0090_set_bbramp(state, bb_ramp_boost);
|
|
} else
|
|
#endif
|
|
#ifdef CONFIG_BAND_VHF
|
|
if (state->current_band == BAND_VHF && !state->identity.p1g) {
|
|
dib0090_set_rframp(state, rf_ramp_pwm_vhf);
|
|
dib0090_set_bbramp(state, bb_ramp_pwm_normal);
|
|
} else
|
|
#endif
|
|
#ifdef CONFIG_BAND_CBAND
|
|
if (state->current_band == BAND_CBAND && !state->identity.p1g) {
|
|
dib0090_set_rframp(state, rf_ramp_pwm_cband);
|
|
dib0090_set_bbramp(state, bb_ramp_pwm_normal);
|
|
} else
|
|
#endif
|
|
if ((state->current_band == BAND_CBAND || state->current_band == BAND_VHF) && state->identity.p1g) {
|
|
dib0090_set_rframp(state, rf_ramp_pwm_cband_7090p);
|
|
dib0090_set_bbramp(state, bb_ramp_pwm_normal_socs);
|
|
} else {
|
|
dib0090_set_rframp(state, rf_ramp_pwm_uhf);
|
|
dib0090_set_bbramp(state, bb_ramp_pwm_normal);
|
|
}
|
|
|
|
dib0090_write_reg(state, 0x32, 0);
|
|
dib0090_write_reg(state, 0x39, 0);
|
|
|
|
dib0090_wbd_target(state, state->current_rf);
|
|
|
|
state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
|
|
state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA;
|
|
|
|
*tune_state = CT_AGC_STEP_0;
|
|
} else if (!state->agc_freeze) {
|
|
s16 wbd = 0, i, cnt;
|
|
|
|
int adc;
|
|
wbd_val = dib0090_get_slow_adc_val(state);
|
|
|
|
if (*tune_state == CT_AGC_STEP_0)
|
|
cnt = 5;
|
|
else
|
|
cnt = 1;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
wbd_val = dib0090_get_slow_adc_val(state);
|
|
wbd += dib0090_wbd_to_db(state, wbd_val);
|
|
}
|
|
wbd /= cnt;
|
|
wbd_error = state->wbd_target - wbd;
|
|
|
|
if (*tune_state == CT_AGC_STEP_0) {
|
|
if (wbd_error < 0 && state->rf_gain_limit > 0 && !state->identity.p1g) {
|
|
#ifdef CONFIG_BAND_CBAND
|
|
/* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
|
|
u8 ltg2 = (state->rf_lt_def >> 10) & 0x7;
|
|
if (state->current_band == BAND_CBAND && ltg2) {
|
|
ltg2 >>= 1;
|
|
state->rf_lt_def &= ltg2 << 10; /* reduce in 3 steps from 7 to 0 */
|
|
}
|
|
#endif
|
|
} else {
|
|
state->agc_step = 0;
|
|
*tune_state = CT_AGC_STEP_1;
|
|
}
|
|
} else {
|
|
/* calc the adc power */
|
|
adc = state->config->get_adc_power(fe);
|
|
adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21; /* included in [0:-700] */
|
|
|
|
adc_error = (s16) (((s32) ADC_TARGET) - adc);
|
|
#ifdef CONFIG_STANDARD_DAB
|
|
if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB)
|
|
adc_error -= 10;
|
|
#endif
|
|
#ifdef CONFIG_STANDARD_DVBT
|
|
if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT &&
|
|
(state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16))
|
|
adc_error += 60;
|
|
#endif
|
|
#ifdef CONFIG_SYS_ISDBT
|
|
if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count >
|
|
0)
|
|
&&
|
|
((state->fe->dtv_property_cache.layer[0].modulation ==
|
|
QAM_64)
|
|
|| (state->fe->dtv_property_cache.
|
|
layer[0].modulation == QAM_16)))
|
|
||
|
|
((state->fe->dtv_property_cache.layer[1].segment_count >
|
|
0)
|
|
&&
|
|
((state->fe->dtv_property_cache.layer[1].modulation ==
|
|
QAM_64)
|
|
|| (state->fe->dtv_property_cache.
|
|
layer[1].modulation == QAM_16)))
|
|
||
|
|
((state->fe->dtv_property_cache.layer[2].segment_count >
|
|
0)
|
|
&&
|
|
((state->fe->dtv_property_cache.layer[2].modulation ==
|
|
QAM_64)
|
|
|| (state->fe->dtv_property_cache.
|
|
layer[2].modulation == QAM_16)))
|
|
)
|
|
)
|
|
adc_error += 60;
|
|
#endif
|
|
|
|
if (*tune_state == CT_AGC_STEP_1) { /* quickly go to the correct range of the ADC power */
|
|
if (abs(adc_error) < 50 || state->agc_step++ > 5) {
|
|
|
|
#ifdef CONFIG_STANDARD_DAB
|
|
if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) {
|
|
dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
|
|
dib0090_write_reg(state, 0x04, 0x0);
|
|
} else
|
|
#endif
|
|
{
|
|
dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
|
|
dib0090_write_reg(state, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
|
|
}
|
|
|
|
*tune_state = CT_AGC_STOP;
|
|
}
|
|
} else {
|
|
/* everything higher than or equal to CT_AGC_STOP means tracking */
|
|
ret = 100; /* 10ms interval */
|
|
apply_gain_immediatly = 0;
|
|
}
|
|
}
|
|
#ifdef DEBUG_AGC
|
|
dprintk
|
|
("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
|
|
(u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
|
|
(u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA));
|
|
#endif
|
|
}
|
|
|
|
/* apply gain */
|
|
if (!state->agc_freeze)
|
|
dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly);
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL(dib0090_gain_control);
|
|
|
|
void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
if (rf)
|
|
*rf = state->gain[0];
|
|
if (bb)
|
|
*bb = state->gain[1];
|
|
if (rf_gain_limit)
|
|
*rf_gain_limit = state->rf_gain_limit;
|
|
if (rflt)
|
|
*rflt = (state->rf_lt_def >> 10) & 0x7;
|
|
}
|
|
|
|
EXPORT_SYMBOL(dib0090_get_current_gain);
|
|
|
|
u16 dib0090_get_wbd_target(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
u32 f_MHz = state->fe->dtv_property_cache.frequency / 1000000;
|
|
s32 current_temp = state->temperature;
|
|
s32 wbd_thot, wbd_tcold;
|
|
const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
|
|
|
|
while (f_MHz > wbd->max_freq)
|
|
wbd++;
|
|
|
|
dprintk("using wbd-table-entry with max freq %d\n", wbd->max_freq);
|
|
|
|
if (current_temp < 0)
|
|
current_temp = 0;
|
|
if (current_temp > 128)
|
|
current_temp = 128;
|
|
|
|
state->wbdmux &= ~(7 << 13);
|
|
if (wbd->wbd_gain != 0)
|
|
state->wbdmux |= (wbd->wbd_gain << 13);
