The clock_nanosleep() function does not return the time remaining when the sleep is interrupted by a signal. This patch creates a new call out, compat_clock_nanosleep_restart(), which handles returning the remaining time after a sleep is interrupted. This patch revives clock_nanosleep_restart(). It is now accessed via the new call out. The compat_clock_nanosleep_restart() is used for compatibility access. Since this is implemented in compatibility mode the normal path is virtually unaffected - no real performance impact. Signed-off-by: Toyo Abe <toyoa@mvista.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland McGrath <roland@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			873 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			873 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/kernel/hrtimer.c
 | |
|  *
 | |
|  *  Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
 | |
|  *  Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
 | |
|  *
 | |
|  *  High-resolution kernel timers
 | |
|  *
 | |
|  *  In contrast to the low-resolution timeout API implemented in
 | |
|  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 | |
|  *  depending on system configuration and capabilities.
 | |
|  *
 | |
|  *  These timers are currently used for:
 | |
|  *   - itimers
 | |
|  *   - POSIX timers
 | |
|  *   - nanosleep
 | |
|  *   - precise in-kernel timing
 | |
|  *
 | |
|  *  Started by: Thomas Gleixner and Ingo Molnar
 | |
|  *
 | |
|  *  Credits:
 | |
|  *	based on kernel/timer.c
 | |
|  *
 | |
|  *	Help, testing, suggestions, bugfixes, improvements were
 | |
|  *	provided by:
 | |
|  *
 | |
|  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 | |
|  *	et. al.
 | |
|  *
 | |
|  *  For licencing details see kernel-base/COPYING
 | |
|  */
 | |
| 
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/interrupt.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| /**
 | |
|  * ktime_get - get the monotonic time in ktime_t format
 | |
|  *
 | |
|  * returns the time in ktime_t format
 | |
|  */
 | |
| static ktime_t ktime_get(void)
 | |
| {
 | |
| 	struct timespec now;
 | |
| 
 | |
| 	ktime_get_ts(&now);
 | |
| 
 | |
| 	return timespec_to_ktime(now);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ktime_get_real - get the real (wall-) time in ktime_t format
 | |
|  *
 | |
|  * returns the time in ktime_t format
 | |
|  */
 | |
| static ktime_t ktime_get_real(void)
 | |
| {
 | |
| 	struct timespec now;
 | |
| 
 | |
| 	getnstimeofday(&now);
 | |
| 
 | |
| 	return timespec_to_ktime(now);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(ktime_get_real);
 | |
| 
 | |
| /*
 | |
|  * The timer bases:
 | |
|  *
 | |
|  * Note: If we want to add new timer bases, we have to skip the two
 | |
|  * clock ids captured by the cpu-timers. We do this by holding empty
 | |
|  * entries rather than doing math adjustment of the clock ids.
 | |
|  * This ensures that we capture erroneous accesses to these clock ids
 | |
|  * rather than moving them into the range of valid clock id's.
 | |
|  */
 | |
| 
 | |
| #define MAX_HRTIMER_BASES 2
 | |
| 
 | |
| static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) =
 | |
| {
 | |
| 	{
 | |
| 		.index = CLOCK_REALTIME,
 | |
| 		.get_time = &ktime_get_real,
 | |
| 		.resolution = KTIME_REALTIME_RES,
 | |
| 	},
 | |
| 	{
 | |
| 		.index = CLOCK_MONOTONIC,
 | |
| 		.get_time = &ktime_get,
 | |
| 		.resolution = KTIME_MONOTONIC_RES,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * ktime_get_ts - get the monotonic clock in timespec format
 | |
|  * @ts:		pointer to timespec variable
 | |
|  *
 | |
|  * The function calculates the monotonic clock from the realtime
 | |
|  * clock and the wall_to_monotonic offset and stores the result
 | |
|  * in normalized timespec format in the variable pointed to by ts.
 | |
|  */
 | |
| void ktime_get_ts(struct timespec *ts)
 | |
| {
 | |
| 	struct timespec tomono;
 | |
| 	unsigned long seq;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&xtime_lock);
 | |
| 		getnstimeofday(ts);
 | |
| 		tomono = wall_to_monotonic;
 | |
| 
 | |
| 	} while (read_seqretry(&xtime_lock, seq));
 | |
| 
 | |
| 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
 | |
| 				ts->tv_nsec + tomono.tv_nsec);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ktime_get_ts);
 | |
| 
 | |
| /*
 | |
|  * Get the coarse grained time at the softirq based on xtime and
 | |
|  * wall_to_monotonic.
