linux/fs/bcachefs/extent_update.c
Kent Overstreet 07a1006ae8 bcachefs: Reduce/kill BKEY_PADDED use
With various newer key types - stripe keys, inline data extents - the
old approach of calculating the maximum size of the value is becoming
more and more error prone. Better to switch to bkey_on_stack, which can
dynamically allocate if necessary to handle any size bkey.

In particular we also want to get rid of BKEY_EXTENT_VAL_U64s_MAX.

Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:50 -04:00

229 lines
5.0 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "buckets.h"
#include "debug.h"
#include "extents.h"
#include "extent_update.h"
/*
* This counts the number of iterators to the alloc & ec btrees we'll need
* inserting/removing this extent:
*/
static unsigned bch2_bkey_nr_alloc_ptrs(struct bkey_s_c k)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
unsigned ret = 0;
bkey_extent_entry_for_each(ptrs, entry) {
switch (__extent_entry_type(entry)) {
case BCH_EXTENT_ENTRY_ptr:
case BCH_EXTENT_ENTRY_stripe_ptr:
ret++;
}
}
return ret;
}
static int count_iters_for_insert(struct btree_trans *trans,
struct bkey_s_c k,
unsigned offset,
struct bpos *end,
unsigned *nr_iters,
unsigned max_iters)
{
int ret = 0, ret2 = 0;
if (*nr_iters >= max_iters) {
*end = bpos_min(*end, k.k->p);
ret = 1;
}
switch (k.k->type) {
case KEY_TYPE_extent:
case KEY_TYPE_reflink_v:
*nr_iters += bch2_bkey_nr_alloc_ptrs(k);
if (*nr_iters >= max_iters) {
*end = bpos_min(*end, k.k->p);
ret = 1;
}
break;
case KEY_TYPE_reflink_p: {
struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k);
u64 idx = le64_to_cpu(p.v->idx);
unsigned sectors = bpos_min(*end, p.k->p).offset -
bkey_start_offset(p.k);
struct btree_iter *iter;
struct bkey_s_c r_k;
for_each_btree_key(trans, iter,
BTREE_ID_REFLINK, POS(0, idx + offset),
BTREE_ITER_SLOTS, r_k, ret2) {
if (bkey_cmp(bkey_start_pos(r_k.k),
POS(0, idx + sectors)) >= 0)
break;
/* extent_update_to_keys(), for the reflink_v update */
*nr_iters += 1;
*nr_iters += 1 + bch2_bkey_nr_alloc_ptrs(r_k);
if (*nr_iters >= max_iters) {
struct bpos pos = bkey_start_pos(k.k);
pos.offset += min_t(u64, k.k->size,
r_k.k->p.offset - idx);
*end = bpos_min(*end, pos);
ret = 1;
break;
}
}
bch2_trans_iter_put(trans, iter);
break;
}
}
return ret2 ?: ret;
}
#define EXTENT_ITERS_MAX (BTREE_ITER_MAX / 3)
int bch2_extent_atomic_end(struct btree_iter *iter,
struct bkey_i *insert,
struct bpos *end)
{
struct btree_trans *trans = iter->trans;
struct btree *b;
struct btree_node_iter node_iter;
struct bkey_packed *_k;
unsigned nr_iters = 0;
int ret;
ret = bch2_btree_iter_traverse(iter);
if (ret)
return ret;
b = iter->l[0].b;
node_iter = iter->l[0].iter;
BUG_ON(bkey_cmp(b->data->min_key, POS_MIN) &&
bkey_cmp(bkey_start_pos(&insert->k),
bkey_predecessor(b->data->min_key)) < 0);
*end = bpos_min(insert->k.p, b->key.k.p);
/* extent_update_to_keys(): */
nr_iters += 1;
ret = count_iters_for_insert(trans, bkey_i_to_s_c(insert), 0, end,
&nr_iters, EXTENT_ITERS_MAX / 2);
if (ret < 0)
return ret;
while ((_k = bch2_btree_node_iter_peek(&node_iter, b))) {
struct bkey unpacked;
struct bkey_s_c k = bkey_disassemble(b, _k, &unpacked);
unsigned offset = 0;
if (bkey_cmp(bkey_start_pos(k.k), *end) >= 0)
break;
if (bkey_cmp(bkey_start_pos(&insert->k),
bkey_start_pos(k.k)) > 0)
offset = bkey_start_offset(&insert->k) -
bkey_start_offset(k.k);
/* extent_handle_overwrites(): */
switch (bch2_extent_overlap(&insert->k, k.k)) {
case BCH_EXTENT_OVERLAP_ALL:
case BCH_EXTENT_OVERLAP_FRONT:
nr_iters += 1;
break;
case BCH_EXTENT_OVERLAP_BACK:
case BCH_EXTENT_OVERLAP_MIDDLE:
nr_iters += 2;
break;
}
ret = count_iters_for_insert(trans, k, offset, end,
&nr_iters, EXTENT_ITERS_MAX);
if (ret)
break;
bch2_btree_node_iter_advance(&node_iter, b);
}
return ret < 0 ? ret : 0;
}
int bch2_extent_trim_atomic(struct bkey_i *k, struct btree_iter *iter)
{
struct bpos end;
int ret;
ret = bch2_extent_atomic_end(iter, k, &end);
if (ret)
return ret;
bch2_cut_back(end, k);
return 0;
}
int bch2_extent_is_atomic(struct bkey_i *k, struct btree_iter *iter)
{
struct bpos end;
int ret;
ret = bch2_extent_atomic_end(iter, k, &end);
if (ret)
return ret;
return !bkey_cmp(end, k->k.p);
}
enum btree_insert_ret
bch2_extent_can_insert(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *insert)
{
struct btree_iter_level *l = &iter->l[0];
struct btree_node_iter node_iter = l->iter;
struct bkey_packed *_k;
struct bkey_s_c k;
struct bkey unpacked;
int sectors;
_k = bch2_btree_node_iter_peek(&node_iter, l->b);
if (!_k)
return BTREE_INSERT_OK;
k = bkey_disassemble(l->b, _k, &unpacked);
/* Check if we're splitting a compressed extent: */
if (bkey_cmp(bkey_start_pos(&insert->k), bkey_start_pos(k.k)) > 0 &&
bkey_cmp(insert->k.p, k.k->p) < 0 &&
(sectors = bch2_bkey_sectors_compressed(k))) {
int flags = trans->flags & BTREE_INSERT_NOFAIL
? BCH_DISK_RESERVATION_NOFAIL : 0;
switch (bch2_disk_reservation_add(trans->c, trans->disk_res,
sectors, flags)) {
case 0:
break;
case -ENOSPC:
return BTREE_INSERT_ENOSPC;
default:
BUG();
}
}
return BTREE_INSERT_OK;
}