00e2370744
Use accessor functions to access an iterator's type and direction. This allows for the possibility of using some other method of determining the type of iterator than if-chains with bitwise-AND conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017 lines
50 KiB
C
2017 lines
50 KiB
C
/*
|
|
* Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
|
|
* Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
|
|
* Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
|
|
* Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
|
|
* Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
|
|
* Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/module.h>
|
|
#include <crypto/aead.h>
|
|
|
|
#include <net/strparser.h>
|
|
#include <net/tls.h>
|
|
|
|
#define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE
|
|
|
|
static int __skb_nsg(struct sk_buff *skb, int offset, int len,
|
|
unsigned int recursion_level)
|
|
{
|
|
int start = skb_headlen(skb);
|
|
int i, chunk = start - offset;
|
|
struct sk_buff *frag_iter;
|
|
int elt = 0;
|
|
|
|
if (unlikely(recursion_level >= 24))
|
|
return -EMSGSIZE;
|
|
|
|
if (chunk > 0) {
|
|
if (chunk > len)
|
|
chunk = len;
|
|
elt++;
|
|
len -= chunk;
|
|
if (len == 0)
|
|
return elt;
|
|
offset += chunk;
|
|
}
|
|
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
int end;
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
|
|
chunk = end - offset;
|
|
if (chunk > 0) {
|
|
if (chunk > len)
|
|
chunk = len;
|
|
elt++;
|
|
len -= chunk;
|
|
if (len == 0)
|
|
return elt;
|
|
offset += chunk;
|
|
}
|
|
start = end;
|
|
}
|
|
|
|
if (unlikely(skb_has_frag_list(skb))) {
|
|
skb_walk_frags(skb, frag_iter) {
|
|
int end, ret;
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + frag_iter->len;
|
|
chunk = end - offset;
|
|
if (chunk > 0) {
|
|
if (chunk > len)
|
|
chunk = len;
|
|
ret = __skb_nsg(frag_iter, offset - start, chunk,
|
|
recursion_level + 1);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
elt += ret;
|
|
len -= chunk;
|
|
if (len == 0)
|
|
return elt;
|
|
offset += chunk;
|
|
}
|
|
start = end;
|
|
}
|
|
}
|
|
BUG_ON(len);
|
|
return elt;
|
|
}
|
|
|
|
/* Return the number of scatterlist elements required to completely map the
|
|
* skb, or -EMSGSIZE if the recursion depth is exceeded.
|
|
*/
|
|
static int skb_nsg(struct sk_buff *skb, int offset, int len)
|
|
{
|
|
return __skb_nsg(skb, offset, len, 0);
|
|
}
|
|
|
|
static void tls_decrypt_done(struct crypto_async_request *req, int err)
|
|
{
|
|
struct aead_request *aead_req = (struct aead_request *)req;
|
|
struct scatterlist *sgout = aead_req->dst;
|
|
struct tls_sw_context_rx *ctx;
|
|
struct tls_context *tls_ctx;
|
|
struct scatterlist *sg;
|
|
struct sk_buff *skb;
|
|
unsigned int pages;
|
|
int pending;
|
|
|
|
skb = (struct sk_buff *)req->data;
|
|
tls_ctx = tls_get_ctx(skb->sk);
|
|
ctx = tls_sw_ctx_rx(tls_ctx);
|
|
pending = atomic_dec_return(&ctx->decrypt_pending);
|
|
|
|
/* Propagate if there was an err */
|
|
if (err) {
|
|
ctx->async_wait.err = err;
|
|
tls_err_abort(skb->sk, err);
|
|
}
|
|
|
|
/* After using skb->sk to propagate sk through crypto async callback
|
|
* we need to NULL it again.
|
|
*/
|
|
skb->sk = NULL;
|
|
|
|
/* Release the skb, pages and memory allocated for crypto req */
|
|
kfree_skb(skb);
|
|
|
|
/* Skip the first S/G entry as it points to AAD */
|
|
for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
|
|
if (!sg)
|
|
break;
|
|
put_page(sg_page(sg));
|
|
}
|
|
|
|
kfree(aead_req);
|
|
|
|
if (!pending && READ_ONCE(ctx->async_notify))
|
|
complete(&ctx->async_wait.completion);
|
|
}
|
|
|
|
static int tls_do_decryption(struct sock *sk,
|
|
struct sk_buff *skb,
|
|
struct scatterlist *sgin,
|
|
struct scatterlist *sgout,
|
|
char *iv_recv,
|
|
size_t data_len,
|
|
struct aead_request *aead_req,
|
|
bool async)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
int ret;
|
|
|
|
aead_request_set_tfm(aead_req, ctx->aead_recv);
|
|
aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
|
|
aead_request_set_crypt(aead_req, sgin, sgout,
|
|
data_len + tls_ctx->rx.tag_size,
|
|
(u8 *)iv_recv);
|
|
|
|
if (async) {
|
|
/* Using skb->sk to push sk through to crypto async callback
|
|
* handler. This allows propagating errors up to the socket
|
|
* if needed. It _must_ be cleared in the async handler
|
|
* before kfree_skb is called. We _know_ skb->sk is NULL
|
|
* because it is a clone from strparser.
|
|
*/
|
|
skb->sk = sk;
|
|
aead_request_set_callback(aead_req,
|
|
CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
tls_decrypt_done, skb);
|
|
atomic_inc(&ctx->decrypt_pending);
|
|
} else {
|
|
aead_request_set_callback(aead_req,
|
|
CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
crypto_req_done, &ctx->async_wait);
|
|
}
|
|
|
|
ret = crypto_aead_decrypt(aead_req);
|
|
if (ret == -EINPROGRESS) {
|
|
if (async)
|
|
return ret;
|
|
|
|
ret = crypto_wait_req(ret, &ctx->async_wait);
|
|
}
|
|
|
|
if (async)
|
|
atomic_dec(&ctx->decrypt_pending);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void tls_trim_both_msgs(struct sock *sk, int target_size)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec = ctx->open_rec;
|
|
|
|
sk_msg_trim(sk, &rec->msg_plaintext, target_size);
|
|
if (target_size > 0)
|
|
target_size += tls_ctx->tx.overhead_size;
|
|
sk_msg_trim(sk, &rec->msg_encrypted, target_size);
|
|
}
|
|
|
|
static int tls_alloc_encrypted_msg(struct sock *sk, int len)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec = ctx->open_rec;
|
|
struct sk_msg *msg_en = &rec->msg_encrypted;
|
|
|
|
return sk_msg_alloc(sk, msg_en, len, 0);
|
|
}
|
|
|
|
static int tls_clone_plaintext_msg(struct sock *sk, int required)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec = ctx->open_rec;
|
|
struct sk_msg *msg_pl = &rec->msg_plaintext;
|
|
struct sk_msg *msg_en = &rec->msg_encrypted;
|
|
int skip, len;
|
|
|
|
/* We add page references worth len bytes from encrypted sg
|
|
* at the end of plaintext sg. It is guaranteed that msg_en
|
|
* has enough required room (ensured by caller).
|
|
*/
|
|
len = required - msg_pl->sg.size;
|
|
|
|
/* Skip initial bytes in msg_en's data to be able to use
|
|
* same offset of both plain and encrypted data.
