In the current design, various chip functions and tables are built into rtw88 core. That causes kernel to load its functionalities even if a chip isn't currently used. We plan to make each chip's functionalities a separate kernel module to reduce rtw88 core. And kernel will be able to load the necessary. Before extracting chip functionalities, we export symbols inside rtw88 core which will be used in chip modules. Signed-off-by: Zong-Zhe Yang <kevin_yang@realtek.com> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Link: https://lore.kernel.org/r/20200515052327.31874-2-yhchuang@realtek.com
188 lines
4.5 KiB
C
188 lines
4.5 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
|
/* Copyright(c) 2018-2019 Realtek Corporation
|
|
*/
|
|
|
|
#include <linux/iopoll.h>
|
|
|
|
#include "main.h"
|
|
#include "efuse.h"
|
|
#include "reg.h"
|
|
#include "debug.h"
|
|
|
|
#define RTW_EFUSE_BANK_WIFI 0x0
|
|
|
|
static void switch_efuse_bank(struct rtw_dev *rtwdev)
|
|
{
|
|
rtw_write32_mask(rtwdev, REG_LDO_EFUSE_CTRL, BIT_MASK_EFUSE_BANK_SEL,
|
|
RTW_EFUSE_BANK_WIFI);
|
|
}
|
|
|
|
#define invalid_efuse_header(hdr1, hdr2) \
|
|
((hdr1) == 0xff || (((hdr1) & 0x1f) == 0xf && (hdr2) == 0xff))
|
|
#define invalid_efuse_content(word_en, i) \
|
|
(((word_en) & BIT(i)) != 0x0)
|
|
#define get_efuse_blk_idx_2_byte(hdr1, hdr2) \
|
|
((((hdr2) & 0xf0) >> 1) | (((hdr1) >> 5) & 0x07))
|
|
#define get_efuse_blk_idx_1_byte(hdr1) \
|
|
(((hdr1) & 0xf0) >> 4)
|
|
#define block_idx_to_logical_idx(blk_idx, i) \
|
|
(((blk_idx) << 3) + ((i) << 1))
|
|
|
|
/* efuse header format
|
|
*
|
|
* | 7 5 4 0 | 7 4 3 0 | 15 8 7 0 |
|
|
* block[2:0] 0 1111 block[6:3] word_en[3:0] byte0 byte1
|
|
* | header 1 (optional) | header 2 | word N |
|
|
*
|
|
* word_en: 4 bits each word. 0 -> write; 1 -> not write
|
|
* N: 1~4, depends on word_en
|
|
*/
|
|
static int rtw_dump_logical_efuse_map(struct rtw_dev *rtwdev, u8 *phy_map,
|
|
u8 *log_map)
|
|
{
|
|
u32 physical_size = rtwdev->efuse.physical_size;
|
|
u32 protect_size = rtwdev->efuse.protect_size;
|
|
u32 logical_size = rtwdev->efuse.logical_size;
|
|
u32 phy_idx, log_idx;
|
|
u8 hdr1, hdr2;
|
|
u8 blk_idx;
|
|
u8 word_en;
|
|
int i;
|
|
|
|
for (phy_idx = 0; phy_idx < physical_size - protect_size;) {
|
|
hdr1 = phy_map[phy_idx];
|
|
hdr2 = phy_map[phy_idx + 1];
|
|
if (invalid_efuse_header(hdr1, hdr2))
|
|
break;
|
|
|
|
if ((hdr1 & 0x1f) == 0xf) {
|
|
/* 2-byte header format */
|
|
blk_idx = get_efuse_blk_idx_2_byte(hdr1, hdr2);
|
|
word_en = hdr2 & 0xf;
|
|
phy_idx += 2;
|
|
} else {
|
|
/* 1-byte header format */
|
|
blk_idx = get_efuse_blk_idx_1_byte(hdr1);
|
|
word_en = hdr1 & 0xf;
|
|
phy_idx += 1;
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (invalid_efuse_content(word_en, i))
|
|
continue;
|
|
|
|
log_idx = block_idx_to_logical_idx(blk_idx, i);
|
|
if (phy_idx + 1 > physical_size - protect_size ||
