linux/arch/loongarch/kernel/ptrace.c
Hui Li c8e57ab099 LoongArch: Trigger user-space watchpoints correctly
In the current code, gdb can set the watchpoint successfully through
ptrace interface, but watchpoint will not be triggered.

When debugging the following code using gdb.

lihui@bogon:~$ cat test.c
  #include <stdio.h>
  int a = 0;
  int main()
  {
	a = 1;
	printf("a = %d\n", a);
	return 0;
  }
lihui@bogon:~$ gcc -g test.c -o test
lihui@bogon:~$ gdb test
...
(gdb) watch a
...
(gdb) r
...
a = 1
[Inferior 1 (process 4650) exited normally]

No watchpoints were triggered, the root causes are:

1. Kernel uses perf_event and hw_breakpoint framework to control
   watchpoint, but the perf_event corresponding to watchpoint is
   not enabled. So it needs to be enabled according to MWPnCFG3
   or FWPnCFG3 PLV bit field in ptrace_hbp_set_ctrl(), and privilege
   is set according to the monitored addr in hw_breakpoint_control().
   Furthermore, add a judgment in ptrace_hbp_set_addr() to ensure
   kernel-space addr cannot be monitored in user mode.

2. The global enable control for all watchpoints is the WE bit of
   CSR.CRMD, and hardware sets the value to 0 when an exception is
   triggered. When the ERTN instruction is executed to return, the
   hardware restores the value of the PWE field of CSR.PRMD here.
   So, before a thread containing watchpoints be scheduled, the PWE
   field of CSR.PRMD needs to be set to 1. Add this modification in
   hw_breakpoint_control().

All changes according to the LoongArch Reference Manual:
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#basic-control-and-status-registers

With this patch:

lihui@bogon:~$ gdb test
...
(gdb) watch a
Hardware watchpoint 1: a
(gdb) r
...
Hardware watchpoint 1: a

Old value = 0
New value = 1
main () at test.c:6
6		printf("a = %d\n", a);
(gdb) c
Continuing.
a = 1
[Inferior 1 (process 775) exited normally]

Cc: stable@vger.kernel.org
Signed-off-by: Hui Li <lihui@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-06-21 10:18:40 +08:00

1088 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Author: Hanlu Li <lihanlu@loongson.cn>
* Huacai Chen <chenhuacai@loongson.cn>
*
* Copyright (C) 2020-2022 Loongson Technology Corporation Limited
*
* Derived from MIPS:
* Copyright (C) 1992 Ross Biro
* Copyright (C) Linus Torvalds
* Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle
* Copyright (C) 1996 David S. Miller
* Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
* Copyright (C) 1999 MIPS Technologies, Inc.
* Copyright (C) 2000 Ulf Carlsson
*/
#include <linux/kernel.h>
#include <linux/audit.h>
#include <linux/compiler.h>
#include <linux/context_tracking.h>
#include <linux/elf.h>
#include <linux/errno.h>
#include <linux/hw_breakpoint.h>
#include <linux/mm.h>
#include <linux/nospec.h>
#include <linux/ptrace.h>
#include <linux/regset.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/security.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/seccomp.h>
#include <linux/thread_info.h>
#include <linux/uaccess.h>
#include <asm/byteorder.h>
#include <asm/cpu.h>
#include <asm/cpu-info.h>
#include <asm/fpu.h>
#include <asm/lbt.h>
#include <asm/loongarch.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/reg.h>
#include <asm/syscall.h>
static void init_fp_ctx(struct task_struct *target)
{
/* The target already has context */
if (tsk_used_math(target))
return;
/* Begin with data registers set to all 1s... */
memset(&target->thread.fpu.fpr, ~0, sizeof(target->thread.fpu.fpr));
set_stopped_child_used_math(target);
}
/*
* Called by kernel/ptrace.c when detaching..
*
* Make sure single step bits etc are not set.