 | |
|  */
 | |
| static void hrtimer_get_softirq_time(struct hrtimer_base *base)
 | |
| {
 | |
| 	ktime_t xtim, tomono;
 | |
| 	unsigned long seq;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&xtime_lock);
 | |
| 		xtim = timespec_to_ktime(xtime);
 | |
| 		tomono = timespec_to_ktime(wall_to_monotonic);
 | |
| 
 | |
| 	} while (read_seqretry(&xtime_lock, seq));
 | |
| 
 | |
| 	base[CLOCK_REALTIME].softirq_time = xtim;
 | |
| 	base[CLOCK_MONOTONIC].softirq_time = ktime_add(xtim, tomono);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Functions and macros which are different for UP/SMP systems are kept in a
 | |
|  * single place
 | |
|  */
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| #define set_curr_timer(b, t)		do { (b)->curr_timer = (t); } while (0)
 | |
| 
 | |
| /*
 | |
|  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 | |
|  * means that all timers which are tied to this base via timer->base are
 | |
|  * locked, and the base itself is locked too.
 | |
|  *
 | |
|  * So __run_timers/migrate_timers can safely modify all timers which could
 | |
|  * be found on the lists/queues.
 | |
|  *
 | |
|  * When the timer's base is locked, and the timer removed from list, it is
 | |
|  * possible to set timer->base = NULL and drop the lock: the timer remains
 | |
|  * locked.
 | |
|  */
 | |
| static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer,
 | |
| 					      unsigned long *flags)
 | |
| {
 | |
| 	struct hrtimer_base *base;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		base = timer->base;
 | |
| 		if (likely(base != NULL)) {
 | |
| 			spin_lock_irqsave(&base->lock, *flags);
 | |
| 			if (likely(base == timer->base))
 | |
| 				return base;
 | |
| 			/* The timer has migrated to another CPU: */
 | |
| 			spin_unlock_irqrestore(&base->lock, *flags);
 | |
| 		}
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Switch the timer base to the current CPU when possible.
 | |
|  */
 | |
| static inline struct hrtimer_base *
 | |
| switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
 | |
| {
 | |
| 	struct hrtimer_base *new_base;
 | |
| 
 | |
| 	new_base = &__get_cpu_var(hrtimer_bases)[base->index];
 | |
| 
 | |
| 	if (base != new_base) {
 | |
| 		/*
 | |
| 		 * We are trying to schedule the timer on the local CPU.
 | |
| 		 * However we can't change timer's base while it is running,
 | |
| 		 * so we keep it on the same CPU. No hassle vs. reprogramming
 | |
| 		 * the event source in the high resolution case. The softirq
 | |
| 		 * code will take care of this when the timer function has
 | |
| 		 * completed. There is no conflict as we hold the lock until
 | |
| 		 * the timer is enqueued.
 | |
| 		 */
 | |
| 		if (unlikely(base->curr_timer == timer))
 | |
| 			return base;
 | |
| 
 | |
| 		/* See the comment in lock_timer_base() */
 | |
| 		timer->base = NULL;
 | |
| 		spin_unlock(&base->lock);
 | |
| 		spin_lock(&new_base->lock);
 | |
| 		timer->base = new_base;
 | |
| 	}
 | |
| 	return new_base;
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_SMP */
 | |
| 
 | |
| #define set_curr_timer(b, t)		do { } while (0)
 | |
| 
 | |
| static inline struct hrtimer_base *
 | |
| lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 | |
| {
 | |
| 	struct hrtimer_base *base = timer->base;
 | |
| 
 | |
| 	spin_lock_irqsave(&base->lock, *flags);
 | |
| 
 | |
| 	return base;
 | |
| }
 | |
| 
 | |
| #define switch_hrtimer_base(t, b)	(b)
 | |
| 
 | |
| #endif	/* !CONFIG_SMP */
 | |
| 
 | |
| /*
 | |
|  * Functions for the union type storage format of ktime_t which are
 | |
|  * too large for inlining:
 | |
|  */
 | |
| #if BITS_PER_LONG < 64
 | |