|
|
*/
|
|
skip = tls_ctx->tx.prepend_size + msg_pl->sg.size;
|
|
|
|
return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
|
|
}
|
|
|
|
static struct tls_rec *tls_get_rec(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct sk_msg *msg_pl, *msg_en;
|
|
struct tls_rec *rec;
|
|
int mem_size;
|
|
|
|
mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
|
|
|
|
rec = kzalloc(mem_size, sk->sk_allocation);
|
|
if (!rec)
|
|
return NULL;
|
|
|
|
msg_pl = &rec->msg_plaintext;
|
|
msg_en = &rec->msg_encrypted;
|
|
|
|
sk_msg_init(msg_pl);
|
|
sk_msg_init(msg_en);
|
|
|
|
sg_init_table(rec->sg_aead_in, 2);
|
|
sg_set_buf(&rec->sg_aead_in[0], rec->aad_space,
|
|
sizeof(rec->aad_space));
|
|
sg_unmark_end(&rec->sg_aead_in[1]);
|
|
|
|
sg_init_table(rec->sg_aead_out, 2);
|
|
sg_set_buf(&rec->sg_aead_out[0], rec->aad_space,
|
|
sizeof(rec->aad_space));
|
|
sg_unmark_end(&rec->sg_aead_out[1]);
|
|
|
|
return rec;
|
|
}
|
|
|
|
static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
|
|
{
|
|
sk_msg_free(sk, &rec->msg_encrypted);
|
|
sk_msg_free(sk, &rec->msg_plaintext);
|
|
kfree(rec);
|
|
}
|
|
|
|
static void tls_free_open_rec(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec = ctx->open_rec;
|
|
|
|
if (rec) {
|
|
tls_free_rec(sk, rec);
|
|
ctx->open_rec = NULL;
|
|
}
|
|
}
|
|
|
|
int tls_tx_records(struct sock *sk, int flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec, *tmp;
|
|
struct sk_msg *msg_en;
|
|
int tx_flags, rc = 0;
|
|
|
|
if (tls_is_partially_sent_record(tls_ctx)) {
|
|
rec = list_first_entry(&ctx->tx_list,
|
|
struct tls_rec, list);
|
|
|
|
if (flags == -1)
|
|
tx_flags = rec->tx_flags;
|
|
else
|
|
tx_flags = flags;
|
|
|
|
rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
|
|
if (rc)
|
|
goto tx_err;
|
|
|
|
/* Full record has been transmitted.
|
|
* Remove the head of tx_list
|
|
*/
|
|
list_del(&rec->list);
|
|
sk_msg_free(sk, &rec->msg_plaintext);
|
|
kfree(rec);
|
|
}
|
|
|
|
/* Tx all ready records */
|
|
list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
|
|
if (READ_ONCE(rec->tx_ready)) {
|
|
if (flags == -1)
|
|
tx_flags = rec->tx_flags;
|
|
else
|
|
tx_flags = flags;
|
|
|
|
msg_en = &rec->msg_encrypted;
|
|
rc = tls_push_sg(sk, tls_ctx,
|
|
&msg_en->sg.data[msg_en->sg.curr],
|
|
0, tx_flags);
|
|
if (rc)
|
|
goto tx_err;
|
|
|
|
list_del(&rec->list);
|
|
sk_msg_free(sk, &rec->msg_plaintext);
|
|
kfree(rec);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
tx_err:
|
|
if (rc < 0 && rc != -EAGAIN)
|
|
tls_err_abort(sk, EBADMSG);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void tls_encrypt_done(struct crypto_async_request *req, int err)
|
|
{
|
|
struct aead_request *aead_req = (struct aead_request *)req;
|
|
struct sock *sk = req->data;
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct scatterlist *sge;
|
|
struct sk_msg *msg_en;
|
|
struct tls_rec *rec;
|
|
bool ready = false;
|
|
int pending;
|
|
|
|
rec = container_of(aead_req, struct tls_rec, aead_req);
|
|
msg_en = &rec->msg_encrypted;
|
|
|
|
sge = sk_msg_elem(msg_en, msg_en->sg.curr);
|
|
sge->offset -= tls_ctx->tx.prepend_size;
|
|
sge->length += tls_ctx->tx.prepend_size;
|
|
|
|
/* Check if error is previously set on socket */
|
|
if (err || sk->sk_err) {
|
|
rec = NULL;
|
|
|
|
/* If err is already set on socket, return the same code */
|
|
if (sk->sk_err) {
|
|
ctx->async_wait.err = sk->sk_err;
|
|
} else {
|
|
ctx->async_wait.err = err;
|
|
tls_err_abort(sk, err);
|
|
}
|
|
}
|
|
|
|
if (rec) {
|
|
struct tls_rec *first_rec;
|
|
|
|
/* Mark the record as ready for transmission */
|
|
smp_store_mb(rec->tx_ready, true);
|
|
|
|
/* If received record is at head of tx_list, schedule tx */
|
|
first_rec = list_first_entry(&ctx->tx_list,
|
|
struct tls_rec, list);
|
|
if (rec == first_rec)
|
|
ready = true;
|
|
}
|
|
|
|
pending = atomic_dec_return(&ctx->encrypt_pending);
|
|
|
|
if (!pending && READ_ONCE(ctx->async_notify))
|
|
complete(&ctx->async_wait.completion);
|
|
|
|
if (!ready)
|
|
return;
|
|
|
|
/* Schedule the transmission */
|
|
if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
|
|
schedule_delayed_work(&ctx->tx_work.work, 1);
|
|
}
|
|
|
|
static int tls_do_encryption(struct sock *sk,
|
|
struct tls_context *tls_ctx,
|
|
struct tls_sw_context_tx *ctx,
|
|
struct aead_request *aead_req,
|
|
size_t data_len, u32 start)
|
|
{
|
|
struct tls_rec *rec = ctx->open_rec;
|
|
struct sk_msg *msg_en = &rec->msg_encrypted;
|
|
struct scatterlist *sge = sk_msg_elem(msg_en, start);
|
|
int rc;
|
|
|
|
sge->offset += tls_ctx->tx.prepend_size;
|
|
sge->length -= tls_ctx->tx.prepend_size;
|
|
|
|
msg_en->sg.curr = start;
|
|
|
|
aead_request_set_tfm(aead_req, ctx->aead_send);
|
|
aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
|
|
aead_request_set_crypt(aead_req, rec->sg_aead_in,
|
|
rec->sg_aead_out,
|
|
data_len, tls_ctx->tx.iv);
|
|
|
|
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
tls_encrypt_done, sk);
|
|
|
|
/* Add the record in tx_list */
|
|
list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
|
|
atomic_inc(&ctx->encrypt_pending);
|
|
|
|
rc = crypto_aead_encrypt(aead_req);
|
|
if (!rc || rc != -EINPROGRESS) {
|
|
atomic_dec(&ctx->encrypt_pending);
|
|
sge->offset -= tls_ctx->tx.prepend_size;
|
|
sge->length += tls_ctx->tx.prepend_size;
|
|
}
|
|
|
|
if (!rc) {
|
|
WRITE_ONCE(rec->tx_ready, true);
|
|
} else if (rc != -EINPROGRESS) {
|
|
list_del(&rec->list);
|
|
return rc;
|
|
}
|
|
|
|
/* Unhook the record from context if encryption is not failure */
|
|
ctx->open_rec = NULL;
|
|
tls_advance_record_sn(sk, &tls_ctx->tx);
|
|
return rc;
|
|
}
|
|
|
|
static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
|
|
struct tls_rec **to, struct sk_msg *msg_opl,
|
|
struct sk_msg *msg_oen, u32 split_point,
|
|
u32 tx_overhead_size, u32 *orig_end)
|
|
