linux/arch/powerpc/lib/qspinlock.c
Nicholas Piggin 0b2199841a powerpc/qspinlock: add compile-time tuning adjustments
This adds compile-time options that allow the EH lock hint bit to be
enabled or disabled, and adds some new options that may or may not
help matters. To help with experimentation and tuning.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20221126095932.1234527-18-npiggin@gmail.com
2022-12-02 17:48:50 +11:00

997 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/smp.h>
#include <linux/topology.h>
#include <linux/sched/clock.h>
#include <asm/qspinlock.h>
#include <asm/paravirt.h>
#define MAX_NODES 4
struct qnode {
struct qnode *next;
struct qspinlock *lock;
int cpu;
int yield_cpu;
u8 locked; /* 1 if lock acquired */
};
struct qnodes {
int count;
struct qnode nodes[MAX_NODES];
};
/* Tuning parameters */
static int steal_spins __read_mostly = (1 << 5);
static int remote_steal_spins __read_mostly = (1 << 2);
#if _Q_SPIN_TRY_LOCK_STEAL == 1
static const bool maybe_stealers = true;
#else
static bool maybe_stealers __read_mostly = true;
#endif
static int head_spins __read_mostly = (1 << 8);
static bool pv_yield_owner __read_mostly = true;
static bool pv_yield_allow_steal __read_mostly = false;
static bool pv_spin_on_preempted_owner __read_mostly = false;
static bool pv_sleepy_lock __read_mostly = true;
static bool pv_sleepy_lock_sticky __read_mostly = false;
static u64 pv_sleepy_lock_interval_ns __read_mostly = 0;
static int pv_sleepy_lock_factor __read_mostly = 256;
static bool pv_yield_prev __read_mostly = true;
static bool pv_yield_propagate_owner __read_mostly = true;
static bool pv_prod_head __read_mostly = false;
static DEFINE_PER_CPU_ALIGNED(struct qnodes, qnodes);
static DEFINE_PER_CPU_ALIGNED(u64, sleepy_lock_seen_clock);
#if _Q_SPIN_SPEC_BARRIER == 1
#define spec_barrier() do { asm volatile("ori 31,31,0" ::: "memory"); } while (0)
#else
#define spec_barrier() do { } while (0)
#endif
static __always_inline bool recently_sleepy(void)
{
/* pv_sleepy_lock is true when this is called */
if (pv_sleepy_lock_interval_ns) {
u64 seen = this_cpu_read(sleepy_lock_seen_clock);
if (seen) {
u64 delta = sched_clock() - seen;
if (delta < pv_sleepy_lock_interval_ns)
return true;
this_cpu_write(sleepy_lock_seen_clock, 0);
}
}
return false;
}
static __always_inline int get_steal_spins(bool paravirt, bool sleepy)
{
if (paravirt && sleepy)
return steal_spins * pv_sleepy_lock_factor;
else
return steal_spins;
}
static __always_inline int get_remote_steal_spins(bool paravirt, bool sleepy)
{
if (paravirt && sleepy)
return remote_steal_spins * pv_sleepy_lock_factor;
else
return remote_steal_spins;
}
static __always_inline int get_head_spins(bool paravirt, bool sleepy)
{
if (paravirt && sleepy)
return head_spins * pv_sleepy_lock_factor;
else
return head_spins;
}
static inline u32 encode_tail_cpu(int cpu)
{
return (cpu + 1) << _Q_TAIL_CPU_OFFSET;
}
static inline int decode_tail_cpu(u32 val)
{
return (val >> _Q_TAIL_CPU_OFFSET) - 1;
}
static inline int get_owner_cpu(u32 val)
{
return (val & _Q_OWNER_CPU_MASK) >> _Q_OWNER_CPU_OFFSET;
}
/*
* Try to acquire the lock if it was not already locked. If the tail matches
* mytail then clear it, otherwise leave it unchnaged. Return previous value.