| # ifndef CONFIG_KTIME_SCALAR
 | |
| /**
 | |
|  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 | |
|  * @kt:		addend
 | |
|  * @nsec:	the scalar nsec value to add
 | |
|  *
 | |
|  * Returns the sum of kt and nsec in ktime_t format
 | |
|  */
 | |
| ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
 | |
| {
 | |
| 	ktime_t tmp;
 | |
| 
 | |
| 	if (likely(nsec < NSEC_PER_SEC)) {
 | |
| 		tmp.tv64 = nsec;
 | |
| 	} else {
 | |
| 		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 | |
| 
 | |
| 		tmp = ktime_set((long)nsec, rem);
 | |
| 	}
 | |
| 
 | |
| 	return ktime_add(kt, tmp);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_KTIME_SCALAR */
 | |
| 
 | |
| # endif /* !CONFIG_KTIME_SCALAR */
 | |
| 
 | |
| /*
 | |
|  * Divide a ktime value by a nanosecond value
 | |
|  */
 | |
| static unsigned long ktime_divns(const ktime_t kt, s64 div)
 | |
| {
 | |
| 	u64 dclc, inc, dns;
 | |
| 	int sft = 0;
 | |
| 
 | |
| 	dclc = dns = ktime_to_ns(kt);
 | |
| 	inc = div;
 | |
| 	/* Make sure the divisor is less than 2^32: */
 | |
| 	while (div >> 32) {
 | |
| 		sft++;
 | |
| 		div >>= 1;
 | |
| 	}
 | |
| 	dclc >>= sft;
 | |
| 	do_div(dclc, (unsigned long) div);
 | |
| 
 | |
| 	return (unsigned long) dclc;
 | |
| }
 | |
| 
 | |
| #else /* BITS_PER_LONG < 64 */
 | |
| # define ktime_divns(kt, div)		(unsigned long)((kt).tv64 / (div))
 | |
| #endif /* BITS_PER_LONG >= 64 */
 | |
| 
 | |
| /*
 | |
|  * Counterpart to lock_timer_base above:
 | |
|  */
 | |
| static inline
 | |
| void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 | |
| {
 | |
| 	spin_unlock_irqrestore(&timer->base->lock, *flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hrtimer_forward - forward the timer expiry
 | |
|  * @timer:	hrtimer to forward
 | |
|  * @now:	forward past this time
 | |
|  * @interval:	the interval to forward
 | |
|  *
 | |
|  * Forward the timer expiry so it will expire in the future.
 | |
|  * Returns the number of overruns.
 | |
|  */
 | |
| unsigned long
 | |
| hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 | |
| {
 | |
| 	unsigned long orun = 1;
 | |
| 	ktime_t delta;
 | |
| 
 | |
| 	delta = ktime_sub(now, timer->expires);
 | |
| 
 | |
| 	if (delta.tv64 < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (interval.tv64 < timer->base->resolution.tv64)
 | |
| 		interval.tv64 = timer->base->resolution.tv64;
 | |
| 
 | |
| 	if (unlikely(delta.tv64 >= interval.tv64)) {
 | |
| 		s64 incr = ktime_to_ns(interval);
 | |
| 
 | |
| 		orun = ktime_divns(delta, incr);
 | |
| 		timer->expires = ktime_add_ns(timer->expires, incr * orun);
 | |
| 		if (timer->expires.tv64 > now.tv64)
 | |
| 			return orun;
 | |
| 		/*
 | |
| 		 * This (and the ktime_add() below) is the
 | |
| 		 * correction for exact:
 | |
| 		 */
 | |
| 		orun++;
 | |
| 	}
 | |
| 	timer->expires = ktime_add(timer->expires, interval);
 | |
| 
 | |
| 	return orun;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * enqueue_hrtimer - internal function to (re)start a timer
 | |
|  *
 | |
|  * The timer is inserted in expiry order. Insertion into the
 | |
|  * red black tree is O(log(n)). Must hold the base lock.
 | |
|  */
 | |
| static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
 | |
| {
 | |
| 	struct rb_node **link = &base->active.rb_node;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 	struct hrtimer *entry;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the right place in the rbtree:
 | |
| 	 */
 | |
| 	while (*link) {
 | |
| 		parent = *link;
 | |
| 		entry = rb_entry(parent, struct hrtimer, node);
 | |
| 		/*
 | |
| 		 * We dont care about collisions. Nodes with
 | |
| 		 * the same expiry time stay together.
