394e4306b0
In systems having higher node numbers available like node 255, perf numa bench will fail with SIGABORT. <<>> perf: bench/numa.c:1416: init: Assertion `!(g->p.nr_nodes > 64 || g->p.nr_nodes < 0)' failed. Aborted (core dumped) <<>> Snippet from 'numactl -H' below on a powerpc system where the highest node number available is 255: available: 6 nodes (0,8,252-255) node 0 cpus: <cpu-list> node 0 size: 519587 MB node 0 free: 516659 MB node 8 cpus: <cpu-list> node 8 size: 523607 MB node 8 free: 486757 MB node 252 cpus: node 252 size: 0 MB node 252 free: 0 MB node 253 cpus: node 253 size: 0 MB node 253 free: 0 MB node 254 cpus: node 254 size: 0 MB node 254 free: 0 MB node 255 cpus: node 255 size: 0 MB node 255 free: 0 MB node distances: node 0 8 252 253 254 255 Note: <cpu-list> expands to actual cpu list in the original output. These nodes 252-255 are to represent the memory on GPUs and are valid nodes. The perf numa bench init code has a condition check to see if the number of NUMA nodes (nr_nodes) exceeds MAX_NR_NODES. The value of MAX_NR_NODES defined in perf code is 64. And the 'nr_nodes' is the value from numa_max_node() which represents the highest node number available in the system. In some systems where we could have NUMA node 255, this condition check fails and results in SIGABORT. The numa benchmark uses static value of MAX_NR_NODES in the code to represent size of two NUMA node arrays and node bitmask used for setting memory policy. Patch adds a fix to dynamically allocate size for the two arrays and bitmask value based on the node numbers available in the system. With the fix, perf numa benchmark will work with node configuration on any system and thus removes the static MAX_NR_NODES value. Signed-off-by: Athira Jajeev <atrajeev@linux.vnet.ibm.com> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: linuxppc-dev@lists.ozlabs.org Link: http://lore.kernel.org/lkml/1614271802-1503-1-git-send-email-atrajeev@linux.vnet.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
1886 lines
45 KiB
C
1886 lines
45 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* numa.c
|
|
*
|
|
* numa: Simulate NUMA-sensitive workload and measure their NUMA performance
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
/* For the CLR_() macros */
|
|
#include <pthread.h>
|
|
|
|
#include <subcmd/parse-options.h>
|
|
#include "../util/cloexec.h"
|
|
|
|
#include "bench.h"
|
|
|
|
#include <errno.h>
|
|
#include <sched.h>
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <malloc.h>
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/time.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/prctl.h>
|
|
#include <sys/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/time64.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/zalloc.h>
|
|
|
|
#include <numa.h>
|
|
#include <numaif.h>
|
|
|
|
#ifndef RUSAGE_THREAD
|
|
# define RUSAGE_THREAD 1
|
|
#endif
|
|
|
|
/*
|
|
* Regular printout to the terminal, supressed if -q is specified:
|
|
*/
|
|
#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
|
|
|
|
/*
|
|
* Debug printf:
|
|
*/
|
|
#undef dprintf
|
|
#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
|
|
|
|
struct thread_data {
|
|
int curr_cpu;
|
|
cpu_set_t bind_cpumask;
|
|
int bind_node;
|
|
u8 *process_data;
|
|
int process_nr;
|
|
int thread_nr;
|
|
int task_nr;
|
|
unsigned int loops_done;
|
|
u64 val;
|
|
u64 runtime_ns;
|
|
u64 system_time_ns;
|
|
u64 user_time_ns;
|
|
double speed_gbs;
|
|
pthread_mutex_t *process_lock;
|
|
};
|
|
|
|
/* Parameters set by options: */
|
|
|
|
struct params {
|
|
/* Startup synchronization: */
|
|
bool serialize_startup;
|
|
|
|
/* Task hierarchy: */
|
|
int nr_proc;
|
|
int nr_threads;
|
|
|
|
/* Working set sizes: */
|
|
const char *mb_global_str;
|
|
const char *mb_proc_str;
|
|
const char *mb_proc_locked_str;
|
|
const char *mb_thread_str;
|
|
|
|
double mb_global;
|
|
double mb_proc;
|
|
double mb_proc_locked;
|
|
double mb_thread;
|
|
|
|
/* Access patterns to the working set: */
|
|
bool data_reads;
|
|
bool data_writes;
|
|
bool data_backwards;
|
|
bool data_zero_memset;
|
|
bool data_rand_walk;
|
|
u32 nr_loops;
|
|
u32 nr_secs;
|
|
u32 sleep_usecs;
|
|
|
|
/* Working set initialization: */
|
|
bool init_zero;
|
|
bool init_random;
|
|
bool init_cpu0;
|
|
|
|
/* Misc options: */
|
|
int show_details;
|
|
int run_all;
|
|
int thp;
|
|
|
|
long bytes_global;
|
|
long bytes_process;
|
|
long bytes_process_locked;
|
|
long bytes_thread;
|
|
|
|
int nr_tasks;
|
|
bool show_quiet;
|
|
|
|
bool show_convergence;
|
|
bool measure_convergence;
|
|
|
|
int perturb_secs;
|
|
int nr_cpus;
|
|
int nr_nodes;
|
|
|
|
/* Affinity options -C and -N: */
|
|
char *cpu_list_str;
|
|
char *node_list_str;
|
|
};
|
|
|
|
|
|
/* Global, read-writable area, accessible to all processes and threads: */
|
|
|
|
struct global_info {
|
|
u8 *data;
|
|
|
|
pthread_mutex_t startup_mutex;
|
|
pthread_cond_t startup_cond;
|
|
int nr_tasks_started;
|
|
|
|
pthread_mutex_t start_work_mutex;
|
|
pthread_cond_t start_work_cond;
|
|
int nr_tasks_working;
|
|
bool start_work;
|
|
|
|
pthread_mutex_t stop_work_mutex;
|
|
u64 bytes_done;
|
|
|
|
struct thread_data *threads;
|
|
|
|
/* Convergence latency measurement: */
|
|
bool all_converged;
|
|
bool stop_work;
|
|
|
|
int print_once;
|
|
|
|
struct params p;
|
|
};
|
|
|
|
static struct global_info *g = NULL;
|
|
|
|
static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
|
|
static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
|
|
|
|
struct params p0;
|
|
|
|
static const struct option options[] = {
|
|
OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
|
|
OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
|
|
|
|
OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
|
|
OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
|
|
OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
|
|
OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
|
|
|
|
OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
|
|
OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
|
|
OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
|
|
|
|
OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"),
|
|
OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
|
|
OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
|
|
OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
|
|
OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
|
|
|
|
|
|
OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
|
|
OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
|
|
OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
|
|
OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
|
|
|
|
OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
|
|
OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
|
|
OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
|
|
OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
|
|
"convergence is reached when each process (all its threads) is running on a single NUMA node."),
|
|
OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
|
|
OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
|
|
OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
|
|
|
|
/* Special option string parsing callbacks: */
|
|
OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
|
|
"bind the first N tasks to these specific cpus (the rest is unbound)",
|
|
parse_cpus_opt),
|
|
OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
|
|
"bind the first N tasks to these specific memory nodes (the rest is unbound)",
|
|
parse_nodes_opt),
|
|
OPT_END()
|
|
};
|
|
|
|
static const char * const bench_numa_usage[] = {
|
|
"perf bench numa <options>",
|
|
NULL
|
|
};
|
|
|
|
static const char * const numa_usage[] = {
|
|
"perf bench numa mem [<options>]",
|
|
NULL
|
|
};
|
|
|
|
/*
|
|
* To get number of numa nodes present.