{
|
|
u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
|
|
struct scatterlist *sge, *osge, *nsge;
|
|
u32 orig_size = msg_opl->sg.size;
|
|
struct scatterlist tmp = { };
|
|
struct sk_msg *msg_npl;
|
|
struct tls_rec *new;
|
|
int ret;
|
|
|
|
new = tls_get_rec(sk);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
|
|
tx_overhead_size, 0);
|
|
if (ret < 0) {
|
|
tls_free_rec(sk, new);
|
|
return ret;
|
|
}
|
|
|
|
*orig_end = msg_opl->sg.end;
|
|
i = msg_opl->sg.start;
|
|
sge = sk_msg_elem(msg_opl, i);
|
|
while (apply && sge->length) {
|
|
if (sge->length > apply) {
|
|
u32 len = sge->length - apply;
|
|
|
|
get_page(sg_page(sge));
|
|
sg_set_page(&tmp, sg_page(sge), len,
|
|
sge->offset + apply);
|
|
sge->length = apply;
|
|
bytes += apply;
|
|
apply = 0;
|
|
} else {
|
|
apply -= sge->length;
|
|
bytes += sge->length;
|
|
}
|
|
|
|
sk_msg_iter_var_next(i);
|
|
if (i == msg_opl->sg.end)
|
|
break;
|
|
sge = sk_msg_elem(msg_opl, i);
|
|
}
|
|
|
|
msg_opl->sg.end = i;
|
|
msg_opl->sg.curr = i;
|
|
msg_opl->sg.copybreak = 0;
|
|
msg_opl->apply_bytes = 0;
|
|
msg_opl->sg.size = bytes;
|
|
|
|
msg_npl = &new->msg_plaintext;
|
|
msg_npl->apply_bytes = apply;
|
|
msg_npl->sg.size = orig_size - bytes;
|
|
|
|
j = msg_npl->sg.start;
|
|
nsge = sk_msg_elem(msg_npl, j);
|
|
if (tmp.length) {
|
|
memcpy(nsge, &tmp, sizeof(*nsge));
|
|
sk_msg_iter_var_next(j);
|
|
nsge = sk_msg_elem(msg_npl, j);
|
|
}
|
|
|
|
osge = sk_msg_elem(msg_opl, i);
|
|
while (osge->length) {
|
|
memcpy(nsge, osge, sizeof(*nsge));
|
|
sg_unmark_end(nsge);
|
|
sk_msg_iter_var_next(i);
|
|
sk_msg_iter_var_next(j);
|
|
if (i == *orig_end)
|
|
break;
|
|
osge = sk_msg_elem(msg_opl, i);
|
|
nsge = sk_msg_elem(msg_npl, j);
|
|
}
|
|
|
|
msg_npl->sg.end = j;
|
|
msg_npl->sg.curr = j;
|
|
msg_npl->sg.copybreak = 0;
|
|
|
|
*to = new;
|
|
return 0;
|
|
}
|
|
|
|
static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
|
|
struct tls_rec *from, u32 orig_end)
|
|
{
|
|
struct sk_msg *msg_npl = &from->msg_plaintext;
|
|
struct sk_msg *msg_opl = &to->msg_plaintext;
|
|
struct scatterlist *osge, *nsge;
|
|
u32 i, j;
|
|
|
|
i = msg_opl->sg.end;
|
|
sk_msg_iter_var_prev(i);
|
|
j = msg_npl->sg.start;
|
|
|
|
osge = sk_msg_elem(msg_opl, i);
|
|
nsge = sk_msg_elem(msg_npl, j);
|
|
|
|
if (sg_page(osge) == sg_page(nsge) &&
|
|
osge->offset + osge->length == nsge->offset) {
|
|
osge->length += nsge->length;
|
|
put_page(sg_page(nsge));
|
|
}
|
|
|
|
msg_opl->sg.end = orig_end;
|
|
msg_opl->sg.curr = orig_end;
|
|
msg_opl->sg.copybreak = 0;
|
|
msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
|
|
msg_opl->sg.size += msg_npl->sg.size;
|
|
|
|
sk_msg_free(sk, &to->msg_encrypted);
|
|
sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
|
|
|
|
kfree(from);
|
|
}
|
|
|
|
static int tls_push_record(struct sock *sk, int flags,
|
|
unsigned char record_type)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
|
|
u32 i, split_point, uninitialized_var(orig_end);
|
|
struct sk_msg *msg_pl, *msg_en;
|
|
struct aead_request *req;
|
|
bool split;
|
|
int rc;
|
|
|
|
if (!rec)
|
|
return 0;
|
|
|
|
msg_pl = &rec->msg_plaintext;
|
|
msg_en = &rec->msg_encrypted;
|
|
|
|
split_point = msg_pl->apply_bytes;
|
|
split = split_point && split_point < msg_pl->sg.size;
|
|
if (split) {
|
|
rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
|
|
split_point, tls_ctx->tx.overhead_size,
|
|
&orig_end);
|
|
if (rc < 0)
|
|
return rc;
|
|
sk_msg_trim(sk, msg_en, msg_pl->sg.size +
|
|
tls_ctx->tx.overhead_size);
|
|
}
|
|
|
|
rec->tx_flags = flags;
|
|
req = &rec->aead_req;
|
|
|
|
i = msg_pl->sg.end;
|
|
sk_msg_iter_var_prev(i);
|
|
sg_mark_end(sk_msg_elem(msg_pl, i));
|
|
|
|
i = msg_pl->sg.start;
|
|
sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
|
|
&msg_en->sg.data[i] : &msg_pl->sg.data[i]);
|
|
|
|
i = msg_en->sg.end;
|
|
sk_msg_iter_var_prev(i);
|
|
sg_mark_end(sk_msg_elem(msg_en, i));
|
|
|
|
i = msg_en->sg.start;
|
|
sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
|
|
|
|
tls_make_aad(rec->aad_space, msg_pl->sg.size,
|
|
tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
|
|
record_type);
|
|
|
|
tls_fill_prepend(tls_ctx,
|
|
page_address(sg_page(&msg_en->sg.data[i])) +
|
|
msg_en->sg.data[i].offset, msg_pl->sg.size,
|
|
record_type);
|
|
|
|
tls_ctx->pending_open_record_frags = false;
|
|
|
|
rc = tls_do_encryption(sk, tls_ctx, ctx, req, msg_pl->sg.size, i);
|
|
if (rc < 0) {
|
|
if (rc != -EINPROGRESS) {
|
|
tls_err_abort(sk, EBADMSG);
|
|
if (split) {
|
|
tls_ctx->pending_open_record_frags = true;
|
|
tls_merge_open_record(sk, rec, tmp, orig_end);
|
|
}
|
|
}
|
|
return rc;
|
|
} else if (split) {
|
|
msg_pl = &tmp->msg_plaintext;
|
|
msg_en = &tmp->msg_encrypted;
|
|
sk_msg_trim(sk, msg_en, msg_pl->sg.size +
|
|
tls_ctx->tx.overhead_size);
|
|
tls_ctx->pending_open_record_frags = true;
|
|
ctx->open_rec = tmp;
|
|
}
|
|
|
|
return tls_tx_records(sk, flags);
|
|
}
|
|
|
|
static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
|
|
bool full_record, u8 record_type,
|
|
size_t *copied, int flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct sk_msg msg_redir = { };
|
|
struct sk_psock *psock;
|
|
struct sock *sk_redir;
|
|
struct tls_rec *rec;
|
|
int err = 0, send;
|
|
bool enospc;
|
|
|
|
psock = sk_psock_get(sk);
|
|
if (!psock)
|
|
return tls_push_record(sk, flags, record_type);
|
|
more_data:
|
|
enospc = sk_msg_full(msg);
|
|
if (psock->eval == __SK_NONE)
|
|
psock->eval = sk_psock_msg_verdict(sk, psock, msg);
|
|
if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
|
|
!enospc && !full_record) {
|
|
err = -ENOSPC;
|
|
goto out_err;
|
|
}
|
|
msg->cork_bytes = 0;
|
|
send = msg->sg.size;
|
|
if (msg->apply_bytes && msg->apply_bytes < send)
|
|
send = msg->apply_bytes;
|
|
|
|
switch (psock->eval) {
|
|
case __SK_PASS:
|
|
err = tls_push_record(sk, flags, record_type);
|
|
if (err < 0) {
|
|
*copied -= sk_msg_free(sk, msg);
|
|
tls_free_open_rec(sk);
|
|
goto out_err;
|
|
}
|
|
break;
|
|
case __SK_REDIRECT:
|
|
sk_redir = psock->sk_redir;
|
|
memcpy(&msg_redir, msg, sizeof(*msg));
|
|
if (msg->apply_bytes < send)
|
|
msg->apply_bytes = 0;
|
|
else
|
|
msg->apply_bytes -= send;
|
|
sk_msg_return_zero(sk, msg, send);
|
|
msg->sg.size -= send;
|
|
release_sock(sk);
|
|
err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
|
|
lock_sock(sk);
|
|
if (err < 0) {
|
|
*copied -= sk_msg_free_nocharge(sk, &msg_redir);
|
|
msg->sg.size = 0;
|
|
}
|
|
if (msg->sg.size == 0)
|
|
tls_free_open_rec(sk);
|
|
break;
|
|
case __SK_DROP:
|
|
default:
|
|
sk_msg_free_partial(sk, msg, send);
|
|
if (msg->apply_bytes < send)
|
|
msg->apply_bytes = 0;
|
|
else
|
|
msg->apply_bytes -= send;
|
|
if (msg->sg.size == 0)
|
|
tls_free_open_rec(sk);
|
|
*copied -= send;
|
|
err = -EACCES;
|
|
}
|
|
|
|
if (likely(!err)) {
|
|
bool reset_eval = !ctx->open_rec;
|
|
|
|
rec = ctx->open_rec;
|
|
if (rec) {
|
|
msg = &rec->msg_plaintext;
|
|
if (!msg->apply_bytes)
|
|
reset_eval = true;
|
|
}
|
|
if (reset_eval) {
|
|
psock->eval = __SK_NONE;
|
|
if (psock->sk_redir) {
|
|
sock_put(psock->sk_redir);
|
|
psock->sk_redir = NULL;
|
|
}
|
|
}
|
|
if (rec)
|
|
goto more_data;
|
|
}
|
|
out_err:
|
|
sk_psock_put(sk, psock);
|
|
return err;
|
|
}
|
|
|
|
static int tls_sw_push_pending_record(struct sock *sk, int flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec = ctx->open_rec;
|
|
struct sk_msg *msg_pl;
|
|
size_t copied;
|
|
|
|
if (!rec)
|
|
return 0;
|
|
|
|
msg_pl = &rec->msg_plaintext;
|
|
copied = msg_pl->sg.size;
|
|
if (!copied)
|
|
return 0;
|
|
|
|
return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
|
|
&copied, flags);
|
|
}
|
|
|
|
int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
|
|
{
|
|
long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct crypto_tfm *tfm = crypto_aead_tfm(ctx->aead_send);
|
|
bool async_capable = tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
|
|
unsigned char record_type = TLS_RECORD_TYPE_DATA;
|
|
bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
|
|
bool eor = !(msg->msg_flags & MSG_MORE);
|
|
size_t try_to_copy, copied = 0;
|
|
struct sk_msg *msg_pl, *msg_en;
|
|
struct tls_rec *rec;
|
|
int required_size;
|
|
int num_async = 0;
|
|
bool full_record;
|
|
int record_room;
|
|
int num_zc = 0;
|
|
int orig_size;
|
|
int ret = 0;
|
|
|
|
if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
|
|
return -ENOTSUPP;
|
|
|
|
lock_sock(sk);
|
|
|
|
/* Wait till there is any pending write on socket */
|
|
if (unlikely(sk->sk_write_pending)) {
|
|
ret = wait_on_pending_writer(sk, &timeo);
|
|
if (unlikely(ret))
|
|
goto send_end;
|
|
}
|
|
|
|
if (unlikely(msg->msg_controllen)) {
|
|
ret = tls_proccess_cmsg(sk, msg, &record_type);
|
|
if (ret) {
|
|
if (ret == -EINPROGRESS)
|
|
num_async++;
|
|
else if (ret != -EAGAIN)
|
|
goto send_end;
|
|
}
|
|
}
|
|
|
|
while (msg_data_left(msg)) {
|
|
if (sk->sk_err) {
|
|
ret = -sk->sk_err;
|
|
goto send_end;
|
|
}
|
|
|
|
if (ctx->open_rec)
|
|
rec = ctx->open_rec;
|
|
else
|
|
rec = ctx->open_rec = tls_get_rec(sk);
|
|
if (!rec) {
|
|
ret = -ENOMEM;
|
|
goto send_end;
|
|
}
|
|
|
|
msg_pl = &rec->msg_plaintext;
|
|
msg_en = &rec->msg_encrypted;
|
|
|
|
orig_size = msg_pl->sg.size;
|
|
full_record = false;
|
|
try_to_copy = msg_data_left(msg);
|
|
record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
|
|
if (try_to_copy >= record_room) {
|
|
try_to_copy = record_room;
|
|
full_record = true;
|
|
}
|
|
|
|
required_size = msg_pl->sg.size + try_to_copy +
|
|
tls_ctx->tx.overhead_size;
|
|
|
|
if (!sk_stream_memory_free(sk))
|
|
goto wait_for_sndbuf;
|
|
|
|
alloc_encrypted:
|
|
ret = tls_alloc_encrypted_msg(sk, required_size);
|
|
if (ret) {
|
|
if (ret != -ENOSPC)
|
|
goto wait_for_memory;
|
|
|
|
/* Adjust try_to_copy according to the amount that was
|
|
* actually allocated. The difference is due
|
|
* to max sg elements limit
|
|
*/
|
|
try_to_copy -= required_size - msg_en->sg.size;
|
|
full_record = true;
|
|
}
|
|
|
|
if (!is_kvec && (full_record || eor) && !async_capable) {
|
|
u32 first = msg_pl->sg.end;
|
|
|
|
ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
|
|
msg_pl, try_to_copy);
|
|
if (ret)
|
|
goto fallback_to_reg_send;
|
|
|
|
rec->inplace_crypto = 0;
|
|
|
|
num_zc++;
|
|
copied += try_to_copy;
|
|
|
|
sk_msg_sg_copy_set(msg_pl, first);
|
|
ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
|
|
record_type, &copied,
|
|
msg->msg_flags);
|
|
if (ret) {
|
|
if (ret == -EINPROGRESS)
|
|
num_async++;
|
|
else if (ret == -ENOMEM)
|
|
goto wait_for_memory;
|
|
else if (ret == -ENOSPC)
|
|
goto rollback_iter;
|
|
else if (ret != -EAGAIN)
|
|
goto send_end;
|
|
}
|
|
continue;
|
|
rollback_iter:
|
|
copied -= try_to_copy;
|
|
sk_msg_sg_copy_clear(msg_pl, first);
|
|
iov_iter_revert(&msg->msg_iter,
|
|
msg_pl->sg.size - orig_size);
|
|
fallback_to_reg_send:
|
|
sk_msg_trim(sk, msg_pl, orig_size);
|
|
}
|
|
|
|
required_size = msg_pl->sg.size + try_to_copy;
|
|
|
|
ret = tls_clone_plaintext_msg(sk, required_size);
|
|
if (ret) {
|
|
if (ret != -ENOSPC)
|
|
goto send_end;
|
|
|
|
/* Adjust try_to_copy according to the amount that was
|
|
* actually allocated. The difference is due
|
|
* to max sg elements limit
|
|
*/
|
|
try_to_copy -= required_size - msg_pl->sg.size;
|
|
full_record = true;
|
|
sk_msg_trim(sk, msg_en, msg_pl->sg.size +
|
|
tls_ctx->tx.overhead_size);
|
|
}
|
|
|
|
ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, msg_pl,
|
|
try_to_copy);
|
|
if (ret < 0)
|
|
goto trim_sgl;
|
|
|
|
/* Open records defined only if successfully copied, otherwise
|
|
* we would trim the sg but not reset the open record frags.