 | |
| 		 */
 | |
| 		if (timer->expires.tv64 < entry->expires.tv64)
 | |
| 			link = &(*link)->rb_left;
 | |
| 		else
 | |
| 			link = &(*link)->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Insert the timer to the rbtree and check whether it
 | |
| 	 * replaces the first pending timer
 | |
| 	 */
 | |
| 	rb_link_node(&timer->node, parent, link);
 | |
| 	rb_insert_color(&timer->node, &base->active);
 | |
| 
 | |
| 	if (!base->first || timer->expires.tv64 <
 | |
| 	    rb_entry(base->first, struct hrtimer, node)->expires.tv64)
 | |
| 		base->first = &timer->node;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __remove_hrtimer - internal function to remove a timer
 | |
|  *
 | |
|  * Caller must hold the base lock.
 | |
|  */
 | |
| static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
 | |
| {
 | |
| 	/*
 | |
| 	 * Remove the timer from the rbtree and replace the
 | |
| 	 * first entry pointer if necessary.
 | |
| 	 */
 | |
| 	if (base->first == &timer->node)
 | |
| 		base->first = rb_next(&timer->node);
 | |
| 	rb_erase(&timer->node, &base->active);
 | |
| 	rb_set_parent(&timer->node, &timer->node);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * remove hrtimer, called with base lock held
 | |
|  */
 | |
| static inline int
 | |
| remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
 | |
| {
 | |
| 	if (hrtimer_active(timer)) {
 | |
| 		__remove_hrtimer(timer, base);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * hrtimer_start - (re)start an relative timer on the current CPU
 | |
|  * @timer:	the timer to be added
 | |
|  * @tim:	expiry time
 | |
|  * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 | |
|  *
 | |
|  * Returns:
 | |
|  *  0 on success
 | |
|  *  1 when the timer was active
 | |
|  */
 | |
| int
 | |
| hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
 | |
| {
 | |
| 	struct hrtimer_base *base, *new_base;
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	base = lock_hrtimer_base(timer, &flags);
 | |
| 
 | |
| 	/* Remove an active timer from the queue: */
 | |
| 	ret = remove_hrtimer(timer, base);
 | |
| 
 | |
| 	/* Switch the timer base, if necessary: */
 | |
| 	new_base = switch_hrtimer_base(timer, base);
 | |
| 
 | |
| 	if (mode == HRTIMER_REL) {
 | |
| 		tim = ktime_add(tim, new_base->get_time());
 | |
| 		/*
 | |
| 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
 | |
| 		 * to signal that they simply return xtime in
 | |
| 		 * do_gettimeoffset(). In this case we want to round up by
 | |
| 		 * resolution when starting a relative timer, to avoid short
 | |
| 		 * timeouts. This will go away with the GTOD framework.
 | |
| 		 */
 | |
| #ifdef CONFIG_TIME_LOW_RES
 | |
| 		tim = ktime_add(tim, base->resolution);
 | |
| #endif
 | |
| 	}
 | |
| 	timer->expires = tim;
 | |
| 
 | |
| 	enqueue_hrtimer(timer, new_base);
 | |
| 
 | |
| 	unlock_hrtimer_base(timer, &flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_start);
 | |
| 
 | |
| /**
 | |
|  * hrtimer_try_to_cancel - try to deactivate a timer
 | |
|  * @timer:	hrtimer to stop
 | |
|  *
 | |
|  * Returns:
 | |
|  *  0 when the timer was not active
 | |
|  *  1 when the timer was active
 | |
|  * -1 when the timer is currently excuting the callback function and
 | |
|  *    cannot be stopped
 | |
|  */
 | |
| int hrtimer_try_to_cancel(struct hrtimer *timer)
 | |
| {
 | |
| 	struct hrtimer_base *base;
 | |
| 	unsigned long flags;
 | |
| 	int ret = -1;
 | |
| 
 | |