*/
void ptrace_disable(struct task_struct *child)
{
/* Don't load the watchpoint registers for the ex-child. */
clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
clear_tsk_thread_flag(child, TIF_SINGLESTEP);
}
/* regset get/set implementations */
static int gpr_get(struct task_struct *target,
const struct user_regset *regset,
struct membuf to)
{
int r;
struct pt_regs *regs = task_pt_regs(target);
r = membuf_write(&to, &regs->regs, sizeof(u64) * GPR_NUM);
r = membuf_write(&to, &regs->orig_a0, sizeof(u64));
r = membuf_write(&to, &regs->csr_era, sizeof(u64));
r = membuf_write(&to, &regs->csr_badvaddr, sizeof(u64));
return r;
}
static int gpr_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int err;
int a0_start = sizeof(u64) * GPR_NUM;
int era_start = a0_start + sizeof(u64);
int badvaddr_start = era_start + sizeof(u64);
struct pt_regs *regs = task_pt_regs(target);
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&regs->regs,
0, a0_start);
err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&regs->orig_a0,
a0_start, a0_start + sizeof(u64));
err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&regs->csr_era,
era_start, era_start + sizeof(u64));
err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&regs->csr_badvaddr,
badvaddr_start, badvaddr_start + sizeof(u64));
return err;
}
/*
* Get the general floating-point registers.
*/
static int gfpr_get(struct task_struct *target, struct membuf *to)
{
return membuf_write(to, &target->thread.fpu.fpr,
sizeof(elf_fpreg_t) * NUM_FPU_REGS);
}
static int gfpr_get_simd(struct task_struct *target, struct membuf *to)
{
int i, r;
u64 fpr_val;
BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t));
for (i = 0; i < NUM_FPU_REGS; i++) {
fpr_val = get_fpr64(&target->thread.fpu.fpr[i], 0);
r = membuf_write(to, &fpr_val, sizeof(elf_fpreg_t));
}
return r;
}
/*
* Choose the appropriate helper for general registers, and then copy
* the FCC and FCSR registers separately.
*/
static int fpr_get(struct task_struct *target,
const struct user_regset *regset,
struct membuf to)
{
int r;
save_fpu_regs(target);
if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
r = gfpr_get(target, &to);
else
r = gfpr_get_simd(target, &to);
r = membuf_write(&to, &target->thread.fpu.fcc, sizeof(target->thread.fpu.fcc));
r = membuf_write(&to, &target->thread.fpu.fcsr, sizeof(target->thread.fpu.fcsr));
return r;
}
static int gfpr_set(struct task_struct *target,
unsigned int *pos, unsigned int *count,
const void **kbuf, const void __user **ubuf)
{
return user_regset_copyin(pos, count, kbuf, ubuf,
&target->thread.fpu.fpr,
0, NUM_FPU_REGS * sizeof(elf_fpreg_t));
}
static int gfpr_set_simd(struct task_struct *target,
unsigned int *pos, unsigned int *count,
const void **kbuf, const void __user **ubuf)
{
int i, err;
u64 fpr_val;
BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t));
for (i = 0; i < NUM_FPU_REGS && *count > 0; i++) {
err = user_regset_copyin(pos, count, kbuf, ubuf,
&fpr_val, i * sizeof(elf_fpreg_t),
(i + 1) * sizeof(elf_fpreg_t));
if (err)
return err;
set_fpr64(&target->thread.fpu.fpr[i], 0, fpr_val);
}
return 0;
}
/*
* Choose the appropriate helper for general registers, and then copy
* the FCC register separately.