|
|
*/
|
|
static int nr_numa_nodes(void)
|
|
{
|
|
int i, nr_nodes = 0;
|
|
|
|
for (i = 0; i < g->p.nr_nodes; i++) {
|
|
if (numa_bitmask_isbitset(numa_nodes_ptr, i))
|
|
nr_nodes++;
|
|
}
|
|
|
|
return nr_nodes;
|
|
}
|
|
|
|
/*
|
|
* To check if given numa node is present.
|
|
*/
|
|
static int is_node_present(int node)
|
|
{
|
|
return numa_bitmask_isbitset(numa_nodes_ptr, node);
|
|
}
|
|
|
|
/*
|
|
* To check given numa node has cpus.
|
|
*/
|
|
static bool node_has_cpus(int node)
|
|
{
|
|
struct bitmask *cpumask = numa_allocate_cpumask();
|
|
bool ret = false; /* fall back to nocpus */
|
|
int cpu;
|
|
|
|
BUG_ON(!cpumask);
|
|
if (!numa_node_to_cpus(node, cpumask)) {
|
|
for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
|
|
if (numa_bitmask_isbitset(cpumask, cpu)) {
|
|
ret = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
numa_free_cpumask(cpumask);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static cpu_set_t bind_to_cpu(int target_cpu)
|
|
{
|
|
cpu_set_t orig_mask, mask;
|
|
int ret;
|
|
|
|
ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
|
|
BUG_ON(ret);
|
|
|
|
CPU_ZERO(&mask);
|
|
|
|
if (target_cpu == -1) {
|
|
int cpu;
|
|
|
|
for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
|
|
CPU_SET(cpu, &mask);
|
|
} else {
|
|
BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
|
|
CPU_SET(target_cpu, &mask);
|
|
}
|
|
|
|
ret = sched_setaffinity(0, sizeof(mask), &mask);
|
|
BUG_ON(ret);
|
|
|
|
return orig_mask;
|
|
}
|
|
|
|
static cpu_set_t bind_to_node(int target_node)
|
|
{
|
|
cpu_set_t orig_mask, mask;
|
|
int cpu;
|
|
int ret;
|
|
|
|
ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
|
|
BUG_ON(ret);
|
|
|
|
CPU_ZERO(&mask);
|
|
|
|
if (target_node == NUMA_NO_NODE) {
|
|
for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
|
|
CPU_SET(cpu, &mask);
|
|
} else {
|
|
struct bitmask *cpumask = numa_allocate_cpumask();
|
|
|
|
BUG_ON(!cpumask);
|
|
if (!numa_node_to_cpus(target_node, cpumask)) {
|
|
for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
|
|
if (numa_bitmask_isbitset(cpumask, cpu))
|
|
CPU_SET(cpu, &mask);
|
|
}
|
|
}
|
|
numa_free_cpumask(cpumask);
|
|
}
|
|
|
|
ret = sched_setaffinity(0, sizeof(mask), &mask);
|
|
BUG_ON(ret);
|
|
|
|
return orig_mask;
|
|
}
|
|
|
|
static void bind_to_cpumask(cpu_set_t mask)
|
|
{
|
|
int ret;
|
|
|
|
ret = sched_setaffinity(0, sizeof(mask), &mask);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
static void mempol_restore(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
|
|
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
static void bind_to_memnode(int node)
|
|
{
|
|
struct bitmask *node_mask;
|
|
int ret;
|
|
|
|
if (node == NUMA_NO_NODE)
|
|
return;
|
|
|
|
node_mask = numa_allocate_nodemask();
|
|
BUG_ON(!node_mask);
|
|
|
|
numa_bitmask_clearall(node_mask);
|
|
numa_bitmask_setbit(node_mask, node);
|
|
|
|
ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
|
|
dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
|
|
|
|
numa_bitmask_free(node_mask);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
#define HPSIZE (2*1024*1024)
|
|
|
|
#define set_taskname(fmt...) \
|
|
do { \
|
|
char name[20]; \
|
|
\
|
|
snprintf(name, 20, fmt); \
|
|
prctl(PR_SET_NAME, name); \
|
|
} while (0)
|
|
|
|
static u8 *alloc_data(ssize_t bytes0, int map_flags,
|
|
int init_zero, int init_cpu0, int thp, int init_random)
|
|
{
|
|
cpu_set_t orig_mask;
|
|
ssize_t bytes;
|
|
u8 *buf;
|
|
int ret;
|
|
|
|
if (!bytes0)
|
|
return NULL;
|
|
|
|
/* Allocate and initialize all memory on CPU#0: */
|
|
if (init_cpu0) {
|
|
int node = numa_node_of_cpu(0);
|
|
|
|
orig_mask = bind_to_node(node);
|
|
bind_to_memnode(node);
|
|
}
|
|
|
|
bytes = bytes0 + HPSIZE;
|
|
|
|
buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
|
|
BUG_ON(buf == (void *)-1);
|
|
|
|
if (map_flags == MAP_PRIVATE) {
|
|
if (thp > 0) {
|
|
ret = madvise(buf, bytes, MADV_HUGEPAGE);
|
|
if (ret && !g->print_once) {
|
|
g->print_once = 1;
|
|
printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
|
|
}
|
|
}
|
|
if (thp < 0) {
|
|
ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
|
|
if (ret && !g->print_once) {
|
|
g->print_once = 1;
|
|
printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (init_zero) {
|
|
bzero(buf, bytes);
|
|
} else {
|
|
/* Initialize random contents, different in each word: */
|
|
if (init_random) {
|
|
u64 *wbuf = (void *)buf;
|
|
long off = rand();
|
|
long i;
|
|
|
|
for (i = 0; i < bytes/8; i++)
|
|
wbuf[i] = i + off;
|
|
}
|
|
}
|
|
|
|
/* Align to 2MB boundary: */
|
|
buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
|
|
|
|
/* Restore affinity: */
|
|
if (init_cpu0) {
|
|
bind_to_cpumask(orig_mask);
|
|
mempol_restore();
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
static void free_data(void *data, ssize_t bytes)
|
|
{
|
|
int ret;
|
|
|
|
if (!data)
|
|
return;
|
|
|
|
ret = munmap(data, bytes);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
/*
|
|
* Create a shared memory buffer that can be shared between processes, zeroed:
|
|
*/
|
|
static void * zalloc_shared_data(ssize_t bytes)
|
|
{
|
|
return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
|
|
}
|
|
|
|
/*
|
|
* Create a shared memory buffer that can be shared between processes:
|
|
*/
|
|
static void * setup_shared_data(ssize_t bytes)
|
|
{
|
|
return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
|
|
}
|
|
|
|
/*
|
|
* Allocate process-local memory - this will either be shared between
|
|
* threads of this process, or only be accessed by this thread:
|
|
*/
|
|
static void * setup_private_data(ssize_t bytes)
|
|
{
|
|
return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
|
|
}
|
|
|
|
/*
|
|
* Return a process-shared (global) mutex:
|
|
*/
|
|
static void init_global_mutex(pthread_mutex_t *mutex)
|
|
{
|
|
pthread_mutexattr_t attr;
|
|
|
|
pthread_mutexattr_init(&attr);
|
|
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
|
|
pthread_mutex_init(mutex, &attr);
|
|
}
|
|
|
|
/*
|
|
* Return a process-shared (global) condition variable:
|
|
*/
|
|
static void init_global_cond(pthread_cond_t *cond)
|
|
{
|
|
pthread_condattr_t attr;
|
|
|
|
pthread_condattr_init(&attr);
|
|
pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
|
|
pthread_cond_init(cond, &attr);
|
|
}
|
|
|
|
static int parse_cpu_list(const char *arg)