|
|
else
|
|
state->wbdmux |= (4 << 13);
|
|
|
|
dib0090_write_reg(state, 0x10, state->wbdmux);
|
|
|
|
wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6);
|
|
wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6);
|
|
|
|
wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7;
|
|
|
|
state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold);
|
|
dprintk("wbd-target: %d dB\n", (u32) state->wbd_target);
|
|
dprintk("wbd offset applied is %d\n", wbd_tcold);
|
|
|
|
return state->wbd_offset + wbd_tcold;
|
|
}
|
|
EXPORT_SYMBOL(dib0090_get_wbd_target);
|
|
|
|
u16 dib0090_get_wbd_offset(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
return state->wbd_offset;
|
|
}
|
|
EXPORT_SYMBOL(dib0090_get_wbd_offset);
|
|
|
|
int dib0090_set_switch(struct dvb_frontend *fe, u8 sw1, u8 sw2, u8 sw3)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
|
|
dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xfff8)
|
|
| ((sw3 & 1) << 2) | ((sw2 & 1) << 1) | (sw1 & 1));
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dib0090_set_switch);
|
|
|
|
int dib0090_set_vga(struct dvb_frontend *fe, u8 onoff)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
|
|
dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x7fff)
|
|
| ((onoff & 1) << 15));
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dib0090_set_vga);
|
|
|
|
int dib0090_update_rframp_7090(struct dvb_frontend *fe, u8 cfg_sensitivity)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
|
|
if ((!state->identity.p1g) || (!state->identity.in_soc)
|
|
|| ((state->identity.version != SOC_7090_P1G_21R1)
|
|
&& (state->identity.version != SOC_7090_P1G_11R1))) {
|
|
dprintk("%s() function can only be used for dib7090P\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (cfg_sensitivity)
|
|
state->rf_ramp = rf_ramp_pwm_cband_7090e_sensitivity;
|
|
else
|
|
state->rf_ramp = rf_ramp_pwm_cband_7090e_aci;
|
|
dib0090_pwm_gain_reset(fe);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dib0090_update_rframp_7090);
|
|
|
|
static const u16 dib0090_defaults[] = {
|
|
|
|
25, 0x01,
|
|
0x0000,
|
|
0x99a0,
|
|
0x6008,
|
|
0x0000,
|
|
0x8bcb,
|
|
0x0000,
|
|
0x0405,
|
|
0x0000,
|
|
0x0000,
|
|
0x0000,
|
|
0xb802,
|
|
0x0300,
|
|
0x2d12,
|
|
0xbac0,
|
|
0x7c00,
|
|
0xdbb9,
|
|
0x0954,
|
|
0x0743,
|
|
0x8000,
|
|
0x0001,
|
|
0x0040,
|
|
0x0100,
|
|
0x0000,
|
|
0xe910,
|
|
0x149e,
|
|
|
|
1, 0x1c,
|
|
0xff2d,
|
|
|
|
1, 0x39,
|
|
0x0000,
|
|
|
|
2, 0x1e,
|
|
0x07FF,
|
|
0x0007,
|
|
|
|
1, 0x24,
|
|
EN_UHF | EN_CRYSTAL,
|
|
|
|
2, 0x3c,
|
|
0x3ff,
|
|
0x111,
|
|
0
|
|
};
|
|
|
|
static const u16 dib0090_p1g_additionnal_defaults[] = {
|
|
1, 0x05,
|
|
0xabcd,
|
|
|
|
1, 0x11,
|
|
0x00b4,
|
|
|
|
1, 0x1c,
|
|
0xfffd,
|
|
|
|
1, 0x40,
|
|
0x108,
|
|
0
|
|
};
|
|
|
|
static void dib0090_set_default_config(struct dib0090_state *state, const u16 * n)
|
|
{
|
|
u16 l, r;
|
|
|
|
l = pgm_read_word(n++);
|
|
while (l) {
|
|
r = pgm_read_word(n++);
|
|
do {
|
|
dib0090_write_reg(state, r, pgm_read_word(n++));
|
|
r++;
|
|
} while (--l);
|
|
l = pgm_read_word(n++);
|
|
}
|
|
}
|
|
|
|
#define CAP_VALUE_MIN (u8) 9
|
|
#define CAP_VALUE_MAX (u8) 40
|
|
#define HR_MIN (u8) 25
|
|
#define HR_MAX (u8) 40
|
|
#define POLY_MIN (u8) 0
|
|
#define POLY_MAX (u8) 8
|
|
|
|
static void dib0090_set_EFUSE(struct dib0090_state *state)
|
|
{
|
|
u8 c, h, n;
|
|
u16 e2, e4;
|
|
u16 cal;
|
|
|
|
e2 = dib0090_read_reg(state, 0x26);
|
|
e4 = dib0090_read_reg(state, 0x28);
|
|
|
|
if ((state->identity.version == P1D_E_F) ||
|
|
(state->identity.version == P1G) || (e2 == 0xffff)) {
|
|
|
|
dib0090_write_reg(state, 0x22, 0x10);
|
|
cal = (dib0090_read_reg(state, 0x22) >> 6) & 0x3ff;
|
|
|
|
if ((cal < 670) || (cal == 1023))
|
|
cal = 850;
|
|
n = 165 - ((cal * 10)>>6) ;
|
|
e2 = e4 = (3<<12) | (34<<6) | (n);
|
|
}
|
|
|
|
if (e2 != e4)
|
|
e2 &= e4; /* Remove the redundancy */
|
|
|
|
if (e2 != 0xffff) {
|
|
c = e2 & 0x3f;
|
|
n = (e2 >> 12) & 0xf;
|
|
h = (e2 >> 6) & 0x3f;
|
|
|
|
if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN))
|
|
c = 32;
|
|
else
|
|
c += 14;
|
|
if ((h >= HR_MAX) || (h <= HR_MIN))
|
|
h = 34;
|
|
if ((n >= POLY_MAX) || (n <= POLY_MIN))
|
|
n = 3;
|
|
|
|
dib0090_write_reg(state, 0x13, (h << 10));
|
|
e2 = (n << 11) | ((h >> 2)<<6) | c;
|
|
dib0090_write_reg(state, 0x2, e2); /* Load the BB_2 */
|
|
}
|
|
}
|
|
|
|
static int dib0090_reset(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
|
|
dib0090_reset_digital(fe, state->config);
|
|
if (dib0090_identify(fe) < 0)
|
|
return -EIO;
|
|
|
|
#ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
|
|
if (!(state->identity.version & 0x1)) /* it is P1B - reset is already done */
|
|
return 0;
|
|
#endif
|
|
|
|
if (!state->identity.in_soc) {
|
|
if ((dib0090_read_reg(state, 0x1a) >> 5) & 0x2)
|
|
dib0090_write_reg(state, 0x1b, (EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL));
|
|
else
|
|
dib0090_write_reg(state, 0x1b, (EN_DIGCLK | EN_PLL | EN_CRYSTAL));
|
|
}
|
|
|
|
dib0090_set_default_config(state, dib0090_defaults);
|
|
|
|
if (state->identity.in_soc)
|
|
dib0090_write_reg(state, 0x18, 0x2910); /* charge pump current = 0 */
|
|
|
|
if (state->identity.p1g)
|
|
dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults);
|
|
|
|
/* Update the efuse : Only available for KROSUS > P1C and SOC as well*/
|
|
if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc))
|
|
dib0090_set_EFUSE(state);
|
|
|
|
/* Congigure in function of the crystal */