*/
static int fpr_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
const int fcc_start = NUM_FPU_REGS * sizeof(elf_fpreg_t);
const int fcsr_start = fcc_start + sizeof(u64);
int err;
BUG_ON(count % sizeof(elf_fpreg_t));
if (pos + count > sizeof(elf_fpregset_t))
return -EIO;
init_fp_ctx(target);
if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
err = gfpr_set(target, &pos, &count, &kbuf, &ubuf);
else
err = gfpr_set_simd(target, &pos, &count, &kbuf, &ubuf);
if (err)
return err;
err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.fcc, fcc_start,
fcc_start + sizeof(u64));
err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.fcsr, fcsr_start,
fcsr_start + sizeof(u32));
return err;
}
static int cfg_get(struct task_struct *target,
const struct user_regset *regset,
struct membuf to)
{
int i, r;
u32 cfg_val;
i = 0;
while (to.left > 0) {
cfg_val = read_cpucfg(i++);
r = membuf_write(&to, &cfg_val, sizeof(u32));
}
return r;
}
/*
* CFG registers are read-only.
*/
static int cfg_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
return 0;
}
#ifdef CONFIG_CPU_HAS_LSX
static void copy_pad_fprs(struct task_struct *target,
const struct user_regset *regset,
struct membuf *to, unsigned int live_sz)
{
int i, j;
unsigned long long fill = ~0ull;
unsigned int cp_sz, pad_sz;
cp_sz = min(regset->size, live_sz);
pad_sz = regset->size - cp_sz;
WARN_ON(pad_sz % sizeof(fill));
for (i = 0; i < NUM_FPU_REGS; i++) {
membuf_write(to, &target->thread.fpu.fpr[i], cp_sz);
for (j = 0; j < (pad_sz / sizeof(fill)); j++) {
membuf_store(to, fill);
}
}
}
static int simd_get(struct task_struct *target,
const struct user_regset *regset,
struct membuf to)
{
const unsigned int wr_size = NUM_FPU_REGS * regset->size;
save_fpu_regs(target);
if (!tsk_used_math(target)) {
/* The task hasn't used FP or LSX, fill with 0xff */
copy_pad_fprs(target, regset, &to, 0);
} else if (!test_tsk_thread_flag(target, TIF_LSX_CTX_LIVE)) {
/* Copy scalar FP context, fill the rest with 0xff */
copy_pad_fprs(target, regset, &to, 8);
#ifdef CONFIG_CPU_HAS_LASX
} else if (!test_tsk_thread_flag(target, TIF_LASX_CTX_LIVE)) {
/* Copy LSX 128 Bit context, fill the rest with 0xff */
copy_pad_fprs(target, regset, &to, 16);
#endif
} else if (sizeof(target->thread.fpu.fpr[0]) == regset->size) {
/* Trivially copy the vector registers */
membuf_write(&to, &target->thread.fpu.fpr, wr_size);
} else {
/* Copy as much context as possible, fill the rest with 0xff */
copy_pad_fprs(target, regset, &to, sizeof(target->thread.fpu.fpr[0]));
}
return 0;
}
static int simd_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
const unsigned int wr_size = NUM_FPU_REGS * regset->size;
unsigned int cp_sz;
int i, err, start;
init_fp_ctx(target);
if (sizeof(target->thread.fpu.fpr[0]) == regset->size) {
/* Trivially copy the vector registers */
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.fpr,
0, wr_size);
} else {
/* Copy as much context as possible */
cp_sz = min_t(unsigned int, regset->size,
sizeof(target->thread.fpu.fpr[0]));
i = start = err = 0;
for (; i < NUM_FPU_REGS; i++, start += regset->size) {
err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.fpr[i],
start, start + cp_sz);
}
}
return err;
}
#endif /* CONFIG_CPU_HAS_LSX */
#ifdef CONFIG_CPU_HAS_LBT
static int lbt_get(struct task_struct *target,
const struct user_regset *regset,
struct membuf to)
{
int r;
r = membuf_write(&to, &target->thread.lbt.scr0, sizeof(target->thread.lbt.scr0));
r = membuf_write(&to, &target->thread.lbt.scr1, sizeof(target->thread.lbt.scr1));
r = membuf_write(&to, &target->thread.lbt.scr2, sizeof(target->thread.lbt.scr2));
r = membuf_write(&to, &target->thread.lbt.scr3, sizeof(target->thread.lbt.scr3));
r = membuf_write(&to, &target->thread.lbt.eflags, sizeof(u32));
r = membuf_write(&to, &target->thread.fpu.ftop, sizeof(u32));
return r;
}
static int lbt_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int err = 0;
const int eflags_start = 4 * sizeof(target->thread.lbt.scr0);
const int ftop_start = eflags_start + sizeof(u32);
err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.lbt.scr0,
0, 4 * sizeof(target->thread.lbt.scr0));
err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.lbt.eflags,
eflags_start, ftop_start);
err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.ftop,
ftop_start, ftop_start + sizeof(u32));
return err;
}
#endif /* CONFIG_CPU_HAS_LBT */
#ifdef CONFIG_HAVE_HW_BREAKPOINT
/*
* Handle hitting a HW-breakpoint.
