Linus Torvalds 815c24a085 linux-kselftest-kunit-6.6-rc1
This kunit update for Linux 6.6.rc1 consists of:
 
 -- Adds support for running Rust documentation tests as KUnit tests
 -- Makes init, str, sync, types doctests compilable/testable
 -- Adds support for attributes API which include speed, modules
    attributes, ability to filter and report attributes.
 -- Adds support for marking tests slow using attributes API.
 -- Adds attributes API documentation
 -- Fixes to wild-memory-access bug in kunit_filter_suites() and
    a possible memory leak in kunit_filter_suites()
 -- Adds support for counting number of test suites in a module, list
    action to kunit test modules, and test filtering on module tests.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEPZKym/RZuOCGeA/kCwJExA0NQxwFAmTsxL8ACgkQCwJExA0N
 Qxwt6BAA5FgF7nUeGRZCnot4MQCNGRThxsns2k3CKjM1Iokp8tstTDoNHXzk2veS
 WlRYOHFQqQOVTVRP+laXyjjMMHnlnhFxqbv93UKsen4JIUJDLFLq9x+0i+0bZh97
 N1rE5cKUnqjAOL6MIJuomW9IzEIrbMcqdljm6SOCZp90NLvq1+I4pDGLgx2bxcow
 Y/7dkx+dnlEsoACZ19CL1L2TaR21GpKdpOudpHNCShsbE0aOAlyHAVcmH64FTqCy
 Z1LtrA0odS71q0yxDVCk5X3cIkeVfGBMz6aMZBRzS9k5jU4H1EN1eG1rGdGErIe5
 YduwX3KMikYJB2stT64T1vgldIpT/emxqkBigmxQ37g3Flgopz4bI1snMBry+nKb
 ViD/WQNjsf2iL8MooCgYBzH7yjmX6lXXQTZXROogBj4lP2/0gHiQVZyXZEAjtoO3
 uNzUbfHQGnvtTphBHV4nNGaO+7kU9Y/oX8TYFcSYJQzcH5UVx16uBwevZjT1bii/
 q89bRAQLnJpzkR93SGpnmsRgoDcYJSYsEA1o/f9Eqq8j3guOS2idpJvkheXq8+A2
 MqTSOCJHENKZ3v0UGKlvZUPStaMaqN58z/VjlWug5EaB83LLfPcXJrGjz/EHk967
 hYDHcwPoamTegr1zlg3ckOLiWEhga2tv6aHPkshkcFphpnhRU/c=
 =Nsb8
 -----END PGP SIGNATURE-----

Merge tag 'linux-kselftest-kunit-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest

Pull kunit updates from Shuah Khan:

 - add support for running Rust documentation tests as KUnit tests

 - make init, str, sync, types doctests compilable/testable

 - add support for attributes API which include speed, modules
   attributes, ability to filter and report attributes

 - add support for marking tests slow using attributes API

 - add attributes API documentation

 - fix a wild-memory-access bug in kunit_filter_suites() and a possible
   memory leak in kunit_filter_suites()

 - add support for counting number of test suites in a module, list
   action to kunit test modules, and test filtering on module tests

* tag 'linux-kselftest-kunit-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest: (25 commits)
  kunit: fix struct kunit_attr header
  kunit: replace KUNIT_TRIGGER_STATIC_STUB maro with KUNIT_STATIC_STUB_REDIRECT
  kunit: Allow kunit test modules to use test filtering
  kunit: Make 'list' action available to kunit test modules
  kunit: Report the count of test suites in a module
  kunit: fix uninitialized variables bug in attributes filtering
  kunit: fix possible memory leak in kunit_filter_suites()
  kunit: fix wild-memory-access bug in kunit_filter_suites()
  kunit: Add documentation of KUnit test attributes
  kunit: add tests for filtering attributes
  kunit: time: Mark test as slow using test attributes
  kunit: memcpy: Mark tests as slow using test attributes
  kunit: tool: Add command line interface to filter and report attributes
  kunit: Add ability to filter attributes
  kunit: Add module attribute
  kunit: Add speed attribute
  kunit: Add test attributes API structure
  MAINTAINERS: add Rust KUnit files to the KUnit entry
  rust: support running Rust documentation tests as KUnit ones
  rust: types: make doctests compilable/testable
  ...
2023-08-28 18:56:38 -07:00