|
|
if (state->config->force_crystal_mode != 0)
|
|
dib0090_write_reg(state, 0x14,
|
|
state->config->force_crystal_mode & 3);
|
|
else if (state->config->io.clock_khz >= 24000)
|
|
dib0090_write_reg(state, 0x14, 1);
|
|
else
|
|
dib0090_write_reg(state, 0x14, 2);
|
|
dprintk("Pll lock : %d\n", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1);
|
|
|
|
state->calibrate = DC_CAL | WBD_CAL | TEMP_CAL; /* enable iq-offset-calibration and wbd-calibration when tuning next time */
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define steps(u) (((u) > 15) ? ((u)-16) : (u))
|
|
#define INTERN_WAIT 10
|
|
static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state)
|
|
{
|
|
int ret = INTERN_WAIT * 10;
|
|
|
|
switch (*tune_state) {
|
|
case CT_TUNER_STEP_2:
|
|
/* Turns to positive */
|
|
dib0090_write_reg(state, 0x1f, 0x7);
|
|
*tune_state = CT_TUNER_STEP_3;
|
|
break;
|
|
|
|
case CT_TUNER_STEP_3:
|
|
state->adc_diff = dib0090_read_reg(state, 0x1d);
|
|
|
|
/* Turns to negative */
|
|
dib0090_write_reg(state, 0x1f, 0x4);
|
|
*tune_state = CT_TUNER_STEP_4;
|
|
break;
|
|
|
|
case CT_TUNER_STEP_4:
|
|
state->adc_diff -= dib0090_read_reg(state, 0x1d);
|
|
*tune_state = CT_TUNER_STEP_5;
|
|
ret = 0;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct dc_calibration {
|
|
u8 addr;
|
|
u8 offset;
|
|
u8 pga:1;
|
|
u16 bb1;
|
|
u8 i:1;
|
|
};
|
|
|
|
static const struct dc_calibration dc_table[] = {
|
|
/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
|
|
{0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
|
|
{0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
|
|
/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
|
|
{0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
|
|
{0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
|
|
{0},
|
|
};
|
|
|
|
static const struct dc_calibration dc_p1g_table[] = {
|
|
/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
|
|
/* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
|
|
{0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},
|
|
{0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},
|
|
/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
|
|
{0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},
|
|
{0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},
|
|
{0},
|
|
};
|
|
|
|
static void dib0090_set_trim(struct dib0090_state *state)
|
|
{
|
|
u16 *val;
|
|
|
|
if (state->dc->addr == 0x07)
|
|
val = &state->bb7;
|
|
else
|
|
val = &state->bb6;
|
|
|
|
*val &= ~(0x1f << state->dc->offset);
|
|
*val |= state->step << state->dc->offset;
|
|
|
|
dib0090_write_reg(state, state->dc->addr, *val);
|
|
}
|
|
|
|
static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
|
|
{
|
|
int ret = 0;
|
|
u16 reg;
|
|
|
|
switch (*tune_state) {
|
|
case CT_TUNER_START:
|
|
dprintk("Start DC offset calibration");
|
|
|
|
/* force vcm2 = 0.8V */
|
|
state->bb6 = 0;
|
|
state->bb7 = 0x040d;
|
|
|
|
/* the LNA AND LO are off */
|
|
reg = dib0090_read_reg(state, 0x24) & 0x0ffb; /* shutdown lna and lo */
|
|
dib0090_write_reg(state, 0x24, reg);
|
|
|
|
state->wbdmux = dib0090_read_reg(state, 0x10);
|
|
dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3);
|
|
dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
|
|
|
|
state->dc = dc_table;
|
|
|
|
if (state->identity.p1g)
|
|
state->dc = dc_p1g_table;
|
|
|
|
fallthrough;
|
|
case CT_TUNER_STEP_0:
|
|
dprintk("Start/continue DC calibration for %s path\n",
|
|
(state->dc->i == 1) ? "I" : "Q");
|
|
dib0090_write_reg(state, 0x01, state->dc->bb1);
|
|
dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7));
|
|
|
|
state->step = 0;
|
|
state->min_adc_diff = 1023;
|
|
*tune_state = CT_TUNER_STEP_1;
|
|
ret = 50;
|
|
break;
|
|
|
|
case CT_TUNER_STEP_1:
|
|
dib0090_set_trim(state);
|
|
*tune_state = CT_TUNER_STEP_2;
|
|
break;
|
|
|
|
case CT_TUNER_STEP_2:
|
|
case CT_TUNER_STEP_3:
|
|
case CT_TUNER_STEP_4:
|
|
ret = dib0090_get_offset(state, tune_state);
|
|
break;
|
|
|
|
case CT_TUNER_STEP_5: /* found an offset */
|
|
dprintk("adc_diff = %d, current step= %d\n", (u32) state->adc_diff, state->step);
|
|
if (state->step == 0 && state->adc_diff < 0) {
|
|
state->min_adc_diff = -1023;
|
|
dprintk("Change of sign of the minimum adc diff\n");
|
|
}
|
|
|
|
dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d\n", state->adc_diff, state->min_adc_diff, state->step);
|
|
|
|
/* first turn for this frequency */
|
|
if (state->step == 0) {
|
|
if (state->dc->pga && state->adc_diff < 0)
|
|
state->step = 0x10;
|
|
if (state->dc->pga == 0 && state->adc_diff > 0)
|
|
state->step = 0x10;
|
|
}
|
|
|
|
/* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */
|
|
if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) {
|
|
/* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
|
|
state->step++;
|
|
state->min_adc_diff = state->adc_diff;
|
|
*tune_state = CT_TUNER_STEP_1;
|
|
} else {
|
|
/* the minimum was what we have seen in the step before */
|
|
if (abs(state->adc_diff) > abs(state->min_adc_diff)) {
|
|
dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step\n", state->adc_diff, state->min_adc_diff);
|
|
state->step--;
|
|
}
|
|
|
|
dib0090_set_trim(state);
|
|
dprintk("BB Offset Cal, BBreg=%u,Offset=%d,Value Set=%d\n",
|
|
state->dc->addr, state->adc_diff, state->step);
|
|
|
|
state->dc++;
|
|
if (state->dc->addr == 0) /* done */
|
|
*tune_state = CT_TUNER_STEP_6;
|
|
else
|
|
*tune_state = CT_TUNER_STEP_0;