|
|
{
|
|
p0.cpu_list_str = strdup(arg);
|
|
|
|
dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int parse_setup_cpu_list(void)
|
|
{
|
|
struct thread_data *td;
|
|
char *str0, *str;
|
|
int t;
|
|
|
|
if (!g->p.cpu_list_str)
|
|
return 0;
|
|
|
|
dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
|
|
|
|
str0 = str = strdup(g->p.cpu_list_str);
|
|
t = 0;
|
|
|
|
BUG_ON(!str);
|
|
|
|
tprintf("# binding tasks to CPUs:\n");
|
|
tprintf("# ");
|
|
|
|
while (true) {
|
|
int bind_cpu, bind_cpu_0, bind_cpu_1;
|
|
char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
|
|
int bind_len;
|
|
int step;
|
|
int mul;
|
|
|
|
tok = strsep(&str, ",");
|
|
if (!tok)
|
|
break;
|
|
|
|
tok_end = strstr(tok, "-");
|
|
|
|
dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
|
|
if (!tok_end) {
|
|
/* Single CPU specified: */
|
|
bind_cpu_0 = bind_cpu_1 = atol(tok);
|
|
} else {
|
|
/* CPU range specified (for example: "5-11"): */
|
|
bind_cpu_0 = atol(tok);
|
|
bind_cpu_1 = atol(tok_end + 1);
|
|
}
|
|
|
|
step = 1;
|
|
tok_step = strstr(tok, "#");
|
|
if (tok_step) {
|
|
step = atol(tok_step + 1);
|
|
BUG_ON(step <= 0 || step >= g->p.nr_cpus);
|
|
}
|
|
|
|
/*
|
|
* Mask length.
|
|
* Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
|
|
* where the _4 means the next 4 CPUs are allowed.
|
|
*/
|
|
bind_len = 1;
|
|
tok_len = strstr(tok, "_");
|
|
if (tok_len) {
|
|
bind_len = atol(tok_len + 1);
|
|
BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
|
|
}
|
|
|
|
/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
|
|
mul = 1;
|
|
tok_mul = strstr(tok, "x");
|
|
if (tok_mul) {
|
|
mul = atol(tok_mul + 1);
|
|
BUG_ON(mul <= 0);
|
|
}
|
|
|
|
dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
|
|
|
|
if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
|
|
printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
|
|
return -1;
|
|
}
|
|
|
|
BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
|
|
BUG_ON(bind_cpu_0 > bind_cpu_1);
|
|
|
|
for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
|
|
int i;
|
|
|
|
for (i = 0; i < mul; i++) {
|
|
int cpu;
|
|
|
|
if (t >= g->p.nr_tasks) {
|
|
printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
|
|
goto out;
|
|
}
|
|
td = g->threads + t;
|
|
|
|
if (t)
|
|
tprintf(",");
|
|
if (bind_len > 1) {
|
|
tprintf("%2d/%d", bind_cpu, bind_len);
|
|
} else {
|
|
tprintf("%2d", bind_cpu);
|
|
}
|
|
|
|
CPU_ZERO(&td->bind_cpumask);
|
|
for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
|
|
BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
|
|
CPU_SET(cpu, &td->bind_cpumask);
|
|
}
|
|
t++;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
|
|
tprintf("\n");
|
|
|
|
if (t < g->p.nr_tasks)
|
|
printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
|
|
|
|
free(str0);
|
|
return 0;
|
|
}
|
|
|
|
static int parse_cpus_opt(const struct option *opt __maybe_unused,
|
|
const char *arg, int unset __maybe_unused)
|
|
{
|
|
if (!arg)
|
|
return -1;
|
|
|
|
return parse_cpu_list(arg);
|
|
}
|
|
|
|
static int parse_node_list(const char *arg)
|
|
{
|
|
p0.node_list_str = strdup(arg);
|
|
|
|
dprintf("got NODE list: {%s}\n", p0.node_list_str);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int parse_setup_node_list(void)
|
|
{
|
|
struct thread_data *td;
|
|
char *str0, *str;
|
|
int t;
|
|
|
|
if (!g->p.node_list_str)
|
|
return 0;
|
|
|
|
dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
|
|
|
|
str0 = str = strdup(g->p.node_list_str);
|
|
t = 0;
|
|
|
|
BUG_ON(!str);
|
|
|
|
tprintf("# binding tasks to NODEs:\n");
|
|
tprintf("# ");
|
|
|
|
while (true) {
|
|
int bind_node, bind_node_0, bind_node_1;
|
|
char *tok, *tok_end, *tok_step, *tok_mul;
|
|
int step;
|
|
int mul;
|
|
|
|
tok = strsep(&str, ",");
|
|
if (!tok)
|
|
break;
|
|
|
|
tok_end = strstr(tok, "-");
|
|
|
|
dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
|
|
if (!tok_end) {
|
|
/* Single NODE specified: */
|
|
bind_node_0 = bind_node_1 = atol(tok);
|
|
} else {
|
|
/* NODE range specified (for example: "5-11"): */
|
|
bind_node_0 = atol(tok);
|
|
bind_node_1 = atol(tok_end + 1);
|
|
}
|
|
|
|
step = 1;
|
|
tok_step = strstr(tok, "#");
|
|
if (tok_step) {
|
|
step = atol(tok_step + 1);
|
|
BUG_ON(step <= 0 || step >= g->p.nr_nodes);
|
|
}
|
|
|
|
/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
|
|
mul = 1;
|
|
tok_mul = strstr(tok, "x");
|
|
if (tok_mul) {
|
|
mul = atol(tok_mul + 1);
|
|
BUG_ON(mul <= 0);
|
|
}
|
|
|
|
dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
|
|
|
|
if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
|
|
printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
|
|
return -1;
|
|
}
|
|
|
|
BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
|
|
BUG_ON(bind_node_0 > bind_node_1);
|
|
|
|
for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
|
|
int i;
|
|
|
|
for (i = 0; i < mul; i++) {
|
|
if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
|
|
printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
|
|
goto out;
|
|
}
|
|
td = g->threads + t;
|
|
|
|
if (!t)
|
|
tprintf(" %2d", bind_node);
|
|
else
|
|
tprintf(",%2d", bind_node);
|
|
|
|
td->bind_node = bind_node;
|
|
t++;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
|
|
tprintf("\n");
|
|
|
|
if (t < g->p.nr_tasks)
|
|
printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
|
|
|
|
free(str0);
|
|
return 0;
|
|
}
|
|
|
|
static int parse_nodes_opt(const struct option *opt __maybe_unused,
|
|
const char *arg, int unset __maybe_unused)
|
|
{
|
|
if (!arg)
|
|
return -1;
|
|
|
|
return parse_node_list(arg);
|
|
}
|
|
|
|
#define BIT(x) (1ul << x)
|
|
|
|
static inline uint32_t lfsr_32(uint32_t lfsr)
|
|
{
|
|
const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
|
|
return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
|
|
}
|
|
|
|
/*
|
|
* Make sure there's real data dependency to RAM (when read
|
|
* accesses are enabled), so the compiler, the CPU and the
|
|
* kernel (KSM, zero page, etc.) cannot optimize away RAM
|
|
* accesses:
|
|
*/
|
|
static inline u64 access_data(u64 *data, u64 val)
|
|
{
|
|
if (g->p.data_reads)
|
|
val += *data;
|
|
if (g->p.data_writes)
|
|
*data = val + 1;
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* The worker process does two types of work, a forwards going
|
|
* loop and a backwards going loop.