*
* This is used by the head of the queue to acquire the lock and clean up
* its tail if it was the last one queued.
*/
static __always_inline u32 trylock_clean_tail(struct qspinlock *lock, u32 tail)
{
u32 newval = queued_spin_encode_locked_val();
u32 prev, tmp;
asm volatile(
"1: lwarx %0,0,%2,%7 # trylock_clean_tail \n"
/* This test is necessary if there could be stealers */
" andi. %1,%0,%5 \n"
" bne 3f \n"
/* Test whether the lock tail == mytail */
" and %1,%0,%6 \n"
" cmpw 0,%1,%3 \n"
/* Merge the new locked value */
" or %1,%1,%4 \n"
" bne 2f \n"
/* If the lock tail matched, then clear it, otherwise leave it. */
" andc %1,%1,%6 \n"
"2: stwcx. %1,0,%2 \n"
" bne- 1b \n"
"\t" PPC_ACQUIRE_BARRIER " \n"
"3: \n"
: "=&r" (prev), "=&r" (tmp)
: "r" (&lock->val), "r"(tail), "r" (newval),
"i" (_Q_LOCKED_VAL),
"r" (_Q_TAIL_CPU_MASK),
"i" (_Q_SPIN_EH_HINT)
: "cr0", "memory");
return prev;
}
/*
* Publish our tail, replacing previous tail. Return previous value.
*
* This provides a release barrier for publishing node, this pairs with the
* acquire barrier in get_tail_qnode() when the next CPU finds this tail
* value.
*/
static __always_inline u32 publish_tail_cpu(struct qspinlock *lock, u32 tail)
{
u32 prev, tmp;
asm volatile(
"\t" PPC_RELEASE_BARRIER " \n"
"1: lwarx %0,0,%2 # publish_tail_cpu \n"
" andc %1,%0,%4 \n"
" or %1,%1,%3 \n"
" stwcx. %1,0,%2 \n"
" bne- 1b \n"
: "=&r" (prev), "=&r"(tmp)
: "r" (&lock->val), "r" (tail), "r"(_Q_TAIL_CPU_MASK)
: "cr0", "memory");
return prev;
}
static __always_inline u32 set_mustq(struct qspinlock *lock)
{
u32 prev;
asm volatile(
"1: lwarx %0,0,%1 # set_mustq \n"
" or %0,%0,%2 \n"
" stwcx. %0,0,%1 \n"
" bne- 1b \n"
: "=&r" (prev)
: "r" (&lock->val), "r" (_Q_MUST_Q_VAL)
: "cr0", "memory");
return prev;
}
static __always_inline u32 clear_mustq(struct qspinlock *lock)
{
u32 prev;
asm volatile(
"1: lwarx %0,0,%1 # clear_mustq \n"
" andc %0,%0,%2 \n"
" stwcx. %0,0,%1 \n"
" bne- 1b \n"
: "=&r" (prev)
: "r" (&lock->val), "r" (_Q_MUST_Q_VAL)
: "cr0", "memory");
return prev;
}
static __always_inline bool try_set_sleepy(struct qspinlock *lock, u32 old)
{
u32 prev;
u32 new = old | _Q_SLEEPY_VAL;
BUG_ON(!(old & _Q_LOCKED_VAL));
BUG_ON(old & _Q_SLEEPY_VAL);
asm volatile(
"1: lwarx %0,0,%1 # try_set_sleepy \n"
" cmpw 0,%0,%2 \n"
" bne- 2f \n"
" stwcx. %3,0,%1 \n"
" bne- 1b \n"
"2: \n"
: "=&r" (prev)
: "r" (&lock->val), "r"(old), "r" (new)
: "cr0", "memory");
return likely(prev == old);
}
static __always_inline void seen_sleepy_owner(struct qspinlock *lock, u32 val)
{
if (pv_sleepy_lock) {
if (pv_sleepy_lock_interval_ns)
this_cpu_write(sleepy_lock_seen_clock, sched_clock());
if (!(val & _Q_SLEEPY_VAL))
try_set_sleepy(lock, val);
}
}
static __always_inline void seen_sleepy_lock(void)
{
if (pv_sleepy_lock && pv_sleepy_lock_interval_ns)
this_cpu_write(sleepy_lock_seen_clock, sched_clock());
}
static __always_inline void seen_sleepy_node(struct qspinlock *lock, u32 val)
{
if (pv_sleepy_lock) {
if (pv_sleepy_lock_interval_ns)
this_cpu_write(sleepy_lock_seen_clock, sched_clock());
if (val & _Q_LOCKED_VAL) {
if (!(val & _Q_SLEEPY_VAL))
try_set_sleepy(lock, val);
}
}
}
static struct qnode *get_tail_qnode(struct qspinlock *lock, u32 val)
{
int cpu = decode_tail_cpu(val);
struct qnodes *qnodesp = per_cpu_ptr(&qnodes, cpu);
int idx;
/*
* After publishing the new tail and finding a previous tail in the
* previous val (which is the control dependency), this barrier
* orders the release barrier in publish_tail_cpu performed by the
* last CPU, with subsequently looking at its qnode structures
* after the barrier.