638 lines
21 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! A reference-counted pointer.
//!
//! This module implements a way for users to create reference-counted objects and pointers to
//! them. Such a pointer automatically increments and decrements the count, and drops the
//! underlying object when it reaches zero. It is also safe to use concurrently from multiple
//! threads.
//!
//! It is different from the standard library's [`Arc`] in a few ways:
//! 1. It is backed by the kernel's `refcount_t` type.
//! 2. It does not support weak references, which allows it to be half the size.
//! 3. It saturates the reference count instead of aborting when it goes over a threshold.
//! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
//!
//! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
use crate::{
bindings,
error::{self, Error},
init::{self, InPlaceInit, Init, PinInit},
try_init,
types::{ForeignOwnable, Opaque},
};
use alloc::boxed::Box;
use core::{
alloc::AllocError,
fmt,
marker::{PhantomData, Unsize},
mem::{ManuallyDrop, MaybeUninit},
ops::{Deref, DerefMut},
pin::Pin,
ptr::NonNull,
};
use macros::pin_data;
mod std_vendor;
/// A reference-counted pointer to an instance of `T`.
///
/// The reference count is incremented when new instances of [`Arc`] are created, and decremented
/// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
///
/// # Invariants
///
/// The reference count on an instance of [`Arc`] is always non-zero.
/// The object pointed to by [`Arc`] is always pinned.
///
/// # Examples
///
/// ```
/// use kernel::sync::Arc;
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// // Create a ref-counted instance of `Example`.
/// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
///
/// // Get a new pointer to `obj` and increment the refcount.
/// let cloned = obj.clone();
///
/// // Assert that both `obj` and `cloned` point to the same underlying object.
/// assert!(core::ptr::eq(&*obj, &*cloned));
///
/// // Destroy `obj` and decrement its refcount.
/// drop(obj);
///
/// // Check that the values are still accessible through `cloned`.
/// assert_eq!(cloned.a, 10);
/// assert_eq!(cloned.b, 20);
///
/// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
/// # Ok::<(), Error>(())
/// ```
///
/// Using `Arc<T>` as the type of `self`:
///
/// ```
/// use kernel::sync::Arc;
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// impl Example {
/// fn take_over(self: Arc<Self>) {
/// // ...
/// }
///
/// fn use_reference(self: &Arc<Self>) {
/// // ...
/// }
/// }
///
/// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
/// obj.use_reference();
/// obj.take_over();
/// # Ok::<(), Error>(())
/// ```
///
/// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
///
/// ```
/// use kernel::sync::{Arc, ArcBorrow};
///
/// trait MyTrait {
/// // Trait has a function whose `self` type is `Arc<Self>`.
/// fn example1(self: Arc<Self>) {}
///
/// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
/// fn example2(self: ArcBorrow<'_, Self>) {}
/// }
///
/// struct Example;
/// impl MyTrait for Example {}
///
/// // `obj` has type `Arc<Example>`.
/// let obj: Arc<Example> = Arc::try_new(Example)?;
///
/// // `coerced` has type `Arc<dyn MyTrait>`.
/// let coerced: Arc<dyn MyTrait> = obj;
/// # Ok::<(), Error>(())
/// ```
pub struct Arc<T: ?Sized> {
ptr: NonNull<ArcInner<T>>,
_p: PhantomData<ArcInner<T>>,
}
#[pin_data]
#[repr(C)]
struct ArcInner<T: ?Sized> {
refcount: Opaque<bindings::refcount_t>,
data: T,
}
// This is to allow [`Arc`] (and variants) to be used as the type of `self`.
impl<T: ?Sized> core::ops::Receiver for Arc<T> {}
// This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
// dynamically-sized type (DST) `U`.
impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
// This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
// SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
// it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
// `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
// mutable reference when the reference count reaches zero and `T` is dropped.
unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
// SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
// because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
// it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
// `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