| 	base = lock_hrtimer_base(timer, &flags);
 | |
| 
 | |
| 	if (base->curr_timer != timer)
 | |
| 		ret = remove_hrtimer(timer, base);
 | |
| 
 | |
| 	unlock_hrtimer_base(timer, &flags);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
 | |
| 
 | |
| /**
 | |
|  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 | |
|  * @timer:	the timer to be cancelled
 | |
|  *
 | |
|  * Returns:
 | |
|  *  0 when the timer was not active
 | |
|  *  1 when the timer was active
 | |
|  */
 | |
| int hrtimer_cancel(struct hrtimer *timer)
 | |
| {
 | |
| 	for (;;) {
 | |
| 		int ret = hrtimer_try_to_cancel(timer);
 | |
| 
 | |
| 		if (ret >= 0)
 | |
| 			return ret;
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_cancel);
 | |
| 
 | |
| /**
 | |
|  * hrtimer_get_remaining - get remaining time for the timer
 | |
|  * @timer:	the timer to read
 | |
|  */
 | |
| ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
 | |
| {
 | |
| 	struct hrtimer_base *base;
 | |
| 	unsigned long flags;
 | |
| 	ktime_t rem;
 | |
| 
 | |
| 	base = lock_hrtimer_base(timer, &flags);
 | |
| 	rem = ktime_sub(timer->expires, timer->base->get_time());
 | |
| 	unlock_hrtimer_base(timer, &flags);
 | |
| 
 | |
| 	return rem;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
 | |
| 
 | |
| #ifdef CONFIG_NO_IDLE_HZ
 | |
| /**
 | |
|  * hrtimer_get_next_event - get the time until next expiry event
 | |
|  *
 | |
|  * Returns the delta to the next expiry event or KTIME_MAX if no timer
 | |
|  * is pending.
 | |
|  */
 | |
| ktime_t hrtimer_get_next_event(void)
 | |
| {
 | |
| 	struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
 | |
| 	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
 | |
| 	unsigned long flags;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) {
 | |
| 		struct hrtimer *timer;
 | |
| 
 | |
| 		spin_lock_irqsave(&base->lock, flags);
 | |
| 		if (!base->first) {
 | |
| 			spin_unlock_irqrestore(&base->lock, flags);
 | |
| 			continue;
 | |
| 		}
 | |
| 		timer = rb_entry(base->first, struct hrtimer, node);
 | |
| 		delta.tv64 = timer->expires.tv64;
 | |
| 		spin_unlock_irqrestore(&base->lock, flags);
 | |
| 		delta = ktime_sub(delta, base->get_time());
 | |
| 		if (delta.tv64 < mindelta.tv64)
 | |
| 			mindelta.tv64 = delta.tv64;
 | |
| 	}
 | |
| 	if (mindelta.tv64 < 0)
 | |
| 		mindelta.tv64 = 0;
 | |
| 	return mindelta;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * hrtimer_init - initialize a timer to the given clock
 | |
|  * @timer:	the timer to be initialized
 | |
|  * @clock_id:	the clock to be used
 | |
|  * @mode:	timer mode abs/rel
 | |
|  */
 | |
| void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 | |
| 		  enum hrtimer_mode mode)
 | |
| {
 | |
| 	struct hrtimer_base *bases;
 | |
| 
 | |
| 	memset(timer, 0, sizeof(struct hrtimer));
 | |
| 
 | |
| 	bases = __raw_get_cpu_var(hrtimer_bases);
 | |
| 
 | |
| 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_ABS)
 | |
| 		clock_id = CLOCK_MONOTONIC;
 | |
| 
 | |
| 	timer->base = &bases[clock_id];
 | |
| 	rb_set_parent(&timer->node, &timer->node);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_init);
 | |
| 
 | |
| /**
 | |
|  * hrtimer_get_res - get the timer resolution for a clock
 | |
|  * @which_clock: which clock to query
 | |
|  * @tp:		 pointer to timespec variable to store the resolution
 | |
|  *
 | |
|  * Store the resolution of the clock selected by which_clock in the
 | |
|  * variable pointed to by tp.