|
|
*/
|
|
tls_ctx->pending_open_record_frags = true;
|
|
copied += try_to_copy;
|
|
if (full_record || eor) {
|
|
ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
|
|
record_type, &copied,
|
|
msg->msg_flags);
|
|
if (ret) {
|
|
if (ret == -EINPROGRESS)
|
|
num_async++;
|
|
else if (ret == -ENOMEM)
|
|
goto wait_for_memory;
|
|
else if (ret != -EAGAIN) {
|
|
if (ret == -ENOSPC)
|
|
ret = 0;
|
|
goto send_end;
|
|
}
|
|
}
|
|
}
|
|
|
|
continue;
|
|
|
|
wait_for_sndbuf:
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
wait_for_memory:
|
|
ret = sk_stream_wait_memory(sk, &timeo);
|
|
if (ret) {
|
|
trim_sgl:
|
|
tls_trim_both_msgs(sk, orig_size);
|
|
goto send_end;
|
|
}
|
|
|
|
if (msg_en->sg.size < required_size)
|
|
goto alloc_encrypted;
|
|
}
|
|
|
|
if (!num_async) {
|
|
goto send_end;
|
|
} else if (num_zc) {
|
|
/* Wait for pending encryptions to get completed */
|
|
smp_store_mb(ctx->async_notify, true);
|
|
|
|
if (atomic_read(&ctx->encrypt_pending))
|
|
crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
|
|
else
|
|
reinit_completion(&ctx->async_wait.completion);
|
|
|
|
WRITE_ONCE(ctx->async_notify, false);
|
|
|
|
if (ctx->async_wait.err) {
|
|
ret = ctx->async_wait.err;
|
|
copied = 0;
|
|
}
|
|
}
|
|
|
|
/* Transmit if any encryptions have completed */
|
|
if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
|
|
cancel_delayed_work(&ctx->tx_work.work);
|
|
tls_tx_records(sk, msg->msg_flags);
|
|
}
|
|
|
|
send_end:
|
|
ret = sk_stream_error(sk, msg->msg_flags, ret);
|
|
|
|
release_sock(sk);
|
|
return copied ? copied : ret;
|
|
}
|
|
|
|
int tls_sw_sendpage(struct sock *sk, struct page *page,
|
|
int offset, size_t size, int flags)
|
|
{
|
|
long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
unsigned char record_type = TLS_RECORD_TYPE_DATA;
|
|
struct sk_msg *msg_pl;
|
|
struct tls_rec *rec;
|
|
int num_async = 0;
|
|
size_t copied = 0;
|
|
bool full_record;
|
|
int record_room;
|
|
int ret = 0;
|
|
bool eor;
|
|
|
|
if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
|
|
MSG_SENDPAGE_NOTLAST))
|
|
return -ENOTSUPP;
|
|
|
|
/* No MSG_EOR from splice, only look at MSG_MORE */
|
|
eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
|
|
|
|
lock_sock(sk);
|
|
|
|
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
|
|
|
|
/* Wait till there is any pending write on socket */
|
|
if (unlikely(sk->sk_write_pending)) {
|
|
ret = wait_on_pending_writer(sk, &timeo);
|
|
if (unlikely(ret))
|
|
goto sendpage_end;
|
|
}
|
|
|
|
/* Call the sk_stream functions to manage the sndbuf mem. */
|
|
while (size > 0) {
|
|
size_t copy, required_size;
|
|
|
|
if (sk->sk_err) {
|
|
ret = -sk->sk_err;
|
|
goto sendpage_end;
|
|
}
|
|
|
|
if (ctx->open_rec)
|
|
rec = ctx->open_rec;
|
|
else
|
|
rec = ctx->open_rec = tls_get_rec(sk);
|
|
if (!rec) {
|
|
ret = -ENOMEM;
|
|
goto sendpage_end;
|
|
}
|
|
|
|
msg_pl = &rec->msg_plaintext;
|
|
|
|
full_record = false;
|
|
record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
|
|
copied = 0;
|
|
copy = size;
|
|
if (copy >= record_room) {
|
|
copy = record_room;
|
|
full_record = true;
|
|
}
|
|
|
|
required_size = msg_pl->sg.size + copy +
|
|
tls_ctx->tx.overhead_size;
|
|
|
|
if (!sk_stream_memory_free(sk))
|
|
goto wait_for_sndbuf;
|
|
alloc_payload:
|
|
ret = tls_alloc_encrypted_msg(sk, required_size);
|
|
if (ret) {
|
|
if (ret != -ENOSPC)
|
|
goto wait_for_memory;
|
|
|
|
/* Adjust copy according to the amount that was
|
|
* actually allocated. The difference is due
|
|
* to max sg elements limit
|
|
*/
|
|
copy -= required_size - msg_pl->sg.size;
|
|
full_record = true;
|
|
}
|
|
|
|
sk_msg_page_add(msg_pl, page, copy, offset);
|
|
sk_mem_charge(sk, copy);
|
|
|
|
offset += copy;
|
|
size -= copy;
|
|
copied += copy;
|
|
|
|
tls_ctx->pending_open_record_frags = true;
|
|
if (full_record || eor || sk_msg_full(msg_pl)) {
|
|
rec->inplace_crypto = 0;
|
|
ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
|
|
record_type, &copied, flags);
|
|
if (ret) {
|
|
if (ret == -EINPROGRESS)
|
|
num_async++;
|
|
else if (ret == -ENOMEM)
|
|
goto wait_for_memory;
|
|
else if (ret != -EAGAIN) {
|
|
if (ret == -ENOSPC)
|
|
ret = 0;
|
|
goto sendpage_end;
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
wait_for_sndbuf:
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
wait_for_memory:
|
|
ret = sk_stream_wait_memory(sk, &timeo);
|
|
if (ret) {
|
|
tls_trim_both_msgs(sk, msg_pl->sg.size);
|
|
goto sendpage_end;
|
|
}
|
|
|
|
goto alloc_payload;
|
|
}
|
|
|
|
if (num_async) {
|
|
/* Transmit if any encryptions have completed */
|
|
if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
|
|
cancel_delayed_work(&ctx->tx_work.work);
|
|
tls_tx_records(sk, flags);
|
|
}
|
|
}
|
|
sendpage_end:
|
|
ret = sk_stream_error(sk, flags, ret);
|
|
release_sock(sk);
|
|
return copied ? copied : ret;
|
|
}
|
|
|
|
static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
|
|
int flags, long timeo, int *err)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct sk_buff *skb;
|
|
DEFINE_WAIT_FUNC(wait, woken_wake_function);
|
|
|
|
while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
|
|
if (sk->sk_err) {
|
|
*err = sock_error(sk);
|
|
return NULL;
|
|
}
|
|
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN)
|
|
return NULL;
|
|
|
|
if (sock_flag(sk, SOCK_DONE))
|
|
return NULL;
|
|
|
|
if ((flags & MSG_DONTWAIT) || !timeo) {
|
|
*err = -EAGAIN;
|
|
return NULL;
|
|
}
|
|
|
|
add_wait_queue(sk_sleep(sk), &wait);
|
|
sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
|
|
sk_wait_event(sk, &timeo,
|
|
ctx->recv_pkt != skb ||
|
|
!sk_psock_queue_empty(psock),
|
|
&wait);
|
|
sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
|
|
remove_wait_queue(sk_sleep(sk), &wait);
|
|
|
|
/* Handle signals */
|
|
if (signal_pending(current)) {
|
|
*err = sock_intr_errno(timeo);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
|
|
static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
|
|
int length, int *pages_used,
|
|
unsigned int *size_used,
|
|
struct scatterlist *to,
|
|
int to_max_pages)
|
|
{
|
|
int rc = 0, i = 0, num_elem = *pages_used, maxpages;
|
|
struct page *pages[MAX_SKB_FRAGS];
|
|
unsigned int size = *size_used;
|
|
ssize_t copied, use;
|
|
size_t offset;
|
|
|
|
while (length > 0) {
|
|
i = 0;
|
|
maxpages = to_max_pages - num_elem;
|
|
if (maxpages == 0) {
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
copied = iov_iter_get_pages(from, pages,
|
|
length,
|
|
maxpages, &offset);
|
|
if (copied <= 0) {
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
iov_iter_advance(from, copied);
|
|
|
|
length -= copied;
|
|
size += copied;
|
|
while (copied) {
|
|
use = min_t(int, copied, PAGE_SIZE - offset);
|
|
|
|
sg_set_page(&to[num_elem],
|
|
pages[i], use, offset);
|
|
sg_unmark_end(&to[num_elem]);
|
|
/* We do not uncharge memory from this API */
|
|
|
|
offset = 0;
|
|
copied -= use;
|
|
|
|
i++;
|
|
num_elem++;
|
|
}
|
|
}
|
|
/* Mark the end in the last sg entry if newly added */
|
|
if (num_elem > *pages_used)
|
|
sg_mark_end(&to[num_elem - 1]);
|
|
out:
|
|
if (rc)
|
|
iov_iter_revert(from, size - *size_used);
|
|
*size_used = size;
|
|
*pages_used = num_elem;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* This function decrypts the input skb into either out_iov or in out_sg
|
|
* or in skb buffers itself. The input parameter 'zc' indicates if
|
|
* zero-copy mode needs to be tried or not. With zero-copy mode, either
|
|
* out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
|
|
* NULL, then the decryption happens inside skb buffers itself, i.e.