|
|
*
|
|
* We do this so that on multiprocessor systems we do not create
|
|
* a 'train' of processing, with highly synchronized processes,
|
|
* skewing the whole benchmark.
|
|
*/
|
|
static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
|
|
{
|
|
long words = bytes/sizeof(u64);
|
|
u64 *data = (void *)__data;
|
|
long chunk_0, chunk_1;
|
|
u64 *d0, *d, *d1;
|
|
long off;
|
|
long i;
|
|
|
|
BUG_ON(!data && words);
|
|
BUG_ON(data && !words);
|
|
|
|
if (!data)
|
|
return val;
|
|
|
|
/* Very simple memset() work variant: */
|
|
if (g->p.data_zero_memset && !g->p.data_rand_walk) {
|
|
bzero(data, bytes);
|
|
return val;
|
|
}
|
|
|
|
/* Spread out by PID/TID nr and by loop nr: */
|
|
chunk_0 = words/nr_max;
|
|
chunk_1 = words/g->p.nr_loops;
|
|
off = nr*chunk_0 + loop*chunk_1;
|
|
|
|
while (off >= words)
|
|
off -= words;
|
|
|
|
if (g->p.data_rand_walk) {
|
|
u32 lfsr = nr + loop + val;
|
|
int j;
|
|
|
|
for (i = 0; i < words/1024; i++) {
|
|
long start, end;
|
|
|
|
lfsr = lfsr_32(lfsr);
|
|
|
|
start = lfsr % words;
|
|
end = min(start + 1024, words-1);
|
|
|
|
if (g->p.data_zero_memset) {
|
|
bzero(data + start, (end-start) * sizeof(u64));
|
|
} else {
|
|
for (j = start; j < end; j++)
|
|
val = access_data(data + j, val);
|
|
}
|
|
}
|
|
} else if (!g->p.data_backwards || (nr + loop) & 1) {
|
|
/* Process data forwards: */
|
|
|
|
d0 = data + off;
|
|
d = data + off + 1;
|
|
d1 = data + words;
|
|
|
|
for (;;) {
|
|
if (unlikely(d >= d1))
|
|
d = data;
|
|
if (unlikely(d == d0))
|
|
break;
|
|
|
|
val = access_data(d, val);
|
|
|
|
d++;
|
|
}
|
|
} else {
|
|
/* Process data backwards: */
|
|
|
|
d0 = data + off;
|
|
d = data + off - 1;
|
|
d1 = data + words;
|
|
|
|
for (;;) {
|
|
if (unlikely(d < data))
|
|
d = data + words-1;
|
|
if (unlikely(d == d0))
|
|
break;
|
|
|
|
val = access_data(d, val);
|
|
|
|
d--;
|
|
}
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
cpu = sched_getcpu();
|
|
|
|
g->threads[task_nr].curr_cpu = cpu;
|
|
prctl(0, bytes_worked);
|
|
}
|
|
|
|
/*
|
|
* Count the number of nodes a process's threads
|
|
* are spread out on.
|
|
*
|
|
* A count of 1 means that the process is compressed
|
|
* to a single node. A count of g->p.nr_nodes means it's
|
|
* spread out on the whole system.
|
|
*/
|
|
static int count_process_nodes(int process_nr)
|
|
{
|
|
char *node_present;
|
|
int nodes;
|
|
int n, t;
|
|
|
|
node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
|
|
BUG_ON(!node_present);
|
|
for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
|
|
node_present[nodes] = 0;
|
|
|
|
for (t = 0; t < g->p.nr_threads; t++) {
|
|
struct thread_data *td;
|
|
int task_nr;
|
|
int node;
|
|
|
|
task_nr = process_nr*g->p.nr_threads + t;
|
|
td = g->threads + task_nr;
|
|
|
|
node = numa_node_of_cpu(td->curr_cpu);
|
|
if (node < 0) /* curr_cpu was likely still -1 */ {
|
|
free(node_present);
|
|
return 0;
|
|
}
|
|
|
|
node_present[node] = 1;
|
|
}
|
|
|
|
nodes = 0;
|
|
|
|
for (n = 0; n < g->p.nr_nodes; n++)
|
|
nodes += node_present[n];
|
|
|
|
free(node_present);
|
|
return nodes;
|
|
}
|
|
|
|
/*
|
|
* Count the number of distinct process-threads a node contains.
|
|
*
|
|
* A count of 1 means that the node contains only a single
|
|
* process. If all nodes on the system contain at most one
|
|
* process then we are well-converged.