 | |
|  */
 | |
| int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
 | |
| {
 | |
| 	struct hrtimer_base *bases;
 | |
| 
 | |
| 	bases = __raw_get_cpu_var(hrtimer_bases);
 | |
| 	*tp = ktime_to_timespec(bases[which_clock].resolution);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hrtimer_get_res);
 | |
| 
 | |
| /*
 | |
|  * Expire the per base hrtimer-queue:
 | |
|  */
 | |
| static inline void run_hrtimer_queue(struct hrtimer_base *base)
 | |
| {
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	if (!base->first)
 | |
| 		return;
 | |
| 
 | |
| 	if (base->get_softirq_time)
 | |
| 		base->softirq_time = base->get_softirq_time();
 | |
| 
 | |
| 	spin_lock_irq(&base->lock);
 | |
| 
 | |
| 	while ((node = base->first)) {
 | |
| 		struct hrtimer *timer;
 | |
| 		int (*fn)(struct hrtimer *);
 | |
| 		int restart;
 | |
| 
 | |
| 		timer = rb_entry(node, struct hrtimer, node);
 | |
| 		if (base->softirq_time.tv64 <= timer->expires.tv64)
 | |
| 			break;
 | |
| 
 | |
| 		fn = timer->function;
 | |
| 		set_curr_timer(base, timer);
 | |
| 		__remove_hrtimer(timer, base);
 | |
| 		spin_unlock_irq(&base->lock);
 | |
| 
 | |
| 		restart = fn(timer);
 | |
| 
 | |
| 		spin_lock_irq(&base->lock);
 | |
| 
 | |
| 		if (restart != HRTIMER_NORESTART) {
 | |
| 			BUG_ON(hrtimer_active(timer));
 | |
| 			enqueue_hrtimer(timer, base);
 | |
| 		}
 | |
| 	}
 | |
| 	set_curr_timer(base, NULL);
 | |
| 	spin_unlock_irq(&base->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from timer softirq every jiffy, expire hrtimers:
 | |
|  */
 | |
| void hrtimer_run_queues(void)
 | |
| {
 | |
| 	struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
 | |
| 	int i;
 | |
| 
 | |
| 	hrtimer_get_softirq_time(base);
 | |
| 
 | |
| 	for (i = 0; i < MAX_HRTIMER_BASES; i++)
 | |
| 		run_hrtimer_queue(&base[i]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sleep related functions:
 | |
|  */
 | |
| static int hrtimer_wakeup(struct hrtimer *timer)
 | |
| {
 | |
| 	struct hrtimer_sleeper *t =
 | |
| 		container_of(timer, struct hrtimer_sleeper, timer);
 | |
| 	struct task_struct *task = t->task;
 | |
| 
 | |
| 	t->task = NULL;
 | |
| 	if (task)
 | |
| 		wake_up_process(task);
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
 | |
| {
 | |
| 	sl->timer.function = hrtimer_wakeup;
 | |
| 	sl->task = task;
 | |
| }
 | |
| 
 | |
| static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
 | |
| {
 | |
| 	hrtimer_init_sleeper(t, current);
 | |
| 
 | |
| 	do {
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		hrtimer_start(&t->timer, t->timer.expires, mode);
 | |
| 
 | |
| 		schedule();
 | |
| 
 | |
| 		hrtimer_cancel(&t->timer);
 | |
| 		mode = HRTIMER_ABS;
 | |
| 
 | |
| 	} while (t->task && !signal_pending(current));
 | |
| 
 | |
| 	return t->task == NULL;
 | |
| }
 | |
| 
 | |
| long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
 | |
| {
 | |
| 	struct hrtimer_sleeper t;
 | |
| 	struct timespec __user *rmtp;
 | |
| 	struct timespec tu;
 | |
| 	ktime_t time;
 | |
| 
 | |
| 	restart->fn = do_no_restart_syscall;
 | |
| 
 | |
| 	hrtimer_init(&t.timer, restart->arg0, HRTIMER_ABS);
 | |
| 	t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
 | |
| 
 | |
| 	if (do_nanosleep(&t, HRTIMER_ABS))
 | |
| 		return 0;
 | |
| 
 | |
| 	rmtp = (struct timespec __user *) restart->arg1;
 | |
| 	if (rmtp) {
 | |
| 		time = ktime_sub(t.timer.expires, t.timer.base->get_time());
 | |
| 		if (time.tv64 <= 0)
 | |
| 			return 0;
 | |
| 		tu = ktime_to_timespec(time);
 | |
| 		if (copy_to_user(rmtp, &tu, sizeof(tu)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	restart->fn = hrtimer_nanosleep_restart;
 | |
| 
 | |
| 	/* The other values in restart are already filled in */
 | |
| 	return -ERESTART_RESTARTBLOCK;
 | |
| }
 | |
| 
 | |