|
|
|
|
}
|
|
break;
|
|
|
|
case CT_TUNER_STEP_6:
|
|
dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008);
|
|
dib0090_write_reg(state, 0x1f, 0x7);
|
|
*tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
|
|
state->calibrate &= ~DC_CAL;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
|
|
{
|
|
u8 wbd_gain;
|
|
const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
|
|
|
|
switch (*tune_state) {
|
|
case CT_TUNER_START:
|
|
while (state->current_rf / 1000 > wbd->max_freq)
|
|
wbd++;
|
|
if (wbd->wbd_gain != 0)
|
|
wbd_gain = wbd->wbd_gain;
|
|
else {
|
|
wbd_gain = 4;
|
|
#if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
|
|
if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND))
|
|
wbd_gain = 2;
|
|
#endif
|
|
}
|
|
|
|
if (wbd_gain == state->wbd_calibration_gain) { /* the WBD calibration has already been done */
|
|
*tune_state = CT_TUNER_START;
|
|
state->calibrate &= ~WBD_CAL;
|
|
return 0;
|
|
}
|
|
|
|
dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3));
|
|
|
|
dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1)));
|
|
*tune_state = CT_TUNER_STEP_0;
|
|
state->wbd_calibration_gain = wbd_gain;
|
|
return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
|
|
|
|
case CT_TUNER_STEP_0:
|
|
state->wbd_offset = dib0090_get_slow_adc_val(state);
|
|
dprintk("WBD calibration offset = %d\n", state->wbd_offset);
|
|
*tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
|
|
state->calibrate &= ~WBD_CAL;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void dib0090_set_bandwidth(struct dib0090_state *state)
|
|
{
|
|
u16 tmp;
|
|
|
|
if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000)
|
|
tmp = (3 << 14);
|
|
else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000)
|
|
tmp = (2 << 14);
|
|
else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000)
|
|
tmp = (1 << 14);
|
|
else
|
|
tmp = (0 << 14);
|
|
|
|
state->bb_1_def &= 0x3fff;
|
|
state->bb_1_def |= tmp;
|
|
|
|
dib0090_write_reg(state, 0x01, state->bb_1_def); /* be sure that we have the right bb-filter */
|
|
|
|
dib0090_write_reg(state, 0x03, 0x6008); /* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */
|
|
dib0090_write_reg(state, 0x04, 0x1); /* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */
|
|
if (state->identity.in_soc) {
|
|
dib0090_write_reg(state, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */
|
|
} else {
|
|
dib0090_write_reg(state, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f)); /* 22 = cap_value */
|
|
dib0090_write_reg(state, 0x05, 0xabcd); /* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */
|
|
}
|
|
}
|
|
|
|
static const struct dib0090_pll dib0090_pll_table[] = {
|
|
#ifdef CONFIG_BAND_CBAND
|
|
{56000, 0, 9, 48, 6},
|
|
{70000, 1, 9, 48, 6},
|
|
{87000, 0, 8, 32, 4},
|
|
{105000, 1, 8, 32, 4},
|
|
{115000, 0, 7, 24, 6},
|
|
{140000, 1, 7, 24, 6},
|
|
{170000, 0, 6, 16, 4},
|
|
#endif
|
|
#ifdef CONFIG_BAND_VHF
|
|
{200000, 1, 6, 16, 4},
|
|
{230000, 0, 5, 12, 6},
|
|
{280000, 1, 5, 12, 6},
|
|
{340000, 0, 4, 8, 4},
|
|
{380000, 1, 4, 8, 4},
|
|
{450000, 0, 3, 6, 6},
|
|
#endif
|
|
#ifdef CONFIG_BAND_UHF
|
|
{580000, 1, 3, 6, 6},
|
|
{700000, 0, 2, 4, 4},
|
|
{860000, 1, 2, 4, 4},
|
|
#endif
|
|
#ifdef CONFIG_BAND_LBAND
|
|
{1800000, 1, 0, 2, 4},
|
|
#endif
|
|
#ifdef CONFIG_BAND_SBAND
|
|
{2900000, 0, 14, 1, 4},
|
|
#endif
|
|
};
|
|
|
|
static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = {
|
|
|
|
#ifdef CONFIG_BAND_CBAND
|
|
{184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
|
|
{227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
|
|
{380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
|
|
#endif
|
|
#ifdef CONFIG_BAND_UHF
|
|
{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
#endif
|
|
#ifdef CONFIG_BAND_LBAND
|
|
{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
#endif
|
|
#ifdef CONFIG_BAND_SBAND
|
|
{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
|
|
{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
|
|
#endif
|
|
};
|
|
|
|
static const struct dib0090_tuning dib0090_tuning_table[] = {
|
|
|
|
#ifdef CONFIG_BAND_CBAND
|
|
{170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
|
|
#endif
|
|
#ifdef CONFIG_BAND_VHF
|
|
{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
|
|
{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
|
|
{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
|
|
#endif
|
|
#ifdef CONFIG_BAND_UHF
|
|
{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
#endif
|
|
#ifdef CONFIG_BAND_LBAND
|
|
{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
#endif
|
|
#ifdef CONFIG_BAND_SBAND
|
|
{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
|
|
{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
|
|
#endif
|
|
};
|
|
|
|
static const struct dib0090_tuning dib0090_p1g_tuning_table[] = {
|
|
#ifdef CONFIG_BAND_CBAND
|
|
{170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB},
|
|
#endif
|
|
#ifdef CONFIG_BAND_VHF
|
|
{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
|
|
{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
|
|
{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
|
|
#endif
|
|
#ifdef CONFIG_BAND_UHF
|
|
{510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
#endif
|
|
#ifdef CONFIG_BAND_LBAND
|
|
{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
#endif
|
|
#ifdef CONFIG_BAND_SBAND
|
|
{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
|
|