*/
static void ptrace_hbptriggered(struct perf_event *bp,
struct perf_sample_data *data,
struct pt_regs *regs)
{
int i;
struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
for (i = 0; i < LOONGARCH_MAX_BRP; ++i)
if (current->thread.hbp_break[i] == bp)
break;
for (i = 0; i < LOONGARCH_MAX_WRP; ++i)
if (current->thread.hbp_watch[i] == bp)
break;
force_sig_ptrace_errno_trap(i, (void __user *)bkpt->address);
}
static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx)
{
struct perf_event *bp;
switch (note_type) {
case NT_LOONGARCH_HW_BREAK:
if (idx >= LOONGARCH_MAX_BRP)
return ERR_PTR(-EINVAL);
idx = array_index_nospec(idx, LOONGARCH_MAX_BRP);
bp = tsk->thread.hbp_break[idx];
break;
case NT_LOONGARCH_HW_WATCH:
if (idx >= LOONGARCH_MAX_WRP)
return ERR_PTR(-EINVAL);
idx = array_index_nospec(idx, LOONGARCH_MAX_WRP);
bp = tsk->thread.hbp_watch[idx];
break;
}
return bp;
}
static int ptrace_hbp_set_event(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx,
struct perf_event *bp)
{
switch (note_type) {
case NT_LOONGARCH_HW_BREAK:
if (idx >= LOONGARCH_MAX_BRP)
return -EINVAL;
idx = array_index_nospec(idx, LOONGARCH_MAX_BRP);
tsk->thread.hbp_break[idx] = bp;
break;
case NT_LOONGARCH_HW_WATCH:
if (idx >= LOONGARCH_MAX_WRP)
return -EINVAL;
idx = array_index_nospec(idx, LOONGARCH_MAX_WRP);
tsk->thread.hbp_watch[idx] = bp;
break;
}
return 0;
}
static struct perf_event *ptrace_hbp_create(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx)
{
int err, type;
struct perf_event *bp;
struct perf_event_attr attr;
switch (note_type) {
case NT_LOONGARCH_HW_BREAK:
type = HW_BREAKPOINT_X;
break;
case NT_LOONGARCH_HW_WATCH:
type = HW_BREAKPOINT_RW;
break;
default:
return ERR_PTR(-EINVAL);
}
ptrace_breakpoint_init(&attr);
/*
* Initialise fields to sane defaults
* (i.e. values that will pass validation).