|
|
*/
|
|
static int count_node_processes(int node)
|
|
{
|
|
int processes = 0;
|
|
int t, p;
|
|
|
|
for (p = 0; p < g->p.nr_proc; p++) {
|
|
for (t = 0; t < g->p.nr_threads; t++) {
|
|
struct thread_data *td;
|
|
int task_nr;
|
|
int n;
|
|
|
|
task_nr = p*g->p.nr_threads + t;
|
|
td = g->threads + task_nr;
|
|
|
|
n = numa_node_of_cpu(td->curr_cpu);
|
|
if (n == node) {
|
|
processes++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return processes;
|
|
}
|
|
|
|
static void calc_convergence_compression(int *strong)
|
|
{
|
|
unsigned int nodes_min, nodes_max;
|
|
int p;
|
|
|
|
nodes_min = -1;
|
|
nodes_max = 0;
|
|
|
|
for (p = 0; p < g->p.nr_proc; p++) {
|
|
unsigned int nodes = count_process_nodes(p);
|
|
|
|
if (!nodes) {
|
|
*strong = 0;
|
|
return;
|
|
}
|
|
|
|
nodes_min = min(nodes, nodes_min);
|
|
nodes_max = max(nodes, nodes_max);
|
|
}
|
|
|
|
/* Strong convergence: all threads compress on a single node: */
|
|
if (nodes_min == 1 && nodes_max == 1) {
|
|
*strong = 1;
|
|
} else {
|
|
*strong = 0;
|
|
tprintf(" {%d-%d}", nodes_min, nodes_max);
|
|
}
|
|
}
|
|
|
|
static void calc_convergence(double runtime_ns_max, double *convergence)
|
|
{
|
|
unsigned int loops_done_min, loops_done_max;
|
|
int process_groups;
|
|
int *nodes;
|
|
int distance;
|
|
int nr_min;
|
|
int nr_max;
|
|
int strong;
|
|
int sum;
|
|
int nr;
|
|
int node;
|
|
int cpu;
|
|
int t;
|
|
|
|
if (!g->p.show_convergence && !g->p.measure_convergence)
|
|
return;
|
|
|
|
nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
|
|
BUG_ON(!nodes);
|
|
for (node = 0; node < g->p.nr_nodes; node++)
|
|
nodes[node] = 0;
|
|
|
|
loops_done_min = -1;
|
|
loops_done_max = 0;
|
|
|
|
for (t = 0; t < g->p.nr_tasks; t++) {
|
|
struct thread_data *td = g->threads + t;
|
|
unsigned int loops_done;
|
|
|
|
cpu = td->curr_cpu;
|
|
|
|
/* Not all threads have written it yet: */
|
|
if (cpu < 0)
|
|
continue;
|
|
|
|
node = numa_node_of_cpu(cpu);
|
|
|
|
nodes[node]++;
|
|
|
|
loops_done = td->loops_done;
|
|
loops_done_min = min(loops_done, loops_done_min);
|
|
loops_done_max = max(loops_done, loops_done_max);
|
|
}
|
|
|
|
nr_max = 0;
|
|
nr_min = g->p.nr_tasks;
|
|
sum = 0;
|
|
|
|
for (node = 0; node < g->p.nr_nodes; node++) {
|
|
if (!is_node_present(node))
|
|
continue;
|
|
nr = nodes[node];
|
|
nr_min = min(nr, nr_min);
|
|
nr_max = max(nr, nr_max);
|
|
sum += nr;
|
|
}
|
|
BUG_ON(nr_min > nr_max);
|
|
|
|
BUG_ON(sum > g->p.nr_tasks);
|
|
|
|
if (0 && (sum < g->p.nr_tasks)) {
|
|
free(nodes);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Count the number of distinct process groups present
|
|
* on nodes - when we are converged this will decrease
|
|
* to g->p.nr_proc:
|
|
*/
|
|
process_groups = 0;
|
|
|
|
for (node = 0; node < g->p.nr_nodes; node++) {
|
|
int processes;
|
|
|
|
if (!is_node_present(node))
|
|
continue;
|
|
processes = count_node_processes(node);
|
|
nr = nodes[node];
|
|
tprintf(" %2d/%-2d", nr, processes);
|
|
|
|
process_groups += processes;
|
|
}
|
|
|
|
distance = nr_max - nr_min;
|
|
|
|
tprintf(" [%2d/%-2d]", distance, process_groups);
|
|
|
|
tprintf(" l:%3d-%-3d (%3d)",
|
|
loops_done_min, loops_done_max, loops_done_max-loops_done_min);
|
|
|
|
if (loops_done_min && loops_done_max) {
|
|
double skew = 1.0 - (double)loops_done_min/loops_done_max;
|
|
|
|
tprintf(" [%4.1f%%]", skew * 100.0);
|
|
}
|
|
|
|
calc_convergence_compression(&strong);
|
|
|
|
if (strong && process_groups == g->p.nr_proc) {
|
|
if (!*convergence) {
|
|
*convergence = runtime_ns_max;
|
|
tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
|
|
if (g->p.measure_convergence) {
|
|
g->all_converged = true;
|
|
g->stop_work = true;
|
|
}
|
|
}
|
|
} else {
|
|
if (*convergence) {
|
|
tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
|
|
*convergence = 0;
|
|
}
|
|
tprintf("\n");
|
|
}
|
|
|
|
free(nodes);
|
|
}
|
|
|
|
static void show_summary(double runtime_ns_max, int l, double *convergence)
|
|
{
|
|
tprintf("\r # %5.1f%% [%.1f mins]",
|
|
(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
|
|
|
|
calc_convergence(runtime_ns_max, convergence);
|
|
|
|
if (g->p.show_details >= 0)
|
|
fflush(stdout);
|
|
}
|
|
|
|
static void *worker_thread(void *__tdata)
|
|
{
|
|
struct thread_data *td = __tdata;
|
|
struct timeval start0, start, stop, diff;
|
|
int process_nr = td->process_nr;
|
|
int thread_nr = td->thread_nr;
|
|
unsigned long last_perturbance;
|
|
int task_nr = td->task_nr;
|
|
int details = g->p.show_details;
|
|
int first_task, last_task;
|
|
double convergence = 0;
|
|
u64 val = td->val;
|
|
double runtime_ns_max;
|
|
u8 *global_data;
|
|
u8 *process_data;
|
|
u8 *thread_data;
|
|
u64 bytes_done, secs;
|
|
long work_done;
|
|
u32 l;
|
|
struct rusage rusage;
|
|
|
|
bind_to_cpumask(td->bind_cpumask);
|
|
bind_to_memnode(td->bind_node);
|
|
|
|
set_taskname("thread %d/%d", process_nr, thread_nr);
|
|
|
|
global_data = g->data;
|
|
process_data = td->process_data;
|
|
thread_data = setup_private_data(g->p.bytes_thread);
|
|
|
|
bytes_done = 0;
|
|
|
|
last_task = 0;
|
|
if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
|
|
last_task = 1;
|
|
|
|
first_task = 0;
|
|
if (process_nr == 0 && thread_nr == 0)
|
|
first_task = 1;
|
|
|
|
if (details >= 2) {
|
|
printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
|
|
process_nr, thread_nr, global_data, process_data, thread_data);
|
|
}
|
|
|
|
if (g->p.serialize_startup) {
|
|
pthread_mutex_lock(&g->startup_mutex);
|
|
g->nr_tasks_started++;
|
|
/* The last thread wakes the main process. */
|
|
if (g->nr_tasks_started == g->p.nr_tasks)
|
|
pthread_cond_signal(&g->startup_cond);
|
|
|
|
pthread_mutex_unlock(&g->startup_mutex);
|
|
|
|
/* Here we will wait for the main process to start us all at once: */
|
|
pthread_mutex_lock(&g->start_work_mutex);
|
|
g->start_work = false;
|
|
g->nr_tasks_working++;
|
|
while (!g->start_work)
|
|
pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex);
|
|
|
|
pthread_mutex_unlock(&g->start_work_mutex);
|
|
}
|
|
|
|
gettimeofday(&start0, NULL);
|
|
|
|
start = stop = start0;
|
|
last_perturbance = start.tv_sec;
|
|
|
|
for (l = 0; l < g->p.nr_loops; l++) {
|
|
start = stop;
|
|
|
|
if (g->stop_work)
|
|
break;
|
|
|
|
val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
|
|
val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
|
|
val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
|
|
|
|
if (g->p.sleep_usecs) {
|
|
pthread_mutex_lock(td->process_lock);
|
|
usleep(g->p.sleep_usecs);
|
|
pthread_mutex_unlock(td->process_lock);
|
|
}
|
|