{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
|
|
#endif
|
|
};
|
|
|
|
static const struct dib0090_pll dib0090_p1g_pll_table[] = {
|
|
#ifdef CONFIG_BAND_CBAND
|
|
{57000, 0, 11, 48, 6},
|
|
{70000, 1, 11, 48, 6},
|
|
{86000, 0, 10, 32, 4},
|
|
{105000, 1, 10, 32, 4},
|
|
{115000, 0, 9, 24, 6},
|
|
{140000, 1, 9, 24, 6},
|
|
{170000, 0, 8, 16, 4},
|
|
#endif
|
|
#ifdef CONFIG_BAND_VHF
|
|
{200000, 1, 8, 16, 4},
|
|
{230000, 0, 7, 12, 6},
|
|
{280000, 1, 7, 12, 6},
|
|
{340000, 0, 6, 8, 4},
|
|
{380000, 1, 6, 8, 4},
|
|
{455000, 0, 5, 6, 6},
|
|
#endif
|
|
#ifdef CONFIG_BAND_UHF
|
|
{580000, 1, 5, 6, 6},
|
|
{680000, 0, 4, 4, 4},
|
|
{860000, 1, 4, 4, 4},
|
|
#endif
|
|
#ifdef CONFIG_BAND_LBAND
|
|
{1800000, 1, 2, 2, 4},
|
|
#endif
|
|
#ifdef CONFIG_BAND_SBAND
|
|
{2900000, 0, 1, 1, 6},
|
|
#endif
|
|
};
|
|
|
|
static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = {
|
|
#ifdef CONFIG_BAND_CBAND
|
|
{184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
|
|
{227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
|
|
{380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
|
|
#endif
|
|
#ifdef CONFIG_BAND_UHF
|
|
{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
|
|
#endif
|
|
#ifdef CONFIG_BAND_LBAND
|
|
{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
|
|
#endif
|
|
#ifdef CONFIG_BAND_SBAND
|
|
{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
|
|
{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
|
|
#endif
|
|
};
|
|
|
|
static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = {
|
|
#ifdef CONFIG_BAND_CBAND
|
|
{300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
|
|
{380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
|
|
{570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
|
|
{858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
|
|
#endif
|
|
};
|
|
|
|
static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_sensitivity[] = {
|
|
#ifdef CONFIG_BAND_CBAND
|
|
{ 300000, 0 , 3, 0x8105, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
|
|
{ 380000, 0 , 10, 0x810F, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
|
|
{ 600000, 0 , 10, 0x815E, 0x280, 0x2d12, 0xb84e, EN_CAB },
|
|
{ 660000, 0 , 5, 0x85E3, 0x280, 0x2d12, 0xb84e, EN_CAB },
|
|
{ 720000, 0 , 5, 0x852E, 0x280, 0x2d12, 0xb84e, EN_CAB },
|
|
{ 860000, 0 , 4, 0x85E5, 0x280, 0x2d12, 0xb84e, EN_CAB },
|
|
#endif
|
|
};
|
|
|
|
int dib0090_update_tuning_table_7090(struct dvb_frontend *fe,
|
|
u8 cfg_sensitivity)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
const struct dib0090_tuning *tune =
|
|
dib0090_tuning_table_cband_7090e_sensitivity;
|
|
static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_aci[] = {
|
|
{ 300000, 0 , 3, 0x8165, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
|
|
{ 650000, 0 , 4, 0x815B, 0x280, 0x2d12, 0xb84e, EN_CAB },
|
|
{ 860000, 0 , 5, 0x84EF, 0x280, 0x2d12, 0xb84e, EN_CAB },
|
|
};
|
|
|
|
if ((!state->identity.p1g) || (!state->identity.in_soc)
|
|
|| ((state->identity.version != SOC_7090_P1G_21R1)
|
|
&& (state->identity.version != SOC_7090_P1G_11R1))) {
|
|
dprintk("%s() function can only be used for dib7090\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (cfg_sensitivity)
|
|
tune = dib0090_tuning_table_cband_7090e_sensitivity;
|
|
else
|
|
tune = dib0090_tuning_table_cband_7090e_aci;
|
|
|
|
while (state->rf_request > tune->max_freq)
|
|
tune++;
|
|
|
|
dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x8000)
|
|
| (tune->lna_bias & 0x7fff));
|
|
dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xf83f)
|
|
| ((tune->lna_tune << 6) & 0x07c0));
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dib0090_update_tuning_table_7090);
|
|
|
|
static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tune_state *tune_state)
|
|
{
|
|
int ret = 0;
|
|
u16 lo4 = 0xe900;
|
|
|
|
s16 adc_target;
|
|
u16 adc;
|
|
s8 step_sign;
|
|
u8 force_soft_search = 0;
|
|
|
|
if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
|
|
force_soft_search = 1;
|
|
|
|
if (*tune_state == CT_TUNER_START) {
|
|
dprintk("Start Captrim search : %s\n",
|
|
(force_soft_search == 1) ? "FORCE SOFT SEARCH" : "AUTO");
|
|
dib0090_write_reg(state, 0x10, 0x2B1);
|
|
dib0090_write_reg(state, 0x1e, 0x0032);
|
|
|
|
if (!state->tuner_is_tuned) {
|
|
/* prepare a complete captrim */
|
|
if (!state->identity.p1g || force_soft_search)
|
|
state->step = state->captrim = state->fcaptrim = 64;
|
|
|
|
state->current_rf = state->rf_request;
|
|
} else { /* we are already tuned to this frequency - the configuration is correct */
|
|
if (!state->identity.p1g || force_soft_search) {
|
|
/* do a minimal captrim even if the frequency has not changed */
|
|
state->step = 4;
|
|
state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f;
|
|
}
|
|
}
|
|
state->adc_diff = 3000;
|
|
*tune_state = CT_TUNER_STEP_0;
|
|
|
|
} else if (*tune_state == CT_TUNER_STEP_0) {
|
|
if (state->identity.p1g && !force_soft_search) {
|
|
u8 ratio = 31;
|
|
|
|
dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1);
|
|
dib0090_read_reg(state, 0x40);
|
|
ret = 50;
|
|
} else {
|
|
state->step /= 2;
|
|
dib0090_write_reg(state, 0x18, lo4 | state->captrim);
|
|
|
|
if (state->identity.in_soc)
|
|
ret = 25;
|
|
}
|
|
*tune_state = CT_TUNER_STEP_1;
|
|
|
|
} else if (*tune_state == CT_TUNER_STEP_1) {
|
|
if (state->identity.p1g && !force_soft_search) {
|
|
dib0090_write_reg(state, 0x40, 0x18c | (0 << 1) | 0);
|
|