*/
attr.bp_addr = 0;
attr.bp_len = HW_BREAKPOINT_LEN_4;
attr.bp_type = type;
attr.disabled = 1;
bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
if (IS_ERR(bp))
return bp;
err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
if (err)
return ERR_PTR(err);
return bp;
}
static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
struct arch_hw_breakpoint_ctrl ctrl,
struct perf_event_attr *attr)
{
int err, len, type;
err = arch_bp_generic_fields(ctrl, &len, &type);
if (err)
return err;
attr->bp_len = len;
attr->bp_type = type;
return 0;
}
static int ptrace_hbp_get_resource_info(unsigned int note_type, u64 *info)
{
u8 num;
u64 reg = 0;
switch (note_type) {
case NT_LOONGARCH_HW_BREAK:
num = hw_breakpoint_slots(TYPE_INST);
break;
case NT_LOONGARCH_HW_WATCH:
num = hw_breakpoint_slots(TYPE_DATA);
break;
default:
return -EINVAL;
}
*info = reg | num;
return 0;
}
static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx)
{
struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
if (!bp)
bp = ptrace_hbp_create(note_type, tsk, idx);
return bp;
}
static int ptrace_hbp_get_ctrl(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx, u32 *ctrl)
{
struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
if (IS_ERR(bp))
return PTR_ERR(bp);
*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
return 0;
}
static int ptrace_hbp_get_mask(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx, u64 *mask)
{
struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
if (IS_ERR(bp))
return PTR_ERR(bp);
*mask = bp ? counter_arch_bp(bp)->mask : 0;
return 0;
}
static int ptrace_hbp_get_addr(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx, u64 *addr)
{
struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
if (IS_ERR(bp))
return PTR_ERR(bp);
*addr = bp ? counter_arch_bp(bp)->address : 0;
return 0;
}
static int ptrace_hbp_set_ctrl(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx, u32 uctrl)
{
int err;
struct perf_event *bp;
struct perf_event_attr attr;
struct arch_hw_breakpoint_ctrl ctrl;
bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
if (IS_ERR(bp))
return PTR_ERR(bp);
attr = bp->attr;
switch (note_type) {
case NT_LOONGARCH_HW_BREAK:
ctrl.type = LOONGARCH_BREAKPOINT_EXECUTE;
ctrl.len = LOONGARCH_BREAKPOINT_LEN_4;
break;
case NT_LOONGARCH_HW_WATCH:
decode_ctrl_reg(uctrl, &ctrl);
break;
default:
return -EINVAL;
}
if (uctrl & CTRL_PLV_ENABLE) {
err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
if (err)
return err;
attr.disabled = 0;
} else {
attr.disabled = 1;
}
return modify_user_hw_breakpoint(bp, &attr);
}
static int ptrace_hbp_set_mask(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx, u64 mask)
{
struct perf_event *bp;
struct perf_event_attr attr;
struct arch_hw_breakpoint *info;
bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
if (IS_ERR(bp))
return PTR_ERR(bp);
attr = bp->attr;
info = counter_arch_bp(bp);
info->mask = mask;
return modify_user_hw_breakpoint(bp, &attr);
}
static int ptrace_hbp_set_addr(unsigned int note_type,
struct task_struct *tsk,
unsigned long idx, u64 addr)
{
struct perf_event *bp;
struct perf_event_attr attr;