|
|
log_idx + 1 > logical_size)
|
|
return -EINVAL;
|
|
|
|
log_map[log_idx] = phy_map[phy_idx];
|
|
log_map[log_idx + 1] = phy_map[phy_idx + 1];
|
|
phy_idx += 2;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int rtw_dump_physical_efuse_map(struct rtw_dev *rtwdev, u8 *map)
|
|
{
|
|
struct rtw_chip_info *chip = rtwdev->chip;
|
|
u32 size = rtwdev->efuse.physical_size;
|
|
u32 efuse_ctl;
|
|
u32 addr;
|
|
u32 cnt;
|
|
|
|
rtw_chip_efuse_grant_on(rtwdev);
|
|
|
|
switch_efuse_bank(rtwdev);
|
|
|
|
/* disable 2.5V LDO */
|
|
chip->ops->cfg_ldo25(rtwdev, false);
|
|
|
|
efuse_ctl = rtw_read32(rtwdev, REG_EFUSE_CTRL);
|
|
|
|
for (addr = 0; addr < size; addr++) {
|
|
efuse_ctl &= ~(BIT_MASK_EF_DATA | BITS_EF_ADDR);
|
|
efuse_ctl |= (addr & BIT_MASK_EF_ADDR) << BIT_SHIFT_EF_ADDR;
|
|
rtw_write32(rtwdev, REG_EFUSE_CTRL, efuse_ctl & (~BIT_EF_FLAG));
|
|
|
|
cnt = 1000000;
|
|
do {
|
|
udelay(1);
|
|
efuse_ctl = rtw_read32(rtwdev, REG_EFUSE_CTRL);
|
|
if (--cnt == 0)
|
|
return -EBUSY;
|
|
} while (!(efuse_ctl & BIT_EF_FLAG));
|
|
|
|
*(map + addr) = (u8)(efuse_ctl & BIT_MASK_EF_DATA);
|
|
}
|
|
|
|
rtw_chip_efuse_grant_off(rtwdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int rtw_read8_physical_efuse(struct rtw_dev *rtwdev, u16 addr, u8 *data)
|
|
{
|
|
u32 efuse_ctl;
|
|
int ret;
|
|
|
|
rtw_write32_mask(rtwdev, REG_EFUSE_CTRL, 0x3ff00, addr);
|
|
rtw_write32_clr(rtwdev, REG_EFUSE_CTRL, BIT_EF_FLAG);
|
|
|
|
ret = read_poll_timeout(rtw_read32, efuse_ctl, efuse_ctl & BIT_EF_FLAG,
|
|
1000, 100000, false, rtwdev, REG_EFUSE_CTRL);
|
|
if (ret) {
|
|
*data = EFUSE_READ_FAIL;
|
|
return ret;
|
|
}
|
|
|
|
*data = rtw_read8(rtwdev, REG_EFUSE_CTRL);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(rtw_read8_physical_efuse);
|
|
|
|
int rtw_parse_efuse_map(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_chip_info *chip = rtwdev->chip;
|
|
struct rtw_efuse *efuse = &rtwdev->efuse;
|
|
u32 phy_size = efuse->physical_size;
|
|
u32 log_size = efuse->logical_size;
|
|
u8 *phy_map = NULL;
|
|
u8 *log_map = NULL;
|
|
int ret = 0;
|
|
|
|
phy_map = kmalloc(phy_size, GFP_KERNEL);
|
|
log_map = kmalloc(log_size, GFP_KERNEL);
|
|
if (!phy_map || !log_map) {
|
|
ret = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
ret = rtw_dump_physical_efuse_map(rtwdev, phy_map);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to dump efuse physical map\n");
|
|
goto out_free;
|
|
}
|
|
|
|
memset(log_map, 0xff, log_size);
|
|
ret = rtw_dump_logical_efuse_map(rtwdev, phy_map, log_map);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to dump efuse logical map\n");
|
|
goto out_free;
|
|
}
|
|
|
|
ret = chip->ops->read_efuse(rtwdev, log_map);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to read efuse map\n");
|
|
goto out_free;
|
|
}
|
|
|
|
out_free:
|
|
kfree(log_map);
|
|
kfree(phy_map);
|
|
|
|
return ret;
|
|
}
|