dib0090_read_reg(state, 0x40);
|
|
|
|
state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7F;
|
|
dprintk("***Final Captrim= 0x%x\n", state->fcaptrim);
|
|
*tune_state = CT_TUNER_STEP_3;
|
|
|
|
} else {
|
|
/* MERGE for all krosus before P1G */
|
|
adc = dib0090_get_slow_adc_val(state);
|
|
dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV\n", (u32) state->captrim, (u32) adc, (u32) (adc) * (u32) 1800 / (u32) 1024);
|
|
|
|
if (state->rest == 0 || state->identity.in_soc) { /* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */
|
|
adc_target = 200;
|
|
} else
|
|
adc_target = 400;
|
|
|
|
if (adc >= adc_target) {
|
|
adc -= adc_target;
|
|
step_sign = -1;
|
|
} else {
|
|
adc = adc_target - adc;
|
|
step_sign = 1;
|
|
}
|
|
|
|
if (adc < state->adc_diff) {
|
|
dprintk("CAPTRIM=%d is closer to target (%d/%d)\n", (u32) state->captrim, (u32) adc, (u32) state->adc_diff);
|
|
state->adc_diff = adc;
|
|
state->fcaptrim = state->captrim;
|
|
}
|
|
|
|
state->captrim += step_sign * state->step;
|
|
if (state->step >= 1)
|
|
*tune_state = CT_TUNER_STEP_0;
|
|
else
|
|
*tune_state = CT_TUNER_STEP_2;
|
|
|
|
ret = 25;
|
|
}
|
|
} else if (*tune_state == CT_TUNER_STEP_2) { /* this step is only used by krosus < P1G */
|
|
/*write the final cptrim config */
|
|
dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim);
|
|
|
|
*tune_state = CT_TUNER_STEP_3;
|
|
|
|
} else if (*tune_state == CT_TUNER_STEP_3) {
|
|
state->calibrate &= ~CAPTRIM_CAL;
|
|
*tune_state = CT_TUNER_STEP_0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tune_state *tune_state)
|
|
{
|
|
int ret = 15;
|
|
s16 val;
|
|
|
|
switch (*tune_state) {
|
|
case CT_TUNER_START:
|
|
state->wbdmux = dib0090_read_reg(state, 0x10);
|
|
dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3));
|
|
|
|
state->bias = dib0090_read_reg(state, 0x13);
|
|
dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8));
|
|
|
|
*tune_state = CT_TUNER_STEP_0;
|
|
/* wait for the WBDMUX to switch and for the ADC to sample */
|
|
break;
|
|
|
|
case CT_TUNER_STEP_0:
|
|
state->adc_diff = dib0090_get_slow_adc_val(state);
|
|
dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8));
|
|
*tune_state = CT_TUNER_STEP_1;
|
|
break;
|
|
|
|
case CT_TUNER_STEP_1:
|
|
val = dib0090_get_slow_adc_val(state);
|
|
state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55;
|
|
|
|
dprintk("temperature: %d C\n", state->temperature - 30);
|
|
|
|
*tune_state = CT_TUNER_STEP_2;
|
|
break;
|
|
|
|
case CT_TUNER_STEP_2:
|
|
dib0090_write_reg(state, 0x13, state->bias);
|
|
dib0090_write_reg(state, 0x10, state->wbdmux); /* write back original WBDMUX */
|
|
|
|
*tune_state = CT_TUNER_START;
|
|
state->calibrate &= ~TEMP_CAL;
|
|
if (state->config->analog_output == 0)
|
|
dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
|
|
|
|
break;
|
|
|
|
default:
|
|
ret = 0;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
|
|
static int dib0090_tune(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
const struct dib0090_tuning *tune = state->current_tune_table_index;
|
|
const struct dib0090_pll *pll = state->current_pll_table_index;
|
|
enum frontend_tune_state *tune_state = &state->tune_state;
|
|
|
|
u16 lo5, lo6, Den, tmp;
|
|
u32 FBDiv, Rest, FREF, VCOF_kHz = 0;
|
|
int ret = 10; /* 1ms is the default delay most of the time */
|
|
u8 c, i;
|
|
|
|
/************************* VCO ***************************/
|
|
/* Default values for FG */
|
|
/* from these are needed : */
|
|
/* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */
|
|
|
|
/* in any case we first need to do a calibration if needed */
|
|
if (*tune_state == CT_TUNER_START) {
|
|
/* deactivate DataTX before some calibrations */
|
|
if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL))
|
|
dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
|
|
else
|
|
/* Activate DataTX in case a calibration has been done before */
|
|
if (state->config->analog_output == 0)
|
|
dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
|
|
}
|
|
|
|
if (state->calibrate & DC_CAL)
|
|
return dib0090_dc_offset_calibration(state, tune_state);
|
|
else if (state->calibrate & WBD_CAL) {
|
|
if (state->current_rf == 0)
|
|
state->current_rf = state->fe->dtv_property_cache.frequency / 1000;
|
|
return dib0090_wbd_calibration(state, tune_state);
|
|
} else if (state->calibrate & TEMP_CAL)
|
|
return dib0090_get_temperature(state, tune_state);
|
|
else if (state->calibrate & CAPTRIM_CAL)
|
|
return dib0090_captrim_search(state, tune_state);
|
|
|
|
if (*tune_state == CT_TUNER_START) {
|
|
/* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */
|
|
if (state->config->use_pwm_agc && state->identity.in_soc) {
|
|
tmp = dib0090_read_reg(state, 0x39);
|
|
if ((tmp >> 10) & 0x1)
|
|
dib0090_write_reg(state, 0x39, tmp & ~(1 << 10));
|
|
}
|
|
|
|
state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000);
|
|
state->rf_request =
|
|
state->fe->dtv_property_cache.frequency / 1000 + (state->current_band ==
|
|
BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->
|
|
freq_offset_khz_vhf);
|
|
|
|
/* in ISDB-T 1seg we shift tuning frequency */
|
|
if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1
|
|
&& state->fe->dtv_property_cache.isdbt_partial_reception == 0)) {
|
|
const struct dib0090_low_if_offset_table *LUT_offset = state->config->low_if;
|
|
u8 found_offset = 0;
|
|
u32 margin_khz = 100;
|
|
|
|
if (LUT_offset != NULL) {
|
|
while (LUT_offset->RF_freq != 0xffff) {