/* Kernel-space address cannot be monitored by user-space */
if ((unsigned long)addr >= XKPRANGE)
return -EINVAL;
bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
if (IS_ERR(bp))
return PTR_ERR(bp);
attr = bp->attr;
attr.bp_addr = addr;
return modify_user_hw_breakpoint(bp, &attr);
}
#define PTRACE_HBP_ADDR_SZ sizeof(u64)
#define PTRACE_HBP_MASK_SZ sizeof(u64)
#define PTRACE_HBP_CTRL_SZ sizeof(u32)
#define PTRACE_HBP_PAD_SZ sizeof(u32)
static int hw_break_get(struct task_struct *target,
const struct user_regset *regset,
struct membuf to)
{
u64 info;
u32 ctrl;
u64 addr, mask;
int ret, idx = 0;
unsigned int note_type = regset->core_note_type;
/* Resource info */
ret = ptrace_hbp_get_resource_info(note_type, &info);
if (ret)
return ret;
membuf_write(&to, &info, sizeof(info));
/* (address, mask, ctrl) registers */
while (to.left) {
ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
if (ret)
return ret;
ret = ptrace_hbp_get_mask(note_type, target, idx, &mask);
if (ret)
return ret;
ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
if (ret)
return ret;
membuf_store(&to, addr);
membuf_store(&to, mask);
membuf_store(&to, ctrl);
membuf_zero(&to, sizeof(u32));
idx++;
}
return 0;
}
static int hw_break_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
u32 ctrl;
u64 addr, mask;
int ret, idx = 0, offset, limit;
unsigned int note_type = regset->core_note_type;
/* Resource info */
offset = offsetof(struct user_watch_state, dbg_regs);
user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
/* (address, mask, ctrl) registers */
limit = regset->n * regset->size;
while (count && offset < limit) {
if (count < PTRACE_HBP_ADDR_SZ)
return -EINVAL;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
offset, offset + PTRACE_HBP_ADDR_SZ);
if (ret)
return ret;
ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
if (ret)
return ret;
offset += PTRACE_HBP_ADDR_SZ;
if (!count)
break;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &mask,
offset, offset + PTRACE_HBP_MASK_SZ);
if (ret)
return ret;
ret = ptrace_hbp_set_mask(note_type, target, idx, mask);
if (ret)
return ret;
offset += PTRACE_HBP_MASK_SZ;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
offset, offset + PTRACE_HBP_CTRL_SZ);
if (ret)
return ret;
ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
if (ret)
return ret;
offset += PTRACE_HBP_CTRL_SZ;
user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
offset, offset + PTRACE_HBP_PAD_SZ);
offset += PTRACE_HBP_PAD_SZ;
idx++;
}
return 0;
}
#endif
struct pt_regs_offset {
const char *name;
int offset;
};
#define REG_OFFSET_NAME(n, r) {.name = #n, .offset = offsetof(struct pt_regs, r)}
#define REG_OFFSET_END {.name = NULL, .offset = 0}
static const struct pt_regs_offset regoffset_table[] = {
REG_OFFSET_NAME(r0, regs[0]),
REG_OFFSET_NAME(r1, regs[1]),
REG_OFFSET_NAME(r2, regs[2]),
REG_OFFSET_NAME(r3, regs[3]),
REG_OFFSET_NAME(r4, regs[4]),
REG_OFFSET_NAME(r5, regs[5]),
REG_OFFSET_NAME(r6, regs[6]),
REG_OFFSET_NAME(r7, regs[7]),
REG_OFFSET_NAME(r8, regs[8]),
REG_OFFSET_NAME(r9, regs[9]),
REG_OFFSET_NAME(r10, regs[10]),