/*
|
|
* Amount of work to be done under a process-global lock:
|
|
*/
|
|
if (g->p.bytes_process_locked) {
|
|
pthread_mutex_lock(td->process_lock);
|
|
val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
|
|
pthread_mutex_unlock(td->process_lock);
|
|
}
|
|
|
|
work_done = g->p.bytes_global + g->p.bytes_process +
|
|
g->p.bytes_process_locked + g->p.bytes_thread;
|
|
|
|
update_curr_cpu(task_nr, work_done);
|
|
bytes_done += work_done;
|
|
|
|
if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
|
|
continue;
|
|
|
|
td->loops_done = l;
|
|
|
|
gettimeofday(&stop, NULL);
|
|
|
|
/* Check whether our max runtime timed out: */
|
|
if (g->p.nr_secs) {
|
|
timersub(&stop, &start0, &diff);
|
|
if ((u32)diff.tv_sec >= g->p.nr_secs) {
|
|
g->stop_work = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Update the summary at most once per second: */
|
|
if (start.tv_sec == stop.tv_sec)
|
|
continue;
|
|
|
|
/*
|
|
* Perturb the first task's equilibrium every g->p.perturb_secs seconds,
|
|
* by migrating to CPU#0:
|
|
*/
|
|
if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
|
|
cpu_set_t orig_mask;
|
|
int target_cpu;
|
|
int this_cpu;
|
|
|
|
last_perturbance = stop.tv_sec;
|
|
|
|
/*
|
|
* Depending on where we are running, move into
|
|
* the other half of the system, to create some
|
|
* real disturbance:
|
|
*/
|
|
this_cpu = g->threads[task_nr].curr_cpu;
|
|
if (this_cpu < g->p.nr_cpus/2)
|
|
target_cpu = g->p.nr_cpus-1;
|
|
else
|
|
target_cpu = 0;
|
|
|
|
orig_mask = bind_to_cpu(target_cpu);
|
|
|
|
/* Here we are running on the target CPU already */
|
|
if (details >= 1)
|
|
printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
|
|
|
|
bind_to_cpumask(orig_mask);
|
|
}
|
|
|
|
if (details >= 3) {
|
|
timersub(&stop, &start, &diff);
|
|
runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
|
|
runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
|
|
|
|
if (details >= 0) {
|
|
printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
|
|
process_nr, thread_nr, runtime_ns_max / bytes_done, val);
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
if (!last_task)
|
|
continue;
|
|
|
|
timersub(&stop, &start0, &diff);
|
|
runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
|
|
runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
|
|
|
|
show_summary(runtime_ns_max, l, &convergence);
|
|
}
|
|
|
|
gettimeofday(&stop, NULL);
|
|
timersub(&stop, &start0, &diff);
|
|
td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
|
|
td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
|
|
secs = td->runtime_ns / NSEC_PER_SEC;
|
|
td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
|
|
|
|
getrusage(RUSAGE_THREAD, &rusage);
|
|
td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
|
|
td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
|
|
td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
|
|
td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
|
|
|
|
free_data(thread_data, g->p.bytes_thread);
|
|
|
|
pthread_mutex_lock(&g->stop_work_mutex);
|
|
g->bytes_done += bytes_done;
|
|
pthread_mutex_unlock(&g->stop_work_mutex);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* A worker process starts a couple of threads:
|
|
*/
|
|
static void worker_process(int process_nr)
|
|
{
|
|
pthread_mutex_t process_lock;
|
|
struct thread_data *td;
|
|
pthread_t *pthreads;
|
|
u8 *process_data;
|
|
int task_nr;
|
|
int ret;
|
|
int t;
|
|
|
|
pthread_mutex_init(&process_lock, NULL);
|
|
set_taskname("process %d", process_nr);
|
|
|
|
/*
|
|
* Pick up the memory policy and the CPU binding of our first thread,
|
|
* so that we initialize memory accordingly:
|
|
*/
|
|
task_nr = process_nr*g->p.nr_threads;
|
|
td = g->threads + task_nr;
|
|
|
|
bind_to_memnode(td->bind_node);
|
|
bind_to_cpumask(td->bind_cpumask);
|
|
|
|
pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
|
|
process_data = setup_private_data(g->p.bytes_process);
|
|
|
|
if (g->p.show_details >= 3) {
|
|
printf(" # process %2d global mem: %p, process mem: %p\n",
|
|
process_nr, g->data, process_data);
|
|
}
|
|
|
|
for (t = 0; t < g->p.nr_threads; t++) {
|
|
task_nr = process_nr*g->p.nr_threads + t;
|
|
td = g->threads + task_nr;
|
|
|
|
td->process_data = process_data;
|
|
td->process_nr = process_nr;
|
|
td->thread_nr = t;
|
|
td->task_nr = task_nr;
|
|
td->val = rand();
|
|
td->curr_cpu = -1;
|
|
td->process_lock = &process_lock;
|
|
|
|
ret = pthread_create(pthreads + t, NULL, worker_thread, td);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
for (t = 0; t < g->p.nr_threads; t++) {
|
|
ret = pthread_join(pthreads[t], NULL);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
free_data(process_data, g->p.bytes_process);
|
|
free(pthreads);
|
|
}
|
|
|
|
static void print_summary(void)
|
|
{
|
|
if (g->p.show_details < 0)
|
|
return;
|
|
|
|
printf("\n ###\n");
|
|
printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
|
|
g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
|
|
printf(" # %5dx %5ldMB global shared mem operations\n",
|
|
g->p.nr_loops, g->p.bytes_global/1024/1024);
|
|
printf(" # %5dx %5ldMB process shared mem operations\n",
|
|
g->p.nr_loops, g->p.bytes_process/1024/1024);
|
|
printf(" # %5dx %5ldMB thread local mem operations\n",
|
|
g->p.nr_loops, g->p.bytes_thread/1024/1024);
|
|
|
|
printf(" ###\n");
|
|
|
|
printf("\n ###\n"); fflush(stdout);
|
|
}
|
|
|
|
static void init_thread_data(void)
|
|
{
|
|
ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
|
|
int t;
|
|
|
|
g->threads = zalloc_shared_data(size);
|
|
|
|
for (t = 0; t < g->p.nr_tasks; t++) {
|
|
struct thread_data *td = g->threads + t;
|
|
int cpu;
|
|
|
|
/* Allow all nodes by default: */
|
|
td->bind_node = NUMA_NO_NODE;
|
|
|
|
/* Allow all CPUs by default: */
|
|
CPU_ZERO(&td->bind_cpumask);
|
|
for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
|
|
CPU_SET(cpu, &td->bind_cpumask);
|
|
}
|
|
}
|
|
|
|
static void deinit_thread_data(void)
|
|
{
|
|
ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
|
|
|
|
free_data(g->threads, size);
|
|
}
|
|
|
|
static int init(void)
|
|
{
|
|
g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
|
|
|
|
/* Copy over options: */
|
|
g->p = p0;
|
|
|
|
g->p.nr_cpus = numa_num_configured_cpus();
|
|
|
|
g->p.nr_nodes = numa_max_node() + 1;
|
|
|
|
/* char array in count_process_nodes(): */
|
|
BUG_ON(g->p.nr_nodes < 0);
|
|
|
|
if (g->p.show_quiet && !g->p.show_details)
|
|
g->p.show_details = -1;
|
|
|
|
/* Some memory should be specified: */
|
|
if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