*/
smp_acquire__after_ctrl_dep();
for (idx = 0; idx < MAX_NODES; idx++) {
struct qnode *qnode = &qnodesp->nodes[idx];
if (qnode->lock == lock)
return qnode;
}
BUG();
}
/* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */
static __always_inline bool __yield_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt, bool mustq)
{
int owner;
u32 yield_count;
bool preempted = false;
BUG_ON(!(val & _Q_LOCKED_VAL));
if (!paravirt)
goto relax;
if (!pv_yield_owner)
goto relax;
owner = get_owner_cpu(val);
yield_count = yield_count_of(owner);
if ((yield_count & 1) == 0)
goto relax; /* owner vcpu is running */
spin_end();
seen_sleepy_owner(lock, val);
preempted = true;
/*
* Read the lock word after sampling the yield count. On the other side
* there may a wmb because the yield count update is done by the
* hypervisor preemption and the value update by the OS, however this
* ordering might reduce the chance of out of order accesses and
* improve the heuristic.
*/
smp_rmb();
if (READ_ONCE(lock->val) == val) {
if (mustq)
clear_mustq(lock);
yield_to_preempted(owner, yield_count);
if (mustq)
set_mustq(lock);
spin_begin();
/* Don't relax if we yielded. Maybe we should? */
return preempted;
}
spin_begin();
relax:
spin_cpu_relax();
return preempted;
}
/* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */
static __always_inline bool yield_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt)
{
return __yield_to_locked_owner(lock, val, paravirt, false);
}
/* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */
static __always_inline bool yield_head_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt)
{
bool mustq = false;
if ((val & _Q_MUST_Q_VAL) && pv_yield_allow_steal)
mustq = true;
return __yield_to_locked_owner(lock, val, paravirt, mustq);
}
static __always_inline void propagate_yield_cpu(struct qnode *node, u32 val, int *set_yield_cpu, bool paravirt)
{
struct qnode *next;
int owner;
if (!paravirt)
return;
if (!pv_yield_propagate_owner)
return;
owner = get_owner_cpu(val);
if (*set_yield_cpu == owner)
return;
next = READ_ONCE(node->next);
if (!next)
return;
if (vcpu_is_preempted(owner)) {
next->yield_cpu = owner;
*set_yield_cpu = owner;
} else if (*set_yield_cpu != -1) {
next->yield_cpu = owner;
*set_yield_cpu = owner;
}
}
/* Called inside spin_begin() */
static __always_inline bool yield_to_prev(struct qspinlock *lock, struct qnode *node, u32 val, bool paravirt)
{
int prev_cpu = decode_tail_cpu(val);
u32 yield_count;
int yield_cpu;
bool preempted = false;
if (!paravirt)
goto relax;
if (!pv_yield_propagate_owner)
goto yield_prev;
yield_cpu = READ_ONCE(node->yield_cpu);
if (yield_cpu == -1) {
/* Propagate back the -1 CPU */
if (node->next && node->next->yield_cpu != -1)
node->next->yield_cpu = yield_cpu;
goto yield_prev;
}
yield_count = yield_count_of(yield_cpu);
if ((yield_count & 1) == 0)
goto yield_prev; /* owner vcpu is running */
spin_end();
preempted = true;
seen_sleepy_node(lock, val);
smp_rmb();
if (yield_cpu == node->yield_cpu) {