|
|
* zero-copy gets disabled and 'zc' is updated.
|
|
*/
|
|
|
|
static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
|
|
struct iov_iter *out_iov,
|
|
struct scatterlist *out_sg,
|
|
int *chunk, bool *zc)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
|
|
struct aead_request *aead_req;
|
|
struct sk_buff *unused;
|
|
u8 *aad, *iv, *mem = NULL;
|
|
struct scatterlist *sgin = NULL;
|
|
struct scatterlist *sgout = NULL;
|
|
const int data_len = rxm->full_len - tls_ctx->rx.overhead_size;
|
|
|
|
if (*zc && (out_iov || out_sg)) {
|
|
if (out_iov)
|
|
n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
|
|
else
|
|
n_sgout = sg_nents(out_sg);
|
|
n_sgin = skb_nsg(skb, rxm->offset + tls_ctx->rx.prepend_size,
|
|
rxm->full_len - tls_ctx->rx.prepend_size);
|
|
} else {
|
|
n_sgout = 0;
|
|
*zc = false;
|
|
n_sgin = skb_cow_data(skb, 0, &unused);
|
|
}
|
|
|
|
if (n_sgin < 1)
|
|
return -EBADMSG;
|
|
|
|
/* Increment to accommodate AAD */
|
|
n_sgin = n_sgin + 1;
|
|
|
|
nsg = n_sgin + n_sgout;
|
|
|
|
aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
|
|
mem_size = aead_size + (nsg * sizeof(struct scatterlist));
|
|
mem_size = mem_size + TLS_AAD_SPACE_SIZE;
|
|
mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
|
|
|
|
/* Allocate a single block of memory which contains
|
|
* aead_req || sgin[] || sgout[] || aad || iv.
|
|
* This order achieves correct alignment for aead_req, sgin, sgout.
|
|
*/
|
|
mem = kmalloc(mem_size, sk->sk_allocation);
|
|
if (!mem)
|
|
return -ENOMEM;
|
|
|
|
/* Segment the allocated memory */
|
|
aead_req = (struct aead_request *)mem;
|
|
sgin = (struct scatterlist *)(mem + aead_size);
|
|
sgout = sgin + n_sgin;
|
|
aad = (u8 *)(sgout + n_sgout);
|
|
iv = aad + TLS_AAD_SPACE_SIZE;
|
|
|
|
/* Prepare IV */
|
|
err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
|
|
iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
|
|
tls_ctx->rx.iv_size);
|
|
if (err < 0) {
|
|
kfree(mem);
|
|
return err;
|
|
}
|
|
memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
|
|
|
|
/* Prepare AAD */
|
|
tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size,
|
|
tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size,
|
|
ctx->control);
|
|
|
|
/* Prepare sgin */
|
|
sg_init_table(sgin, n_sgin);
|
|
sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE);
|
|
err = skb_to_sgvec(skb, &sgin[1],
|
|
rxm->offset + tls_ctx->rx.prepend_size,
|
|
rxm->full_len - tls_ctx->rx.prepend_size);
|
|
if (err < 0) {
|
|
kfree(mem);
|
|
return err;
|
|
}
|
|
|
|
if (n_sgout) {
|
|
if (out_iov) {
|
|
sg_init_table(sgout, n_sgout);
|
|
sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE);
|
|
|
|
*chunk = 0;
|
|
err = tls_setup_from_iter(sk, out_iov, data_len,
|
|
&pages, chunk, &sgout[1],
|
|
(n_sgout - 1));
|
|
if (err < 0)
|
|
goto fallback_to_reg_recv;
|
|
} else if (out_sg) {
|
|
memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
|
|
} else {
|
|
goto fallback_to_reg_recv;
|
|
}
|
|
} else {
|
|
fallback_to_reg_recv:
|
|
sgout = sgin;
|
|
pages = 0;
|
|
*chunk = 0;
|
|
*zc = false;
|
|
}
|
|
|
|
/* Prepare and submit AEAD request */
|
|
err = tls_do_decryption(sk, skb, sgin, sgout, iv,
|
|
data_len, aead_req, *zc);
|
|
if (err == -EINPROGRESS)
|
|
return err;
|
|
|
|
/* Release the pages in case iov was mapped to pages */
|
|
for (; pages > 0; pages--)
|
|
put_page(sg_page(&sgout[pages]));
|
|
|
|
kfree(mem);
|
|
return err;
|
|
}
|
|
|
|
static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
|
|
struct iov_iter *dest, int *chunk, bool *zc)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
int err = 0;
|
|
|
|
#ifdef CONFIG_TLS_DEVICE
|
|
err = tls_device_decrypted(sk, skb);
|
|
if (err < 0)
|
|
return err;
|
|
#endif
|
|
if (!ctx->decrypted) {
|
|
err = decrypt_internal(sk, skb, dest, NULL, chunk, zc);
|
|
if (err < 0) {
|
|
if (err == -EINPROGRESS)
|
|
tls_advance_record_sn(sk, &tls_ctx->rx);
|
|
|
|
return err;
|
|
}
|
|
} else {
|
|
*zc = false;
|
|
}
|
|
|
|
rxm->offset += tls_ctx->rx.prepend_size;
|
|
rxm->full_len -= tls_ctx->rx.overhead_size;
|
|
tls_advance_record_sn(sk, &tls_ctx->rx);
|
|
ctx->decrypted = true;
|
|
ctx->saved_data_ready(sk);
|
|
|
|
return err;
|
|
}
|
|
|
|
int decrypt_skb(struct sock *sk, struct sk_buff *skb,
|
|
struct scatterlist *sgout)
|
|
{
|
|
bool zc = true;
|
|
int chunk;
|
|
|
|
return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc);
|
|
}
|
|
|
|
static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
|
|
unsigned int len)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
if (skb) {
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
|
|
if (len < rxm->full_len) {
|
|
rxm->offset += len;
|
|
rxm->full_len -= len;
|
|
return false;
|
|
}
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
/* Finished with message */
|
|
ctx->recv_pkt = NULL;
|
|
__strp_unpause(&ctx->strp);
|
|
|
|
return true;
|
|
}
|
|
|
|
int tls_sw_recvmsg(struct sock *sk,
|
|
struct msghdr *msg,
|
|
size_t len,
|
|
int nonblock,
|
|
int flags,
|
|
int *addr_len)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct sk_psock *psock;
|
|
unsigned char control;
|
|
struct strp_msg *rxm;
|
|
struct sk_buff *skb;
|
|
ssize_t copied = 0;
|
|
bool cmsg = false;
|
|
int target, err = 0;
|
|
long timeo;
|
|
bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
|
|
int num_async = 0;
|
|
|
|
flags |= nonblock;
|
|
|
|
if (unlikely(flags & MSG_ERRQUEUE))
|
|
return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
|
|
|
|
psock = sk_psock_get(sk);
|
|
lock_sock(sk);
|
|
|
|
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
|
|
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
|
|
do {
|
|
bool zc = false;
|
|
bool async = false;
|
|
int chunk = 0;
|
|
|
|
skb = tls_wait_data(sk, psock, flags, timeo, &err);
|
|
if (!skb) {
|
|
if (psock) {
|
|
int ret = __tcp_bpf_recvmsg(sk, psock, msg, len);
|
|
|
|
if (ret > 0) {
|
|
copied += ret;
|
|
len -= ret;
|
|
continue;
|
|
}
|
|
}
|
|
goto recv_end;
|
|
}
|
|
|
|
rxm = strp_msg(skb);
|
|
|
|
if (!cmsg) {
|
|
int cerr;
|
|
|
|
cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
|
|
sizeof(ctx->control), &ctx->control);
|
|
cmsg = true;
|
|
control = ctx->control;
|
|
if (ctx->control != TLS_RECORD_TYPE_DATA) {
|
|
if (cerr || msg->msg_flags & MSG_CTRUNC) {
|
|
err = -EIO;
|
|
goto recv_end;
|
|
}
|
|
}
|
|