|
|
return -1;
|
|
|
|
if (g->p.mb_global_str) {
|
|
g->p.mb_global = atof(g->p.mb_global_str);
|
|
BUG_ON(g->p.mb_global < 0);
|
|
}
|
|
|
|
if (g->p.mb_proc_str) {
|
|
g->p.mb_proc = atof(g->p.mb_proc_str);
|
|
BUG_ON(g->p.mb_proc < 0);
|
|
}
|
|
|
|
if (g->p.mb_proc_locked_str) {
|
|
g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
|
|
BUG_ON(g->p.mb_proc_locked < 0);
|
|
BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
|
|
}
|
|
|
|
if (g->p.mb_thread_str) {
|
|
g->p.mb_thread = atof(g->p.mb_thread_str);
|
|
BUG_ON(g->p.mb_thread < 0);
|
|
}
|
|
|
|
BUG_ON(g->p.nr_threads <= 0);
|
|
BUG_ON(g->p.nr_proc <= 0);
|
|
|
|
g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
|
|
|
|
g->p.bytes_global = g->p.mb_global *1024L*1024L;
|
|
g->p.bytes_process = g->p.mb_proc *1024L*1024L;
|
|
g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
|
|
g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
|
|
|
|
g->data = setup_shared_data(g->p.bytes_global);
|
|
|
|
/* Startup serialization: */
|
|
init_global_mutex(&g->start_work_mutex);
|
|
init_global_cond(&g->start_work_cond);
|
|
init_global_mutex(&g->startup_mutex);
|
|
init_global_cond(&g->startup_cond);
|
|
init_global_mutex(&g->stop_work_mutex);
|
|
|
|
init_thread_data();
|
|
|
|
tprintf("#\n");
|
|
if (parse_setup_cpu_list() || parse_setup_node_list())
|
|
return -1;
|
|
tprintf("#\n");
|
|
|
|
print_summary();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void deinit(void)
|
|
{
|
|
free_data(g->data, g->p.bytes_global);
|
|
g->data = NULL;
|
|
|
|
deinit_thread_data();
|
|
|
|
free_data(g, sizeof(*g));
|
|
g = NULL;
|
|
}
|
|
|
|
/*
|
|
* Print a short or long result, depending on the verbosity setting:
|
|
*/
|
|
static void print_res(const char *name, double val,
|
|
const char *txt_unit, const char *txt_short, const char *txt_long)
|
|
{
|
|
if (!name)
|
|
name = "main,";
|
|
|
|
if (!g->p.show_quiet)
|
|
printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
|
|
else
|
|
printf(" %14.3f %s\n", val, txt_long);
|
|
}
|
|
|
|
static int __bench_numa(const char *name)
|
|
{
|
|
struct timeval start, stop, diff;
|
|
u64 runtime_ns_min, runtime_ns_sum;
|
|
pid_t *pids, pid, wpid;
|
|
double delta_runtime;
|
|
double runtime_avg;
|
|
double runtime_sec_max;
|
|
double runtime_sec_min;
|
|
int wait_stat;
|
|
double bytes;
|
|
int i, t, p;
|
|
|
|
if (init())
|
|
return -1;
|
|
|
|
pids = zalloc(g->p.nr_proc * sizeof(*pids));
|
|
pid = -1;
|
|
|
|
if (g->p.serialize_startup) {
|
|
tprintf(" #\n");
|
|
tprintf(" # Startup synchronization: ..."); fflush(stdout);
|
|
}
|
|
|
|
gettimeofday(&start, NULL);
|
|
|
|
for (i = 0; i < g->p.nr_proc; i++) {
|
|
pid = fork();
|
|
dprintf(" # process %2d: PID %d\n", i, pid);
|
|
|
|
BUG_ON(pid < 0);
|
|
if (!pid) {
|
|
/* Child process: */
|
|
worker_process(i);
|
|
|
|
exit(0);
|
|
}
|
|
pids[i] = pid;
|
|
|
|
}
|
|
|
|
if (g->p.serialize_startup) {
|
|
bool threads_ready = false;
|
|
double startup_sec;
|
|
|
|
/*
|
|
* Wait for all the threads to start up. The last thread will
|
|
* signal this process.
|
|
*/
|
|
pthread_mutex_lock(&g->startup_mutex);
|
|
while (g->nr_tasks_started != g->p.nr_tasks)
|
|
pthread_cond_wait(&g->startup_cond, &g->startup_mutex);
|
|
|
|
pthread_mutex_unlock(&g->startup_mutex);
|
|
|
|
/* Wait for all threads to be at the start_work_cond. */
|
|
while (!threads_ready) {
|
|
pthread_mutex_lock(&g->start_work_mutex);
|
|
threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
|
|
pthread_mutex_unlock(&g->start_work_mutex);
|
|
if (!threads_ready)
|
|
usleep(1);
|
|
}
|
|
|
|
gettimeofday(&stop, NULL);
|
|
|
|
timersub(&stop, &start, &diff);
|
|
|
|
startup_sec = diff.tv_sec * NSEC_PER_SEC;
|
|
startup_sec += diff.tv_usec * NSEC_PER_USEC;
|
|
startup_sec /= NSEC_PER_SEC;
|
|
|
|
tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
|
|
tprintf(" #\n");
|
|
|
|
start = stop;
|
|
/* Start all threads running. */
|
|
pthread_mutex_lock(&g->start_work_mutex);
|
|
g->start_work = true;
|
|
pthread_mutex_unlock(&g->start_work_mutex);
|
|
pthread_cond_broadcast(&g->start_work_cond);
|
|
} else {
|
|
gettimeofday(&start, NULL);
|
|
}
|
|
|
|
/* Parent process: */
|
|
|
|
|
|
for (i = 0; i < g->p.nr_proc; i++) {
|
|
wpid = waitpid(pids[i], &wait_stat, 0);
|
|
BUG_ON(wpid < 0);
|
|
BUG_ON(!WIFEXITED(wait_stat));
|
|
|
|
}
|
|
|
|
runtime_ns_sum = 0;
|
|
runtime_ns_min = -1LL;
|
|
|
|
for (t = 0; t < g->p.nr_tasks; t++) {
|
|
u64 thread_runtime_ns = g->threads[t].runtime_ns;
|
|
|
|
runtime_ns_sum += thread_runtime_ns;
|
|
runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
|
|
}
|
|
|
|
gettimeofday(&stop, NULL);
|
|
timersub(&stop, &start, &diff);
|
|
|
|
BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
|
|
|
|
tprintf("\n ###\n");
|
|
tprintf("\n");
|
|
|
|
runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
|
|
runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
|
|
runtime_sec_max /= NSEC_PER_SEC;
|
|
|
|
runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
|
|
|
|
bytes = g->bytes_done;
|
|
runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
|
|
|
|
if (g->p.measure_convergence) {
|
|
print_res(name, runtime_sec_max,
|
|
"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
|
|
}
|
|
|
|
print_res(name, runtime_sec_max,
|
|
"secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
|
|
|
|
print_res(name, runtime_sec_min,
|
|
"secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
|
|
|
|
print_res(name, runtime_avg,
|
|
"secs,", "runtime-avg/thread", "secs average thread-runtime");
|
|
|
|
delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
|
|
print_res(name, delta_runtime / runtime_sec_max * 100.0,
|
|
"%,", "spread-runtime/thread", "% difference between max/avg runtime");
|
|
|
|
print_res(name, bytes / g->p.nr_tasks / 1e9,
|
|
"GB,", "data/thread", "GB data processed, per thread");
|
|
|
|
print_res(name, bytes / 1e9,
|
|
"GB,", "data-total", "GB data processed, total");
|
|
|
|
print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
|
|
"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
|
|
|
|
print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
|
|
"GB/sec,", "thread-speed", "GB/sec/thread speed");
|
|
|
|
print_res(name, bytes / runtime_sec_max / 1e9,
|
|
"GB/sec,", "total-speed", "GB/sec total speed");
|
|
|
|
if (g->p.show_details >= 2) {
|
|
char tname[14 + 2 * 10 + 1];
|
|
struct thread_data *td;
|
|
for (p = 0; p < g->p.nr_proc; p++) {
|
|
for (t = 0; t < g->p.nr_threads; t++) {
|
|
memset(tname, 0, sizeof(tname));