REG_OFFSET_NAME(r11, regs[11]),
REG_OFFSET_NAME(r12, regs[12]),
REG_OFFSET_NAME(r13, regs[13]),
REG_OFFSET_NAME(r14, regs[14]),
REG_OFFSET_NAME(r15, regs[15]),
REG_OFFSET_NAME(r16, regs[16]),
REG_OFFSET_NAME(r17, regs[17]),
REG_OFFSET_NAME(r18, regs[18]),
REG_OFFSET_NAME(r19, regs[19]),
REG_OFFSET_NAME(r20, regs[20]),
REG_OFFSET_NAME(r21, regs[21]),
REG_OFFSET_NAME(r22, regs[22]),
REG_OFFSET_NAME(r23, regs[23]),
REG_OFFSET_NAME(r24, regs[24]),
REG_OFFSET_NAME(r25, regs[25]),
REG_OFFSET_NAME(r26, regs[26]),
REG_OFFSET_NAME(r27, regs[27]),
REG_OFFSET_NAME(r28, regs[28]),
REG_OFFSET_NAME(r29, regs[29]),
REG_OFFSET_NAME(r30, regs[30]),
REG_OFFSET_NAME(r31, regs[31]),
REG_OFFSET_NAME(orig_a0, orig_a0),
REG_OFFSET_NAME(csr_era, csr_era),
REG_OFFSET_NAME(csr_badvaddr, csr_badvaddr),
REG_OFFSET_NAME(csr_crmd, csr_crmd),
REG_OFFSET_NAME(csr_prmd, csr_prmd),
REG_OFFSET_NAME(csr_euen, csr_euen),
REG_OFFSET_NAME(csr_ecfg, csr_ecfg),
REG_OFFSET_NAME(csr_estat, csr_estat),
REG_OFFSET_END,
};
/**
* regs_query_register_offset() - query register offset from its name
* @name: the name of a register
*
* regs_query_register_offset() returns the offset of a register in struct
* pt_regs from its name. If the name is invalid, this returns -EINVAL;
*/
int regs_query_register_offset(const char *name)
{
const struct pt_regs_offset *roff;
for (roff = regoffset_table; roff->name != NULL; roff++)
if (!strcmp(roff->name, name))
return roff->offset;
return -EINVAL;
}
enum loongarch_regset {
REGSET_GPR,
REGSET_FPR,
REGSET_CPUCFG,
#ifdef CONFIG_CPU_HAS_LSX
REGSET_LSX,
#endif
#ifdef CONFIG_CPU_HAS_LASX
REGSET_LASX,
#endif
#ifdef CONFIG_CPU_HAS_LBT
REGSET_LBT,
#endif
#ifdef CONFIG_HAVE_HW_BREAKPOINT
REGSET_HW_BREAK,
REGSET_HW_WATCH,
#endif
};
static const struct user_regset loongarch64_regsets[] = {
[REGSET_GPR] = {
.core_note_type = NT_PRSTATUS,
.n = ELF_NGREG,
.size = sizeof(elf_greg_t),
.align = sizeof(elf_greg_t),
.regset_get = gpr_get,
.set = gpr_set,
},
[REGSET_FPR] = {
.core_note_type = NT_PRFPREG,
.n = ELF_NFPREG,
.size = sizeof(elf_fpreg_t),
.align = sizeof(elf_fpreg_t),
.regset_get = fpr_get,
.set = fpr_set,
},
[REGSET_CPUCFG] = {
.core_note_type = NT_LOONGARCH_CPUCFG,
.n = 64,
.size = sizeof(u32),
.align = sizeof(u32),
.regset_get = cfg_get,
.set = cfg_set,
},
#ifdef CONFIG_CPU_HAS_LSX
[REGSET_LSX] = {
.core_note_type = NT_LOONGARCH_LSX,
.n = NUM_FPU_REGS,
.size = 16,
.align = 16,
.regset_get = simd_get,
.set = simd_set,
},
#endif
#ifdef CONFIG_CPU_HAS_LASX
[REGSET_LASX] = {
.core_note_type = NT_LOONGARCH_LASX,
.n = NUM_FPU_REGS,
.size = 32,
.align = 32,
.regset_get = simd_get,
.set = simd_set,
},
#endif
#ifdef CONFIG_CPU_HAS_LBT
[REGSET_LBT] = {
.core_note_type = NT_LOONGARCH_LBT,
.n = 5,
.size = sizeof(u64),
.align = sizeof(u64),
.regset_get = lbt_get,
.set = lbt_set,
},
#endif
#ifdef CONFIG_HAVE_HW_BREAKPOINT
[REGSET_HW_BREAK] = {
.core_note_type = NT_LOONGARCH_HW_BREAK,
.n = sizeof(struct user_watch_state) / sizeof(u32),
.size = sizeof(u32),
.align = sizeof(u32),
.regset_get = hw_break_get,
.set = hw_break_set,
},
[REGSET_HW_WATCH] = {
.core_note_type = NT_LOONGARCH_HW_WATCH,