} else if (control != ctx->control) {
|
|
goto recv_end;
|
|
}
|
|
|
|
if (!ctx->decrypted) {
|
|
int to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
|
|
|
|
if (!is_kvec && to_copy <= len &&
|
|
likely(!(flags & MSG_PEEK)))
|
|
zc = true;
|
|
|
|
err = decrypt_skb_update(sk, skb, &msg->msg_iter,
|
|
&chunk, &zc);
|
|
if (err < 0 && err != -EINPROGRESS) {
|
|
tls_err_abort(sk, EBADMSG);
|
|
goto recv_end;
|
|
}
|
|
|
|
if (err == -EINPROGRESS) {
|
|
async = true;
|
|
num_async++;
|
|
goto pick_next_record;
|
|
}
|
|
|
|
ctx->decrypted = true;
|
|
}
|
|
|
|
if (!zc) {
|
|
chunk = min_t(unsigned int, rxm->full_len, len);
|
|
|
|
err = skb_copy_datagram_msg(skb, rxm->offset, msg,
|
|
chunk);
|
|
if (err < 0)
|
|
goto recv_end;
|
|
}
|
|
|
|
pick_next_record:
|
|
copied += chunk;
|
|
len -= chunk;
|
|
if (likely(!(flags & MSG_PEEK))) {
|
|
u8 control = ctx->control;
|
|
|
|
/* For async, drop current skb reference */
|
|
if (async)
|
|
skb = NULL;
|
|
|
|
if (tls_sw_advance_skb(sk, skb, chunk)) {
|
|
/* Return full control message to
|
|
* userspace before trying to parse
|
|
* another message type
|
|
*/
|
|
msg->msg_flags |= MSG_EOR;
|
|
if (control != TLS_RECORD_TYPE_DATA)
|
|
goto recv_end;
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
/* MSG_PEEK right now cannot look beyond current skb
|
|
* from strparser, meaning we cannot advance skb here
|
|
* and thus unpause strparser since we'd loose original
|
|
* one.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/* If we have a new message from strparser, continue now. */
|
|
if (copied >= target && !ctx->recv_pkt)
|
|
break;
|
|
} while (len);
|
|
|
|
recv_end:
|
|
if (num_async) {
|
|
/* Wait for all previously submitted records to be decrypted */
|
|
smp_store_mb(ctx->async_notify, true);
|
|
if (atomic_read(&ctx->decrypt_pending)) {
|
|
err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
|
|
if (err) {
|
|
/* one of async decrypt failed */
|
|
tls_err_abort(sk, err);
|
|
copied = 0;
|
|
}
|
|
} else {
|
|
reinit_completion(&ctx->async_wait.completion);
|
|
}
|
|
WRITE_ONCE(ctx->async_notify, false);
|
|
}
|
|
|
|
release_sock(sk);
|
|
if (psock)
|
|
sk_psock_put(sk, psock);
|
|
return copied ? : err;
|
|
}
|
|
|
|
ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
|
|
struct pipe_inode_info *pipe,
|
|
size_t len, unsigned int flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct strp_msg *rxm = NULL;
|
|
struct sock *sk = sock->sk;
|
|
struct sk_buff *skb;
|
|
ssize_t copied = 0;
|
|
int err = 0;
|
|
long timeo;
|
|
int chunk;
|
|
bool zc = false;
|
|
|
|
lock_sock(sk);
|
|
|
|
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
|
|
|
|
skb = tls_wait_data(sk, NULL, flags, timeo, &err);
|
|
if (!skb)
|
|
goto splice_read_end;
|
|
|
|
/* splice does not support reading control messages */
|
|
if (ctx->control != TLS_RECORD_TYPE_DATA) {
|
|
err = -ENOTSUPP;
|
|
goto splice_read_end;
|
|
}
|
|
|
|
if (!ctx->decrypted) {
|
|
err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc);
|
|
|
|
if (err < 0) {
|
|
tls_err_abort(sk, EBADMSG);
|
|
goto splice_read_end;
|
|
}
|
|
ctx->decrypted = true;
|
|
}
|
|
rxm = strp_msg(skb);
|
|
|
|
chunk = min_t(unsigned int, rxm->full_len, len);
|
|
copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
|
|
if (copied < 0)
|
|
goto splice_read_end;
|
|
|
|
if (likely(!(flags & MSG_PEEK)))
|
|
tls_sw_advance_skb(sk, skb, copied);
|
|
|
|
splice_read_end:
|
|
release_sock(sk);
|
|
return copied ? : err;
|
|
}
|
|
|
|
bool tls_sw_stream_read(const struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
bool ingress_empty = true;
|
|
struct sk_psock *psock;
|
|
|
|
rcu_read_lock();
|
|
psock = sk_psock(sk);
|
|
if (psock)
|
|
ingress_empty = list_empty(&psock->ingress_msg);
|
|
rcu_read_unlock();
|
|
|
|
return !ingress_empty || ctx->recv_pkt;
|
|
}
|
|
|
|
static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
size_t cipher_overhead;
|
|
size_t data_len = 0;
|
|
int ret;
|
|
|
|
/* Verify that we have a full TLS header, or wait for more data */
|
|
if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
|
|
return 0;
|
|
|
|
/* Sanity-check size of on-stack buffer. */
|
|
if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
|
|
ret = -EINVAL;
|
|
goto read_failure;
|
|
}
|
|
|
|
/* Linearize header to local buffer */
|
|
ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
|
|
|
|
if (ret < 0)
|
|
goto read_failure;
|
|
|
|
ctx->control = header[0];
|
|
|
|
data_len = ((header[4] & 0xFF) | (header[3] << 8));
|
|
|
|
cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
|
|
|
|
if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
|
|
ret = -EMSGSIZE;
|
|
goto read_failure;
|
|
}
|
|
if (data_len < cipher_overhead) {
|
|
ret = -EBADMSG;
|
|
goto read_failure;
|
|
}
|
|
|
|
if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) ||
|
|
header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) {
|
|
ret = -EINVAL;
|
|
goto read_failure;
|
|
}
|
|
|
|
#ifdef CONFIG_TLS_DEVICE
|
|
handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
|
|
*(u64*)tls_ctx->rx.rec_seq);
|
|
#endif
|
|
return data_len + TLS_HEADER_SIZE;
|
|
|
|
read_failure:
|
|
tls_err_abort(strp->sk, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void tls_queue(struct strparser *strp, struct sk_buff *skb)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
ctx->decrypted = false;
|
|
|
|
ctx->recv_pkt = skb;
|
|
strp_pause(strp);
|
|
|
|
ctx->saved_data_ready(strp->sk);
|
|
}
|
|
|
|
static void tls_data_ready(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct sk_psock *psock;
|
|
|
|
strp_data_ready(&ctx->strp);
|
|
|
|
psock = sk_psock_get(sk);
|
|
if (psock && !list_empty(&psock->ingress_msg)) {
|
|
ctx->saved_data_ready(sk);
|
|
sk_psock_put(sk, psock);
|
|
}
|
|
}
|
|
|
|
void tls_sw_free_resources_tx(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec, *tmp;
|
|
|
|
/* Wait for any pending async encryptions to complete */
|
|
smp_store_mb(ctx->async_notify, true);
|
|
if (atomic_read(&ctx->encrypt_pending))
|
|
crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
|
|
|
|
cancel_delayed_work_sync(&ctx->tx_work.work);
|
|
|
|
/* Tx whatever records we can transmit and abandon the rest */
|
|
tls_tx_records(sk, -1);
|
|
|
|
/* Free up un-sent records in tx_list. First, free
|
|
* the partially sent record if any at head of tx_list.