| long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
 | |
| 		       const enum hrtimer_mode mode, const clockid_t clockid)
 | |
| {
 | |
| 	struct restart_block *restart;
 | |
| 	struct hrtimer_sleeper t;
 | |
| 	struct timespec tu;
 | |
| 	ktime_t rem;
 | |
| 
 | |
| 	hrtimer_init(&t.timer, clockid, mode);
 | |
| 	t.timer.expires = timespec_to_ktime(*rqtp);
 | |
| 	if (do_nanosleep(&t, mode))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Absolute timers do not update the rmtp value and restart: */
 | |
| 	if (mode == HRTIMER_ABS)
 | |
| 		return -ERESTARTNOHAND;
 | |
| 
 | |
| 	if (rmtp) {
 | |
| 		rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
 | |
| 		if (rem.tv64 <= 0)
 | |
| 			return 0;
 | |
| 		tu = ktime_to_timespec(rem);
 | |
| 		if (copy_to_user(rmtp, &tu, sizeof(tu)))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	restart = ¤t_thread_info()->restart_block;
 | |
| 	restart->fn = hrtimer_nanosleep_restart;
 | |
| 	restart->arg0 = (unsigned long) t.timer.base->index;
 | |
| 	restart->arg1 = (unsigned long) rmtp;
 | |
| 	restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
 | |
| 	restart->arg3 = t.timer.expires.tv64 >> 32;
 | |
| 
 | |
| 	return -ERESTART_RESTARTBLOCK;
 | |
| }
 | |
| 
 | |
| asmlinkage long
 | |
| sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
 | |
| {
 | |
| 	struct timespec tu;
 | |
| 
 | |
| 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (!timespec_valid(&tu))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Functions related to boot-time initialization:
 | |
|  */
 | |
| static void __devinit init_hrtimers_cpu(int cpu)
 | |
| {
 | |
| 	struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) {
 | |
| 		spin_lock_init(&base->lock);
 | |
| 		lockdep_set_class(&base->lock, &base->lock_key);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 
 | |
| static void migrate_hrtimer_list(struct hrtimer_base *old_base,
 | |
| 				struct hrtimer_base *new_base)
 | |
| {
 | |
| 	struct hrtimer *timer;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	while ((node = rb_first(&old_base->active))) {
 | |
| 		timer = rb_entry(node, struct hrtimer, node);
 | |
| 		__remove_hrtimer(timer, old_base);
 | |
| 		timer->base = new_base;
 | |
| 		enqueue_hrtimer(timer, new_base);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void migrate_hrtimers(int cpu)
 | |
| {
 | |
| 	struct hrtimer_base *old_base, *new_base;
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(cpu_online(cpu));
 | |
| 	old_base = per_cpu(hrtimer_bases, cpu);
 | |
| 	new_base = get_cpu_var(hrtimer_bases);
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	for (i = 0; i < MAX_HRTIMER_BASES; i++) {
 | |
| 
 | |
| 		spin_lock(&new_base->lock);
 | |
| 		spin_lock(&old_base->lock);
 | |
| 
 | |
| 		BUG_ON(old_base->curr_timer);
 | |
| 
 | |
| 		migrate_hrtimer_list(old_base, new_base);
 | |
| 
 | |
| 		spin_unlock(&old_base->lock);
 | |
| 		spin_unlock(&new_base->lock);
 | |
| 		old_base++;
 | |
| 		new_base++;
 | |
| 	}
 | |
| 
 | |
| 	local_irq_enable();
 | |
| 	put_cpu_var(hrtimer_bases);
 | |
| }
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
 | |
| 					unsigned long action, void *hcpu)
 | |
| {
 | |
| 	long cpu = (long)hcpu;
 | |
| 
 | |
| 	switch (action) {
 | |
| 
 | |
| 	case CPU_UP_PREPARE:
 | |
| 		init_hrtimers_cpu(cpu);
 | |
| 		break;
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	case CPU_DEAD:
 | |
| 		migrate_hrtimers(cpu);
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block __cpuinitdata hrtimers_nb = {
 | |
| 	.notifier_call = hrtimer_cpu_notify,
 | |
| };
 | |
| 
 | |
| void __init hrtimers_init(void)
 | |
| {
 | |
| 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
 | |
| 			  (void *)(long)smp_processor_id());
 | |
| 	register_cpu_notifier(&hrtimers_nb);
 | |
| }
 | |
| 
 |