.n = sizeof(struct user_watch_state) / sizeof(u32),
.size = sizeof(u32),
.align = sizeof(u32),
.regset_get = hw_break_get,
.set = hw_break_set,
},
#endif
};
static const struct user_regset_view user_loongarch64_view = {
.name = "loongarch64",
.e_machine = ELF_ARCH,
.regsets = loongarch64_regsets,
.n = ARRAY_SIZE(loongarch64_regsets),
};
const struct user_regset_view *task_user_regset_view(struct task_struct *task)
{
return &user_loongarch64_view;
}
static inline int read_user(struct task_struct *target, unsigned long addr,
unsigned long __user *data)
{
unsigned long tmp = 0;
switch (addr) {
case 0 ... 31:
tmp = task_pt_regs(target)->regs[addr];
break;
case ARG0:
tmp = task_pt_regs(target)->orig_a0;
break;
case PC:
tmp = task_pt_regs(target)->csr_era;
break;
case BADVADDR:
tmp = task_pt_regs(target)->csr_badvaddr;
break;
default:
return -EIO;
}
return put_user(tmp, data);
}
static inline int write_user(struct task_struct *target, unsigned long addr,
unsigned long data)
{
switch (addr) {
case 0 ... 31:
task_pt_regs(target)->regs[addr] = data;
break;
case ARG0:
task_pt_regs(target)->orig_a0 = data;
break;
case PC:
task_pt_regs(target)->csr_era = data;
break;
case BADVADDR:
task_pt_regs(target)->csr_badvaddr = data;
break;
default:
return -EIO;
}
return 0;
}
long arch_ptrace(struct task_struct *child, long request,
unsigned long addr, unsigned long data)
{
int ret;
unsigned long __user *datap = (void __user *) data;
switch (request) {
case PTRACE_PEEKUSR:
ret = read_user(child, addr, datap);
break;
case PTRACE_POKEUSR:
ret = write_user(child, addr, data);
break;
default:
ret = ptrace_request(child, request, addr, data);
break;
}
return ret;
}
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void ptrace_triggered(struct perf_event *bp,
struct perf_sample_data *data, struct pt_regs *regs)
{
struct perf_event_attr attr;
attr = bp->attr;
attr.disabled = true;
modify_user_hw_breakpoint(bp, &attr);
}
static int set_single_step(struct task_struct *tsk, unsigned long addr)
{
struct perf_event *bp;
struct perf_event_attr attr;
struct arch_hw_breakpoint *info;
struct thread_struct *thread = &tsk->thread;
bp = thread->hbp_break[0];
if (!bp) {
ptrace_breakpoint_init(&attr);
attr.bp_addr = addr;
attr.bp_len = HW_BREAKPOINT_LEN_8;
attr.bp_type = HW_BREAKPOINT_X;
bp = register_user_hw_breakpoint(&attr, ptrace_triggered,
NULL, tsk);
if (IS_ERR(bp))
return PTR_ERR(bp);
thread->hbp_break[0] = bp;
} else {
int err;
attr = bp->attr;
attr.bp_addr = addr;
/* Reenable breakpoint */
attr.disabled = false;
err = modify_user_hw_breakpoint(bp, &attr);
if (unlikely(err))
return err;
csr_write64(attr.bp_addr, LOONGARCH_CSR_IB0ADDR);
}
info = counter_arch_bp(bp);
info->mask = TASK_SIZE - 1;
return 0;
}
/* ptrace API */
void user_enable_single_step(struct task_struct *task)
{
struct thread_info *ti = task_thread_info(task);
set_single_step(task, task_pt_regs(task)->csr_era);
task->thread.single_step = task_pt_regs(task)->csr_era;
set_ti_thread_flag(ti, TIF_SINGLESTEP);
}
void user_disable_single_step(struct task_struct *task)
{
clear_tsk_thread_flag(task, TIF_SINGLESTEP);
}
#endif