// the reference count reaches zero and `T` is dropped.
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
impl<T> Arc<T> {
/// Constructs a new reference counted instance of `T`.
pub fn try_new(contents: T) -> Result<Self, AllocError> {
// INVARIANT: The refcount is initialised to a non-zero value.
let value = ArcInner {
// SAFETY: There are no safety requirements for this FFI call.
refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
data: contents,
};
let inner = Box::try_new(value)?;
// SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
// `Arc` object.
Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
}
/// Use the given initializer to in-place initialize a `T`.
///
/// If `T: !Unpin` it will not be able to move afterwards.
#[inline]
pub fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Self>
where
Error: From<E>,
{
UniqueArc::pin_init(init).map(|u| u.into())
}
/// Use the given initializer to in-place initialize a `T`.
///
/// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned.
#[inline]
pub fn init<E>(init: impl Init<T, E>) -> error::Result<Self>
where
Error: From<E>,
{
UniqueArc::init(init).map(|u| u.into())
}
}
impl<T: ?Sized> Arc<T> {
/// Constructs a new [`Arc`] from an existing [`ArcInner`].
///
/// # Safety
///
/// The caller must ensure that `inner` points to a valid location and has a non-zero reference
/// count, one of which will be owned by the new [`Arc`] instance.
unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
// INVARIANT: By the safety requirements, the invariants hold.
Arc {
ptr: inner,
_p: PhantomData,
}
}
/// Returns an [`ArcBorrow`] from the given [`Arc`].
///
/// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
/// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
#[inline]
pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
// SAFETY: The constraint that the lifetime of the shared reference must outlive that of
// the returned `ArcBorrow` ensures that the object remains alive and that no mutable
// reference can be created.
unsafe { ArcBorrow::new(self.ptr) }
}
/// Compare whether two [`Arc`] pointers reference the same underlying object.
pub fn ptr_eq(this: &Self, other: &Self) -> bool {
core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
}
}
impl<T: 'static> ForeignOwnable for Arc<T> {
type Borrowed<'a> = ArcBorrow<'a, T>;
fn into_foreign(self) -> *const core::ffi::c_void {
ManuallyDrop::new(self).ptr.as_ptr() as _
}
unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> {
// SAFETY: By the safety requirement of this function, we know that `ptr` came from
// a previous call to `Arc::into_foreign`.
let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
// SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
// for the lifetime of the returned value.
unsafe { ArcBorrow::new(inner) }
}
unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
// SAFETY: By the safety requirement of this function, we know that `ptr` came from
// a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
// holds a reference count increment that is transferrable to us.
unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
}
}
impl<T: ?Sized> Deref for Arc<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
// SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
// safe to dereference it.
unsafe { &self.ptr.as_ref().data }
}
}
impl<T: ?Sized> AsRef<T> for Arc<T> {
fn as_ref(&self) -> &T {
self.deref()
}
}
impl<T: ?Sized> Clone for Arc<T> {
fn clone(&self) -> Self {
// INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
// SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
// safe to increment the refcount.
unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
// SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
unsafe { Self::from_inner(self.ptr) }
}
}
impl<T: ?Sized> Drop for Arc<T> {
fn drop(&mut self) {
// SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
// touch `refcount` after it's decremented to a non-zero value because another thread/CPU
// may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
// freed/invalid memory as long as it is never dereferenced.
let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
// INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
// this instance is being dropped, so the broken invariant is not observable.
// SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
if is_zero {