if (node->next && node->next->yield_cpu != yield_cpu)
node->next->yield_cpu = yield_cpu;
yield_to_preempted(yield_cpu, yield_count);
spin_begin();
return preempted;
}
spin_begin();
yield_prev:
if (!pv_yield_prev)
goto relax;
yield_count = yield_count_of(prev_cpu);
if ((yield_count & 1) == 0)
goto relax; /* owner vcpu is running */
spin_end();
preempted = true;
seen_sleepy_node(lock, val);
smp_rmb(); /* See __yield_to_locked_owner comment */
if (!node->locked) {
yield_to_preempted(prev_cpu, yield_count);
spin_begin();
return preempted;
}
spin_begin();
relax:
spin_cpu_relax();
return preempted;
}
static __always_inline bool steal_break(u32 val, int iters, bool paravirt, bool sleepy)
{
if (iters >= get_steal_spins(paravirt, sleepy))
return true;
if (IS_ENABLED(CONFIG_NUMA) &&
(iters >= get_remote_steal_spins(paravirt, sleepy))) {
int cpu = get_owner_cpu(val);
if (numa_node_id() != cpu_to_node(cpu))
return true;
}
return false;
}
static __always_inline bool try_to_steal_lock(struct qspinlock *lock, bool paravirt)
{
bool seen_preempted = false;
bool sleepy = false;
int iters = 0;
u32 val;
if (!steal_spins) {
/* XXX: should spin_on_preempted_owner do anything here? */
return false;
}
/* Attempt to steal the lock */
spin_begin();
do {
bool preempted = false;
val = READ_ONCE(lock->val);
if (val & _Q_MUST_Q_VAL)
break;
spec_barrier();
if (unlikely(!(val & _Q_LOCKED_VAL))) {
spin_end();
if (__queued_spin_trylock_steal(lock))
return true;
spin_begin();
} else {
preempted = yield_to_locked_owner(lock, val, paravirt);
}
if (paravirt && pv_sleepy_lock) {
if (!sleepy) {
if (val & _Q_SLEEPY_VAL) {
seen_sleepy_lock();
sleepy = true;
} else if (recently_sleepy()) {
sleepy = true;
}
}
if (pv_sleepy_lock_sticky && seen_preempted &&
!(val & _Q_SLEEPY_VAL)) {
if (try_set_sleepy(lock, val))
val |= _Q_SLEEPY_VAL;
}
}
if (preempted) {
seen_preempted = true;
sleepy = true;
if (!pv_spin_on_preempted_owner)
iters++;
/*
* pv_spin_on_preempted_owner don't increase iters
* while the owner is preempted -- we won't interfere
* with it by definition. This could introduce some
* latency issue if we continually observe preempted
* owners, but hopefully that's a rare corner case of
* a badly oversubscribed system.
*/
} else {
iters++;
}
} while (!steal_break(val, iters, paravirt, sleepy));
spin_end();
return false;
}
static __always_inline void queued_spin_lock_mcs_queue(struct qspinlock *lock, bool paravirt)
{
struct qnodes *qnodesp;
struct qnode *next, *node;
u32 val, old, tail;
bool seen_preempted = false;
bool sleepy = false;
bool mustq = false;
int idx;
int set_yield_cpu = -1;
int iters = 0;
BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
qnodesp = this_cpu_ptr(&qnodes);
if (unlikely(qnodesp->count >= MAX_NODES)) {
spec_barrier();
while (!queued_spin_trylock(lock))
cpu_relax();
return;
}
idx = qnodesp->count++;
/*
* Ensure that we increment the head node->count before initialising
* the actual node. If the compiler is kind enough to reorder these
* stores, then an IRQ could overwrite our assignments.