|
|
if (((state->rf_request > (LUT_offset->RF_freq - margin_khz))
|
|
&& (state->rf_request < (LUT_offset->RF_freq + margin_khz)))
|
|
&& LUT_offset->std == state->fe->dtv_property_cache.delivery_system) {
|
|
state->rf_request += LUT_offset->offset_khz;
|
|
found_offset = 1;
|
|
break;
|
|
}
|
|
LUT_offset++;
|
|
}
|
|
}
|
|
|
|
if (found_offset == 0)
|
|
state->rf_request += 400;
|
|
}
|
|
if (state->current_rf != state->rf_request || (state->current_standard != state->fe->dtv_property_cache.delivery_system)) {
|
|
state->tuner_is_tuned = 0;
|
|
state->current_rf = 0;
|
|
state->current_standard = 0;
|
|
|
|
tune = dib0090_tuning_table;
|
|
if (state->identity.p1g)
|
|
tune = dib0090_p1g_tuning_table;
|
|
|
|
tmp = (state->identity.version >> 5) & 0x7;
|
|
|
|
if (state->identity.in_soc) {
|
|
if (state->config->force_cband_input) { /* Use the CBAND input for all band */
|
|
if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF
|
|
|| state->current_band & BAND_UHF) {
|
|
state->current_band = BAND_CBAND;
|
|
if (state->config->is_dib7090e)
|
|
tune = dib0090_tuning_table_cband_7090e_sensitivity;
|
|
else
|
|
tune = dib0090_tuning_table_cband_7090;
|
|
}
|
|
} else { /* Use the CBAND input for all band under UHF */
|
|
if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF) {
|
|
state->current_band = BAND_CBAND;
|
|
if (state->config->is_dib7090e)
|
|
tune = dib0090_tuning_table_cband_7090e_sensitivity;
|
|
else
|
|
tune = dib0090_tuning_table_cband_7090;
|
|
}
|
|
}
|
|
} else
|
|
if (tmp == 0x4 || tmp == 0x7) {
|
|
/* CBAND tuner version for VHF */
|
|
if (state->current_band == BAND_FM || state->current_band == BAND_CBAND || state->current_band == BAND_VHF) {
|
|
state->current_band = BAND_CBAND; /* Force CBAND */
|
|
|
|
tune = dib0090_tuning_table_fm_vhf_on_cband;
|
|
if (state->identity.p1g)
|
|
tune = dib0090_p1g_tuning_table_fm_vhf_on_cband;
|
|
}
|
|
}
|
|
|
|
pll = dib0090_pll_table;
|
|
if (state->identity.p1g)
|
|
pll = dib0090_p1g_pll_table;
|
|
|
|
/* Look for the interval */
|
|
while (state->rf_request > tune->max_freq)
|
|
tune++;
|
|
while (state->rf_request > pll->max_freq)
|
|
pll++;
|
|
|
|
state->current_tune_table_index = tune;
|
|
state->current_pll_table_index = pll;
|
|
|
|
dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim));
|
|
|
|
VCOF_kHz = (pll->hfdiv * state->rf_request) * 2;
|
|
|
|
FREF = state->config->io.clock_khz;
|
|
if (state->config->fref_clock_ratio != 0)
|
|
FREF /= state->config->fref_clock_ratio;
|
|
|
|
FBDiv = (VCOF_kHz / pll->topresc / FREF);
|
|
Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF;
|
|
|
|
if (Rest < LPF)
|
|
Rest = 0;
|
|
else if (Rest < 2 * LPF)
|
|
Rest = 2 * LPF;
|
|
else if (Rest > (FREF - LPF)) {
|
|
Rest = 0;
|
|
FBDiv += 1;
|
|
} else if (Rest > (FREF - 2 * LPF))
|
|
Rest = FREF - 2 * LPF;
|
|
Rest = (Rest * 6528) / (FREF / 10);
|
|
state->rest = Rest;
|
|
|
|
/* external loop filter, otherwise:
|
|
* lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
|
|
* lo6 = 0x0e34 */
|
|
|
|
if (Rest == 0) {
|
|
if (pll->vco_band)
|
|
lo5 = 0x049f;
|
|
else
|
|
lo5 = 0x041f;
|
|
} else {
|
|
if (pll->vco_band)
|
|
lo5 = 0x049e;
|
|
else if (state->config->analog_output)
|
|
lo5 = 0x041d;
|
|
else
|
|
lo5 = 0x041c;
|
|
}
|
|
|
|
if (state->identity.p1g) { /* Bias is done automatically in P1G */
|
|
if (state->identity.in_soc) {
|
|
if (state->identity.version == SOC_8090_P1G_11R1)
|
|
lo5 = 0x46f;
|
|
else
|
|
lo5 = 0x42f;
|
|
} else
|
|
lo5 = 0x42c;
|
|
}
|
|
|
|
lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */
|
|
|
|
if (!state->config->io.pll_int_loop_filt) {
|
|
if (state->identity.in_soc)
|
|
lo6 = 0xff98;
|
|
else if (state->identity.p1g || (Rest == 0))
|
|
lo6 = 0xfff8;
|
|
else
|
|
lo6 = 0xff28;
|
|
} else
|
|
lo6 = (state->config->io.pll_int_loop_filt << 3);
|
|
|
|
Den = 1;
|
|
|
|
if (Rest > 0) {
|
|
lo6 |= (1 << 2) | 2;
|
|
Den = 255;
|
|
}
|
|
dib0090_write_reg(state, 0x15, (u16) FBDiv);
|
|
if (state->config->fref_clock_ratio != 0)
|
|
dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio);
|
|
else
|
|
dib0090_write_reg(state, 0x16, (Den << 8) | 1);
|
|
dib0090_write_reg(state, 0x17, (u16) Rest);
|
|
dib0090_write_reg(state, 0x19, lo5);
|
|
dib0090_write_reg(state, 0x1c, lo6);
|
|
|
|
lo6 = tune->tuner_enable;
|
|
if (state->config->analog_output)
|
|
lo6 = (lo6 & 0xff9f) | 0x2;
|
|
|
|
dib0090_write_reg(state, 0x24, lo6 | EN_LO | state->config->use_pwm_agc * EN_CRYSTAL);
|
|
|
|
}
|
|
|
|
state->current_rf = state->rf_request;
|
|
state->current_standard = state->fe->dtv_property_cache.delivery_system;
|
|
|
|
ret = 20;
|
|
state->calibrate = CAPTRIM_CAL; /* captrim search now */
|
|
}
|
|
|
|
else if (*tune_state == CT_TUNER_STEP_0) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
|
|
const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
|
|
|
|
while (state->current_rf / 1000 > wbd->max_freq)
|
|
wbd++;
|
|
|
|
dib0090_write_reg(state, 0x1e, 0x07ff);
|
|
dprintk("Final Captrim: %d\n", (u32) state->fcaptrim);
|
|
dprintk("HFDIV code: %d\n", (u32) pll->hfdiv_code);
|
|
dprintk("VCO = %d\n", (u32) pll->vco_band);
|
|
dprintk("VCOF in kHz: %d ((%d*%d) << 1))\n", (u32) ((pll->hfdiv * state->rf_request) * 2), (u32) pll->hfdiv, (u32) state->rf_request);
|
|
dprintk("REFDIV: %d, FREF: %d\n", (u32) 1, (u32) state->config->io.clock_khz);
|
|
dprintk("FBDIV: %d, Rest: %d\n", (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17));