|
|
td = g->threads + p*g->p.nr_threads + t;
|
|
snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
|
|
print_res(tname, td->speed_gbs,
|
|
"GB/sec", "thread-speed", "GB/sec/thread speed");
|
|
print_res(tname, td->system_time_ns / NSEC_PER_SEC,
|
|
"secs", "thread-system-time", "system CPU time/thread");
|
|
print_res(tname, td->user_time_ns / NSEC_PER_SEC,
|
|
"secs", "thread-user-time", "user CPU time/thread");
|
|
}
|
|
}
|
|
}
|
|
|
|
free(pids);
|
|
|
|
deinit();
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define MAX_ARGS 50
|
|
|
|
static int command_size(const char **argv)
|
|
{
|
|
int size = 0;
|
|
|
|
while (*argv) {
|
|
size++;
|
|
argv++;
|
|
}
|
|
|
|
BUG_ON(size >= MAX_ARGS);
|
|
|
|
return size;
|
|
}
|
|
|
|
static void init_params(struct params *p, const char *name, int argc, const char **argv)
|
|
{
|
|
int i;
|
|
|
|
printf("\n # Running %s \"perf bench numa", name);
|
|
|
|
for (i = 0; i < argc; i++)
|
|
printf(" %s", argv[i]);
|
|
|
|
printf("\"\n");
|
|
|
|
memset(p, 0, sizeof(*p));
|
|
|
|
/* Initialize nonzero defaults: */
|
|
|
|
p->serialize_startup = 1;
|
|
p->data_reads = true;
|
|
p->data_writes = true;
|
|
p->data_backwards = true;
|
|
p->data_rand_walk = true;
|
|
p->nr_loops = -1;
|
|
p->init_random = true;
|
|
p->mb_global_str = "1";
|
|
p->nr_proc = 1;
|
|
p->nr_threads = 1;
|
|
p->nr_secs = 5;
|
|
p->run_all = argc == 1;
|
|
}
|
|
|
|
static int run_bench_numa(const char *name, const char **argv)
|
|
{
|
|
int argc = command_size(argv);
|
|
|
|
init_params(&p0, name, argc, argv);
|
|
argc = parse_options(argc, argv, options, bench_numa_usage, 0);
|
|
if (argc)
|
|
goto err;
|
|
|
|
if (__bench_numa(name))
|
|
goto err;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
return -1;
|
|
}
|
|
|
|
#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
|
|
#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
|
|
|
|
#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
|
|
#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
|
|
|
|
#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
|
|
#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
|
|
|
|
/*
|
|
* The built-in test-suite executed by "perf bench numa -a".
|
|
*
|
|
* (A minimum of 4 nodes and 16 GB of RAM is recommended.)
|
|
*/
|
|
static const char *tests[][MAX_ARGS] = {
|
|
/* Basic single-stream NUMA bandwidth measurements: */
|
|
{ "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
|
|
"-C" , "0", "-M", "0", OPT_BW_RAM },
|
|
{ "RAM-bw-local-NOTHP,",
|
|
"mem", "-p", "1", "-t", "1", "-P", "1024",
|
|
"-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
|
|
{ "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
|
|
"-C" , "0", "-M", "1", OPT_BW_RAM },
|
|
|
|
/* 2-stream NUMA bandwidth measurements: */
|
|
{ "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
|
|
"-C", "0,2", "-M", "0x2", OPT_BW_RAM },
|
|
{ "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
|
|
"-C", "0,2", "-M", "1x2", OPT_BW_RAM },
|
|
|
|
/* Cross-stream NUMA bandwidth measurement: */
|
|
{ "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
|
|
"-C", "0,8", "-M", "1,0", OPT_BW_RAM },
|
|
|
|
/* Convergence latency measurements: */
|
|
{ " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
|
|
{ " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
|
|
{ " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
|
|
{ " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV },
|
|
{ " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
|
|
{ " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
|
|
{ " 4x4-convergence-NOTHP,",
|
|
"mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
|
|
{ " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
|
|
{ " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
|
|
{ " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
|
|
{ " 8x4-convergence-NOTHP,",
|
|
"mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
|
|
{ " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
|
|
{ " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
|
|
{ " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
|
|
{ "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
|
|
{ "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
|
|
|
|
/* Various NUMA process/thread layout bandwidth measurements: */
|
|
{ " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
|
|
{ " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
|
|
{ " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
|
|
{ " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
|
|
{ " 8x1-bw-process-NOTHP,",
|
|
"mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
|
|
{ "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
|
|
|
|
{ " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
|
|
{ " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
|
|
{ "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
|
|
{ "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
|
|
|
|
{ " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
|
|
{ " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
|
|
{ " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
|
|
{ " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
|
|
{ " 4x8-bw-process-NOTHP,",
|
|
"mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
|
|
{ " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
|
|
{ " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
|
|
|
|
{ "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
|
|
{ "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
|
|
|
|
{ "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
|
|
{ "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
|
|
{ "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
|
|
{ "numa01-bw-thread-NOTHP,",
|
|
"mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
|
|
};
|
|
|
|
static int bench_all(void)
|
|
{
|
|
int nr = ARRAY_SIZE(tests);
|
|
int ret;
|
|
int i;
|
|
|
|
ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
|
|
BUG_ON(ret < 0);
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
run_bench_numa(tests[i][0], tests[i] + 1);
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bench_numa(int argc, const char **argv)
|
|
{
|
|
init_params(&p0, "main,", argc, argv);
|
|
argc = parse_options(argc, argv, options, bench_numa_usage, 0);
|
|
if (argc)
|
|
goto err;
|
|
|
|
if (p0.run_all)
|
|
return bench_all();
|
|
|
|
if (__bench_numa(NULL))
|
|
goto err;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
usage_with_options(numa_usage, options);
|
|
return -1;
|
|
}
|