*/
barrier();
node = &qnodesp->nodes[idx];
node->next = NULL;
node->lock = lock;
node->cpu = smp_processor_id();
node->yield_cpu = -1;
node->locked = 0;
tail = encode_tail_cpu(node->cpu);
old = publish_tail_cpu(lock, tail);
/*
* If there was a previous node; link it and wait until reaching the
* head of the waitqueue.
*/
if (old & _Q_TAIL_CPU_MASK) {
struct qnode *prev = get_tail_qnode(lock, old);
/* Link @node into the waitqueue. */
WRITE_ONCE(prev->next, node);
/* Wait for mcs node lock to be released */
spin_begin();
while (!node->locked) {
spec_barrier();
if (yield_to_prev(lock, node, old, paravirt))
seen_preempted = true;
}
spec_barrier();
spin_end();
/* Clear out stale propagated yield_cpu */
if (paravirt && pv_yield_propagate_owner && node->yield_cpu != -1)
node->yield_cpu = -1;
smp_rmb(); /* acquire barrier for the mcs lock */
/*
* Generic qspinlocks have this prefetch here, but it seems
* like it could cause additional line transitions because
* the waiter will keep loading from it.
*/
if (_Q_SPIN_PREFETCH_NEXT) {
next = READ_ONCE(node->next);
if (next)
prefetchw(next);
}
}
/* We're at the head of the waitqueue, wait for the lock. */
again:
spin_begin();
for (;;) {
bool preempted;
val = READ_ONCE(lock->val);
if (!(val & _Q_LOCKED_VAL))
break;
spec_barrier();
if (paravirt && pv_sleepy_lock && maybe_stealers) {
if (!sleepy) {
if (val & _Q_SLEEPY_VAL) {
seen_sleepy_lock();
sleepy = true;
} else if (recently_sleepy()) {
sleepy = true;
}
}
if (pv_sleepy_lock_sticky && seen_preempted &&
!(val & _Q_SLEEPY_VAL)) {
if (try_set_sleepy(lock, val))
val |= _Q_SLEEPY_VAL;
}
}
propagate_yield_cpu(node, val, &set_yield_cpu, paravirt);
preempted = yield_head_to_locked_owner(lock, val, paravirt);
if (!maybe_stealers)
continue;
if (preempted)
seen_preempted = true;
if (paravirt && preempted) {
sleepy = true;
if (!pv_spin_on_preempted_owner)
iters++;
} else {
iters++;
}
if (!mustq && iters >= get_head_spins(paravirt, sleepy)) {
mustq = true;
set_mustq(lock);
val |= _Q_MUST_Q_VAL;
}
}
spec_barrier();
spin_end();
/* If we're the last queued, must clean up the tail. */
old = trylock_clean_tail(lock, tail);
if (unlikely(old & _Q_LOCKED_VAL)) {
BUG_ON(!maybe_stealers);
goto again; /* Can only be true if maybe_stealers. */
}
if ((old & _Q_TAIL_CPU_MASK) == tail)
goto release; /* We were the tail, no next. */
/* There is a next, must wait for node->next != NULL (MCS protocol) */
next = READ_ONCE(node->next);
if (!next) {
spin_begin();
while (!(next = READ_ONCE(node->next)))
cpu_relax();
spin_end();
}
spec_barrier();
/*
* Unlock the next mcs waiter node. Release barrier is not required
* here because the acquirer is only accessing the lock word, and
* the acquire barrier we took the lock with orders that update vs
* this store to locked. The corresponding barrier is the smp_rmb()
* acquire barrier for mcs lock, above.