|
|
dprintk("Num: %d, Den: %d, SD: %d\n", (u32) dib0090_read_reg(state, 0x17), (u32) (dib0090_read_reg(state, 0x16) >> 8),
|
|
(u32) dib0090_read_reg(state, 0x1c) & 0x3);
|
|
|
|
#define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
|
|
c = 4;
|
|
i = 3;
|
|
|
|
if (wbd->wbd_gain != 0)
|
|
c = wbd->wbd_gain;
|
|
|
|
state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1));
|
|
dib0090_write_reg(state, 0x10, state->wbdmux);
|
|
|
|
if ((tune->tuner_enable == EN_CAB) && state->identity.p1g) {
|
|
dprintk("P1G : The cable band is selected and lna_tune = %d\n", tune->lna_tune);
|
|
dib0090_write_reg(state, 0x09, tune->lna_bias);
|
|
dib0090_write_reg(state, 0x0b, 0xb800 | (tune->lna_tune << 6) | (tune->switch_trim));
|
|
} else
|
|
dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | tune->lna_bias);
|
|
|
|
dib0090_write_reg(state, 0x0c, tune->v2i);
|
|
dib0090_write_reg(state, 0x0d, tune->mix);
|
|
dib0090_write_reg(state, 0x0e, tune->load);
|
|
*tune_state = CT_TUNER_STEP_1;
|
|
|
|
} else if (*tune_state == CT_TUNER_STEP_1) {
|
|
/* initialize the lt gain register */
|
|
state->rf_lt_def = 0x7c00;
|
|
|
|
dib0090_set_bandwidth(state);
|
|
state->tuner_is_tuned = 1;
|
|
|
|
state->calibrate |= WBD_CAL;
|
|
state->calibrate |= TEMP_CAL;
|
|
*tune_state = CT_TUNER_STOP;
|
|
} else
|
|
ret = FE_CALLBACK_TIME_NEVER;
|
|
return ret;
|
|
}
|
|
|
|
static void dib0090_release(struct dvb_frontend *fe)
|
|
{
|
|
kfree(fe->tuner_priv);
|
|
fe->tuner_priv = NULL;
|
|
}
|
|
|
|
enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
|
|
return state->tune_state;
|
|
}
|
|
|
|
EXPORT_SYMBOL(dib0090_get_tune_state);
|
|
|
|
int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
|
|
state->tune_state = tune_state;
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(dib0090_set_tune_state);
|
|
|
|
static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
|
|
*frequency = 1000 * state->current_rf;
|
|
return 0;
|
|
}
|
|
|
|
static int dib0090_set_params(struct dvb_frontend *fe)
|
|
{
|
|
struct dib0090_state *state = fe->tuner_priv;
|
|
u32 ret;
|
|
|
|
state->tune_state = CT_TUNER_START;
|
|
|
|
do {
|
|
ret = dib0090_tune(fe);
|
|
if (ret == FE_CALLBACK_TIME_NEVER)
|
|
break;
|
|
|
|
/*
|
|
* Despite dib0090_tune returns time at a 0.1 ms range,
|
|
* the actual sleep time depends on CONFIG_HZ. The worse case
|
|
* is when CONFIG_HZ=100. In such case, the minimum granularity
|
|
* is 10ms. On some real field tests, the tuner sometimes don't
|
|
* lock when this timer is lower than 10ms. So, enforce a 10ms
|
|
* granularity and use usleep_range() instead of msleep().
|
|
*/
|
|
ret = 10 * (ret + 99)/100;
|
|
usleep_range(ret * 1000, (ret + 1) * 1000);
|
|
} while (state->tune_state != CT_TUNER_STOP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dvb_tuner_ops dib0090_ops = {
|
|
.info = {
|
|
.name = "DiBcom DiB0090",
|
|
.frequency_min_hz = 45 * MHz,
|
|
.frequency_max_hz = 860 * MHz,
|
|
.frequency_step_hz = 1 * kHz,
|
|
},
|
|
.release = dib0090_release,
|
|
|
|
.init = dib0090_wakeup,
|
|
.sleep = dib0090_sleep,
|
|
.set_params = dib0090_set_params,
|
|
.get_frequency = dib0090_get_frequency,
|
|
};
|
|
|
|
static const struct dvb_tuner_ops dib0090_fw_ops = {
|
|
.info = {
|
|
.name = "DiBcom DiB0090",
|
|
.frequency_min_hz = 45 * MHz,
|
|
.frequency_max_hz = 860 * MHz,
|
|
.frequency_step_hz = 1 * kHz,
|
|
},
|
|
.release = dib0090_release,
|
|
|
|
.init = NULL,
|
|
.sleep = NULL,
|
|
.set_params = NULL,
|
|
.get_frequency = NULL,
|
|
};
|
|
|
|
static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = {
|
|
{470, 0, 250, 0, 100, 4},
|
|
{860, 51, 866, 21, 375, 4},
|
|
{1700, 0, 800, 0, 850, 4},
|
|
{2900, 0, 250, 0, 100, 6},
|
|
{0xFFFF, 0, 0, 0, 0, 0},
|
|
};
|
|
|
|
struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
|
|
{
|
|
struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL);
|
|
if (st == NULL)
|
|
return NULL;
|
|
|
|
st->config = config;
|
|
st->i2c = i2c;
|
|
st->fe = fe;
|
|
mutex_init(&st->i2c_buffer_lock);
|
|
fe->tuner_priv = st;
|
|
|
|
if (config->wbd == NULL)
|
|
st->current_wbd_table = dib0090_wbd_table_default;
|
|
else
|
|
st->current_wbd_table = config->wbd;
|
|
|
|
if (dib0090_reset(fe) != 0)
|
|
goto free_mem;
|
|
|
|
pr_info("DiB0090: successfully identified\n");
|
|
memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops));
|
|
|
|
return fe;
|
|
free_mem:
|
|
kfree(st);
|
|
fe->tuner_priv = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(dib0090_register);
|
|
|
|
struct dvb_frontend *dib0090_fw_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
|
|
{
|
|
struct dib0090_fw_state *st = kzalloc(sizeof(struct dib0090_fw_state), GFP_KERNEL);
|
|
if (st == NULL)
|
|
return NULL;
|
|
|
|
st->config = config;
|
|
st->i2c = i2c;
|
|
st->fe = fe;
|
|
mutex_init(&st->i2c_buffer_lock);
|
|
fe->tuner_priv = st;
|
|
|
|
if (dib0090_fw_reset_digital(fe, st->config) != 0)
|
|
goto free_mem;
|
|
|
|
dprintk("DiB0090 FW: successfully identified\n");
|
|
memcpy(&fe->ops.tuner_ops, &dib0090_fw_ops, sizeof(struct dvb_tuner_ops));
|
|
|
|
return fe;
|
|
free_mem:
|
|
kfree(st);
|
|
fe->tuner_priv = NULL;
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dib0090_fw_register);
|
|
|
|
MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
|
|
MODULE_AUTHOR("Olivier Grenie <olivier.grenie@parrot.com>");
|
|
MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
|
|
MODULE_LICENSE("GPL");
|