|
|
*/
|
|
if (tls_ctx->partially_sent_record) {
|
|
struct scatterlist *sg = tls_ctx->partially_sent_record;
|
|
|
|
while (1) {
|
|
put_page(sg_page(sg));
|
|
sk_mem_uncharge(sk, sg->length);
|
|
|
|
if (sg_is_last(sg))
|
|
break;
|
|
sg++;
|
|
}
|
|
|
|
tls_ctx->partially_sent_record = NULL;
|
|
|
|
rec = list_first_entry(&ctx->tx_list,
|
|
struct tls_rec, list);
|
|
list_del(&rec->list);
|
|
sk_msg_free(sk, &rec->msg_plaintext);
|
|
kfree(rec);
|
|
}
|
|
|
|
list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
|
|
list_del(&rec->list);
|
|
sk_msg_free(sk, &rec->msg_encrypted);
|
|
sk_msg_free(sk, &rec->msg_plaintext);
|
|
kfree(rec);
|
|
}
|
|
|
|
crypto_free_aead(ctx->aead_send);
|
|
tls_free_open_rec(sk);
|
|
|
|
kfree(ctx);
|
|
}
|
|
|
|
void tls_sw_release_resources_rx(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
if (ctx->aead_recv) {
|
|
kfree_skb(ctx->recv_pkt);
|
|
ctx->recv_pkt = NULL;
|
|
crypto_free_aead(ctx->aead_recv);
|
|
strp_stop(&ctx->strp);
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
sk->sk_data_ready = ctx->saved_data_ready;
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
release_sock(sk);
|
|
strp_done(&ctx->strp);
|
|
lock_sock(sk);
|
|
}
|
|
}
|
|
|
|
void tls_sw_free_resources_rx(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
tls_sw_release_resources_rx(sk);
|
|
|
|
kfree(ctx);
|
|
}
|
|
|
|
/* The work handler to transmitt the encrypted records in tx_list */
|
|
static void tx_work_handler(struct work_struct *work)
|
|
{
|
|
struct delayed_work *delayed_work = to_delayed_work(work);
|
|
struct tx_work *tx_work = container_of(delayed_work,
|
|
struct tx_work, work);
|
|
struct sock *sk = tx_work->sk;
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
|
|
if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
|
|
return;
|
|
|
|
lock_sock(sk);
|
|
tls_tx_records(sk, -1);
|
|
release_sock(sk);
|
|
}
|
|
|
|
int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
|
|
{
|
|
struct tls_crypto_info *crypto_info;
|
|
struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
|
|
struct tls_sw_context_tx *sw_ctx_tx = NULL;
|
|
struct tls_sw_context_rx *sw_ctx_rx = NULL;
|
|
struct cipher_context *cctx;
|
|
struct crypto_aead **aead;
|
|
struct strp_callbacks cb;
|
|
u16 nonce_size, tag_size, iv_size, rec_seq_size;
|
|
char *iv, *rec_seq;
|
|
int rc = 0;
|
|
|
|
if (!ctx) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (tx) {
|
|
if (!ctx->priv_ctx_tx) {
|
|
sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
|
|
if (!sw_ctx_tx) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ctx->priv_ctx_tx = sw_ctx_tx;
|
|
} else {
|
|
sw_ctx_tx =
|
|
(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
|
|
}
|
|
} else {
|
|
if (!ctx->priv_ctx_rx) {
|
|
sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
|
|
if (!sw_ctx_rx) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ctx->priv_ctx_rx = sw_ctx_rx;
|
|
} else {
|
|
sw_ctx_rx =
|
|
(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
|
|
}
|
|
}
|
|
|
|
if (tx) {
|
|
crypto_init_wait(&sw_ctx_tx->async_wait);
|
|
crypto_info = &ctx->crypto_send.info;
|
|
cctx = &ctx->tx;
|
|
aead = &sw_ctx_tx->aead_send;
|
|
INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
|
|
INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
|
|
sw_ctx_tx->tx_work.sk = sk;
|
|
} else {
|
|
crypto_init_wait(&sw_ctx_rx->async_wait);
|
|
crypto_info = &ctx->crypto_recv.info;
|
|
cctx = &ctx->rx;
|
|
aead = &sw_ctx_rx->aead_recv;
|
|
}
|
|
|
|
switch (crypto_info->cipher_type) {
|
|
case TLS_CIPHER_AES_GCM_128: {
|
|
nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
|
|
tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
|
|
iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
|
|
iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
|
|
rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
|
|
rec_seq =
|
|
((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
|
|
gcm_128_info =
|
|
(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
|
|
break;
|
|
}
|
|
default:
|
|
rc = -EINVAL;
|
|
goto free_priv;
|
|
}
|
|
|
|
/* Sanity-check the IV size for stack allocations. */
|
|
if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
|
|
rc = -EINVAL;
|
|
goto free_priv;
|
|
}
|
|
|
|
cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
|
|
cctx->tag_size = tag_size;
|
|
cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
|
|
cctx->iv_size = iv_size;
|
|
cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
|
|
GFP_KERNEL);
|
|
if (!cctx->iv) {
|
|
rc = -ENOMEM;
|
|
goto free_priv;
|
|
}
|
|
memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
|
|
memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
|
|
cctx->rec_seq_size = rec_seq_size;
|
|
cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
|
|
if (!cctx->rec_seq) {
|
|
rc = -ENOMEM;
|
|
goto free_iv;
|
|
}
|
|
|
|
if (!*aead) {
|
|
*aead = crypto_alloc_aead("gcm(aes)", 0, 0);
|
|
if (IS_ERR(*aead)) {
|
|
rc = PTR_ERR(*aead);
|
|
*aead = NULL;
|
|
goto free_rec_seq;
|
|
}
|
|
}
|
|
|
|
ctx->push_pending_record = tls_sw_push_pending_record;
|
|
|
|
rc = crypto_aead_setkey(*aead, gcm_128_info->key,
|
|
TLS_CIPHER_AES_GCM_128_KEY_SIZE);
|
|
if (rc)
|
|
goto free_aead;
|
|
|
|
rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
|
|
if (rc)
|
|
goto free_aead;
|
|
|
|
if (sw_ctx_rx) {
|
|
/* Set up strparser */
|
|
memset(&cb, 0, sizeof(cb));
|
|
cb.rcv_msg = tls_queue;
|
|
cb.parse_msg = tls_read_size;
|
|
|
|
strp_init(&sw_ctx_rx->strp, sk, &cb);
|
|
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
|
|
sk->sk_data_ready = tls_data_ready;
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
|
|
strp_check_rcv(&sw_ctx_rx->strp);
|
|
}
|
|
|
|
goto out;
|
|
|
|
free_aead:
|
|
crypto_free_aead(*aead);
|
|
*aead = NULL;
|
|
free_rec_seq:
|
|
kfree(cctx->rec_seq);
|
|
cctx->rec_seq = NULL;
|
|
free_iv:
|
|
kfree(cctx->iv);
|
|
cctx->iv = NULL;
|
|
free_priv:
|
|
if (tx) {
|
|
kfree(ctx->priv_ctx_tx);
|
|
ctx->priv_ctx_tx = NULL;
|
|
} else {
|
|
kfree(ctx->priv_ctx_rx);
|
|
ctx->priv_ctx_rx = NULL;
|
|
}
|
|
out:
|
|
return rc;
|
|
}
|