*/
if (paravirt && pv_prod_head) {
int next_cpu = next->cpu;
WRITE_ONCE(next->locked, 1);
if (_Q_SPIN_MISO)
asm volatile("miso" ::: "memory");
if (vcpu_is_preempted(next_cpu))
prod_cpu(next_cpu);
} else {
WRITE_ONCE(next->locked, 1);
if (_Q_SPIN_MISO)
asm volatile("miso" ::: "memory");
}
release:
qnodesp->count--; /* release the node */
}
void queued_spin_lock_slowpath(struct qspinlock *lock)
{
/*
* This looks funny, but it induces the compiler to inline both
* sides of the branch rather than share code as when the condition
* is passed as the paravirt argument to the functions.
*/
if (IS_ENABLED(CONFIG_PARAVIRT_SPINLOCKS) && is_shared_processor()) {
if (try_to_steal_lock(lock, true)) {
spec_barrier();
return;
}
queued_spin_lock_mcs_queue(lock, true);
} else {
if (try_to_steal_lock(lock, false)) {
spec_barrier();
return;
}
queued_spin_lock_mcs_queue(lock, false);
}
}
EXPORT_SYMBOL(queued_spin_lock_slowpath);
#ifdef CONFIG_PARAVIRT_SPINLOCKS
void pv_spinlocks_init(void)
{
}
#endif
#include <linux/debugfs.h>
static int steal_spins_set(void *data, u64 val)
{
#if _Q_SPIN_TRY_LOCK_STEAL == 1
/* MAYBE_STEAL remains true */
steal_spins = val;
#else
static DEFINE_MUTEX(lock);
/*
* The lock slow path has a !maybe_stealers case that can assume
* the head of queue will not see concurrent waiters. That waiter
* is unsafe in the presence of stealers, so must keep them away
* from one another.
*/
mutex_lock(&lock);
if (val && !steal_spins) {
maybe_stealers = true;
/* wait for queue head waiter to go away */
synchronize_rcu();
steal_spins = val;
} else if (!val && steal_spins) {
steal_spins = val;
/* wait for all possible stealers to go away */
synchronize_rcu();
maybe_stealers = false;
} else {
steal_spins = val;
}
mutex_unlock(&lock);
#endif
return 0;
}
static int steal_spins_get(void *data, u64 *val)
{
*val = steal_spins;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_steal_spins, steal_spins_get, steal_spins_set, "%llu\n");
static int remote_steal_spins_set(void *data, u64 val)
{
remote_steal_spins = val;
return 0;
}
static int remote_steal_spins_get(void *data, u64 *val)
{
*val = remote_steal_spins;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_remote_steal_spins, remote_steal_spins_get, remote_steal_spins_set, "%llu\n");
static int head_spins_set(void *data, u64 val)
{
head_spins = val;
return 0;
}
static int head_spins_get(void *data, u64 *val)
{
*val = head_spins;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_head_spins, head_spins_get, head_spins_set, "%llu\n");
static int pv_yield_owner_set(void *data, u64 val)
{
pv_yield_owner = !!val;
return 0;
}
static int pv_yield_owner_get(void *data, u64 *val)
{
*val = pv_yield_owner;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_owner, pv_yield_owner_get, pv_yield_owner_set, "%llu\n");
static int pv_yield_allow_steal_set(void *data, u64 val)
{
pv_yield_allow_steal = !!val;
return 0;
}
static int pv_yield_allow_steal_get(void *data, u64 *val)
{
*val = pv_yield_allow_steal;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_allow_steal, pv_yield_allow_steal_get, pv_yield_allow_steal_set, "%llu\n");
static int pv_spin_on_preempted_owner_set(void *data, u64 val)
{
pv_spin_on_preempted_owner = !!val;
return 0;
}
static int pv_spin_on_preempted_owner_get(void *data, u64 *val)
{
*val = pv_spin_on_preempted_owner;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_spin_on_preempted_owner, pv_spin_on_preempted_owner_get, pv_spin_on_preempted_owner_set, "%llu\n");
static int pv_sleepy_lock_set(void *data, u64 val)
{
pv_sleepy_lock = !!val;
return 0;
}