// The count reached zero, we must free the memory.
//
// SAFETY: The pointer was initialised from the result of `Box::leak`.
unsafe { Box::from_raw(self.ptr.as_ptr()) };
}
}
}
impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
fn from(item: UniqueArc<T>) -> Self {
item.inner
}
}
impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
fn from(item: Pin<UniqueArc<T>>) -> Self {
// SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
unsafe { Pin::into_inner_unchecked(item).inner }
}
}
/// A borrowed reference to an [`Arc`] instance.
///
/// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
/// to use just `&T`, which we can trivially get from an `Arc<T>` instance.
///
/// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
/// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
/// to a pointer (`Arc<T>`) to the object (`T`). An [`ArcBorrow`] eliminates this double
/// indirection while still allowing one to increment the refcount and getting an `Arc<T>` when/if
/// needed.
///
/// # Invariants
///
/// There are no mutable references to the underlying [`Arc`], and it remains valid for the
/// lifetime of the [`ArcBorrow`] instance.
///
/// # Example
///
/// ```
/// use kernel::sync::{Arc, ArcBorrow};
///
/// struct Example;
///
/// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
/// e.into()
/// }
///
/// let obj = Arc::try_new(Example)?;
/// let cloned = do_something(obj.as_arc_borrow());
///
/// // Assert that both `obj` and `cloned` point to the same underlying object.
/// assert!(core::ptr::eq(&*obj, &*cloned));
/// # Ok::<(), Error>(())
/// ```
///
/// Using `ArcBorrow<T>` as the type of `self`:
///
/// ```
/// use kernel::sync::{Arc, ArcBorrow};
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// impl Example {
/// fn use_reference(self: ArcBorrow<'_, Self>) {
/// // ...
/// }
/// }
///
/// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
/// obj.as_arc_borrow().use_reference();
/// # Ok::<(), Error>(())
/// ```
pub struct ArcBorrow<'a, T: ?Sized + 'a> {
inner: NonNull<ArcInner<T>>,
_p: PhantomData<&'a ()>,
}
// This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`.
impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {}
// This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
// `ArcBorrow<U>`.
impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
for ArcBorrow<'_, T>
{
}
impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
fn clone(&self) -> Self {
*self
}
}
impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
impl<T: ?Sized> ArcBorrow<'_, T> {
/// Creates a new [`ArcBorrow`] instance.
///
/// # Safety
///
/// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
/// 1. That `inner` remains valid;
/// 2. That no mutable references to `inner` are created.
unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
// INVARIANT: The safety requirements guarantee the invariants.
Self {
inner,
_p: PhantomData,
}
}
}
impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
fn from(b: ArcBorrow<'_, T>) -> Self {
// SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
// guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
// increment.
ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
.deref()
.clone()
}
}
impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
type Target = T;
fn deref(&self) -> &Self::Target {
// SAFETY: By the type invariant, the underlying object is still alive with no mutable
// references to it, so it is safe to create a shared reference.
unsafe { &self.inner.as_ref().data }
}
}
/// A refcounted object that is known to have a refcount of 1.
///
/// It is mutable and can be converted to an [`Arc`] so that it can be shared.
///
/// # Invariants
///
/// `inner` always has a reference count of 1.
///
/// # Examples
///
/// In the following example, we make changes to the inner object before turning it into an
/// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
/// cannot fail.
///
/// ```
/// use kernel::sync::{Arc, UniqueArc};
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// fn test() -> Result<Arc<Example>> {
/// let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?;
/// x.a += 1;
/// x.b += 1;
/// Ok(x.into())
/// }
///
/// # test().unwrap();
/// ```
///
/// In the following example we first allocate memory for a ref-counted `Example` but we don't
/// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
/// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
/// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
///
/// ```
/// use kernel::sync::{Arc, UniqueArc};
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// fn test() -> Result<Arc<Example>> {
/// let x = UniqueArc::try_new_uninit()?;
/// Ok(x.write(Example { a: 10, b: 20 }).into())
/// }
///
/// # test().unwrap();
/// ```
///
/// In the last example below, the caller gets a pinned instance of `Example` while converting to
/// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
/// initialisation, for example, when initialising fields that are wrapped in locks.
///
/// ```
/// use kernel::sync::{Arc, UniqueArc};
///
/// struct Example {
/// a: u32,
/// b: u32,
/// }
///
/// fn test() -> Result<Arc<Example>> {
/// let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?);
/// // We can modify `pinned` because it is `Unpin`.
/// pinned.as_mut().a += 1;
/// Ok(pinned.into())
/// }
///
/// # test().unwrap();
/// ```
pub struct UniqueArc<T: ?Sized> {
inner: Arc<T>,
}
impl<T> UniqueArc<T> {
/// Tries to allocate a new [`UniqueArc`] instance.
pub fn try_new(value: T) -> Result<Self, AllocError> {
Ok(Self {
// INVARIANT: The newly-created object has a ref-count of 1.
inner: Arc::try_new(value)?,
})
}
/// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
// INVARIANT: The refcount is initialised to a non-zero value.
let inner = Box::try_init::<AllocError>(try_init!(ArcInner {
// SAFETY: There are no safety requirements for this FFI call.
refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
data <- init::uninit::<T, AllocError>(),
}? AllocError))?;
Ok(UniqueArc {
// INVARIANT: The newly-created object has a ref-count of 1.
// SAFETY: The pointer from the `Box` is valid.
inner: unsafe { Arc::from_inner(Box::leak(inner).into()) },
})
}
}
impl<T> UniqueArc<MaybeUninit<T>> {
/// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
pub fn write(mut self, value: T) -> UniqueArc<T> {
self.deref_mut().write(value);
// SAFETY: We just wrote the value to be initialized.
unsafe { self.assume_init() }
}
/// Unsafely assume that `self` is initialized.
///
/// # Safety
///
/// The caller guarantees that the value behind this pointer has been initialized. It is
/// *immediate* UB to call this when the value is not initialized.
pub unsafe fn assume_init(self) -> UniqueArc<T> {
let inner = ManuallyDrop::new(self).inner.ptr;
UniqueArc {
// SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
// dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
inner: unsafe { Arc::from_inner(inner.cast()) },
}
}
/// Initialize `self` using the given initializer.
pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
// SAFETY: The supplied pointer is valid for initialization.
match unsafe { init.__init(self.as_mut_ptr()) } {
// SAFETY: Initialization completed successfully.
Ok(()) => Ok(unsafe { self.assume_init() }),
Err(err) => Err(err),
}
}
/// Pin-initialize `self` using the given pin-initializer.
pub fn pin_init_with<E>(
mut self,
init: impl PinInit<T, E>,
) -> core::result::Result<Pin<UniqueArc<T>>, E> {
// SAFETY: The supplied pointer is valid for initialization and we will later pin the value
// to ensure it does not move.
match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
// SAFETY: Initialization completed successfully.
Ok(()) => Ok(unsafe { self.assume_init() }.into()),
Err(err) => Err(err),
}
}
}
impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
fn from(obj: UniqueArc<T>) -> Self {
// SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
// is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
unsafe { Pin::new_unchecked(obj) }
}
}
impl<T: ?Sized> Deref for UniqueArc<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
self.inner.deref()
}
}
impl<T: ?Sized> DerefMut for UniqueArc<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
// SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
// it is safe to dereference it. Additionally, we know there is only one reference when
// it's inside a `UniqueArc`, so it is safe to get a mutable reference.
unsafe { &mut self.inner.ptr.as_mut().data }
}
}
impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self.deref(), f)
}
}
impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self.deref(), f)
}
}
impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(self.deref(), f)
}
}
impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(self.deref(), f)
}
}