static int pv_sleepy_lock_get(void *data, u64 *val)
{
*val = pv_sleepy_lock;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock, pv_sleepy_lock_get, pv_sleepy_lock_set, "%llu\n");
static int pv_sleepy_lock_sticky_set(void *data, u64 val)
{
pv_sleepy_lock_sticky = !!val;
return 0;
}
static int pv_sleepy_lock_sticky_get(void *data, u64 *val)
{
*val = pv_sleepy_lock_sticky;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_sticky, pv_sleepy_lock_sticky_get, pv_sleepy_lock_sticky_set, "%llu\n");
static int pv_sleepy_lock_interval_ns_set(void *data, u64 val)
{
pv_sleepy_lock_interval_ns = val;
return 0;
}
static int pv_sleepy_lock_interval_ns_get(void *data, u64 *val)
{
*val = pv_sleepy_lock_interval_ns;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_interval_ns, pv_sleepy_lock_interval_ns_get, pv_sleepy_lock_interval_ns_set, "%llu\n");
static int pv_sleepy_lock_factor_set(void *data, u64 val)
{
pv_sleepy_lock_factor = val;
return 0;
}
static int pv_sleepy_lock_factor_get(void *data, u64 *val)
{
*val = pv_sleepy_lock_factor;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_factor, pv_sleepy_lock_factor_get, pv_sleepy_lock_factor_set, "%llu\n");
static int pv_yield_prev_set(void *data, u64 val)
{
pv_yield_prev = !!val;
return 0;
}
static int pv_yield_prev_get(void *data, u64 *val)
{
*val = pv_yield_prev;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_prev, pv_yield_prev_get, pv_yield_prev_set, "%llu\n");
static int pv_yield_propagate_owner_set(void *data, u64 val)
{
pv_yield_propagate_owner = !!val;
return 0;
}
static int pv_yield_propagate_owner_get(void *data, u64 *val)
{
*val = pv_yield_propagate_owner;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_propagate_owner, pv_yield_propagate_owner_get, pv_yield_propagate_owner_set, "%llu\n");
static int pv_prod_head_set(void *data, u64 val)
{
pv_prod_head = !!val;
return 0;
}
static int pv_prod_head_get(void *data, u64 *val)
{
*val = pv_prod_head;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_prod_head, pv_prod_head_get, pv_prod_head_set, "%llu\n");
static __init int spinlock_debugfs_init(void)
{
debugfs_create_file("qspl_steal_spins", 0600, arch_debugfs_dir, NULL, &fops_steal_spins);
debugfs_create_file("qspl_remote_steal_spins", 0600, arch_debugfs_dir, NULL, &fops_remote_steal_spins);
debugfs_create_file("qspl_head_spins", 0600, arch_debugfs_dir, NULL, &fops_head_spins);
if (is_shared_processor()) {
debugfs_create_file("qspl_pv_yield_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_owner);
debugfs_create_file("qspl_pv_yield_allow_steal", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_allow_steal);
debugfs_create_file("qspl_pv_spin_on_preempted_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_spin_on_preempted_owner);
debugfs_create_file("qspl_pv_sleepy_lock", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock);
debugfs_create_file("qspl_pv_sleepy_lock_sticky", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_sticky);
debugfs_create_file("qspl_pv_sleepy_lock_interval_ns", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_interval_ns);
debugfs_create_file("qspl_pv_sleepy_lock_factor", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_factor);
debugfs_create_file("qspl_pv_yield_prev", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_prev);
debugfs_create_file("qspl_pv_yield_propagate_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_propagate_owner);
debugfs_create_file("qspl_pv_prod_head", 0600, arch_debugfs_dir, NULL, &fops_pv_prod_head);
}
return 0;
}
device_initcall(spinlock_debugfs_init);