91c960b005
A subsequent patch will add additional atomic operations. These new operations will use the same opcode field as the existing XADD, with the immediate discriminating different operations. In preparation, rename the instruction mode BPF_ATOMIC and start calling the zero immediate BPF_ADD. This is possible (doesn't break existing valid BPF progs) because the immediate field is currently reserved MBZ and BPF_ADD is zero. All uses are removed from the tree but the BPF_XADD definition is kept around to avoid breaking builds for people including kernel headers. Signed-off-by: Brendan Jackman <jackmanb@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@gmail.com> Link: https://lore.kernel.org/bpf/20210114181751.768687-5-jackmanb@google.com
1275 lines
36 KiB
C
1275 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* bpf_jit_comp64.c: eBPF JIT compiler
|
|
*
|
|
* Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
|
|
* IBM Corporation
|
|
*
|
|
* Based on the powerpc classic BPF JIT compiler by Matt Evans
|
|
*/
|
|
#include <linux/moduleloader.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/asm-compat.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <asm/kprobes.h>
|
|
#include <linux/bpf.h>
|
|
|
|
#include "bpf_jit64.h"
|
|
|
|
static void bpf_jit_fill_ill_insns(void *area, unsigned int size)
|
|
{
|
|
memset32(area, BREAKPOINT_INSTRUCTION, size/4);
|
|
}
|
|
|
|
static inline void bpf_flush_icache(void *start, void *end)
|
|
{
|
|
smp_wmb();
|
|
flush_icache_range((unsigned long)start, (unsigned long)end);
|
|
}
|
|
|
|
static inline bool bpf_is_seen_register(struct codegen_context *ctx, int i)
|
|
{
|
|
return (ctx->seen & (1 << (31 - b2p[i])));
|
|
}
|
|
|
|
static inline void bpf_set_seen_register(struct codegen_context *ctx, int i)
|
|
{
|
|
ctx->seen |= (1 << (31 - b2p[i]));
|
|
}
|
|
|
|
static inline bool bpf_has_stack_frame(struct codegen_context *ctx)
|
|
{
|
|
/*
|
|
* We only need a stack frame if:
|
|
* - we call other functions (kernel helpers), or
|
|
* - the bpf program uses its stack area
|
|
* The latter condition is deduced from the usage of BPF_REG_FP
|
|
*/
|
|
return ctx->seen & SEEN_FUNC || bpf_is_seen_register(ctx, BPF_REG_FP);
|
|
}
|
|
|
|
/*
|
|
* When not setting up our own stackframe, the redzone usage is:
|
|
*
|
|
* [ prev sp ] <-------------
|
|
* [ ... ] |
|
|
* sp (r1) ---> [ stack pointer ] --------------
|
|
* [ nv gpr save area ] 6*8
|
|
* [ tail_call_cnt ] 8
|
|
* [ local_tmp_var ] 8
|
|
* [ unused red zone ] 208 bytes protected
|
|
*/
|
|
static int bpf_jit_stack_local(struct codegen_context *ctx)
|
|
{
|
|
if (bpf_has_stack_frame(ctx))
|
|
return STACK_FRAME_MIN_SIZE + ctx->stack_size;
|
|
else
|
|
return -(BPF_PPC_STACK_SAVE + 16);
|
|
}
|
|
|
|
static int bpf_jit_stack_tailcallcnt(struct codegen_context *ctx)
|
|
{
|
|
return bpf_jit_stack_local(ctx) + 8;
|
|
}
|
|
|
|
static int bpf_jit_stack_offsetof(struct codegen_context *ctx, int reg)
|
|
{
|
|
if (reg >= BPF_PPC_NVR_MIN && reg < 32)
|
|
return (bpf_has_stack_frame(ctx) ?
|
|
(BPF_PPC_STACKFRAME + ctx->stack_size) : 0)
|
|
- (8 * (32 - reg));
|
|
|
|
pr_err("BPF JIT is asking about unknown registers");
|
|
BUG();
|
|
}
|
|
|
|
static void bpf_jit_build_prologue(u32 *image, struct codegen_context *ctx)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Initialize tail_call_cnt if we do tail calls.
|
|
* Otherwise, put in NOPs so that it can be skipped when we are
|
|
* invoked through a tail call.
|
|
*/
|
|
if (ctx->seen & SEEN_TAILCALL) {
|
|
EMIT(PPC_RAW_LI(b2p[TMP_REG_1], 0));
|
|
/* this goes in the redzone */
|
|
PPC_BPF_STL(b2p[TMP_REG_1], 1, -(BPF_PPC_STACK_SAVE + 8));
|
|
} else {
|
|
EMIT(PPC_RAW_NOP());
|
|
EMIT(PPC_RAW_NOP());
|
|
}
|
|
|
|
#define BPF_TAILCALL_PROLOGUE_SIZE 8
|
|
|
|
if (bpf_has_stack_frame(ctx)) {
|
|
/*
|
|
* We need a stack frame, but we don't necessarily need to
|
|
* save/restore LR unless we call other functions
|
|
*/
|
|
if (ctx->seen & SEEN_FUNC) {
|
|
EMIT(PPC_INST_MFLR | __PPC_RT(R0));
|
|
PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
|
|
}
|
|
|
|
PPC_BPF_STLU(1, 1, -(BPF_PPC_STACKFRAME + ctx->stack_size));
|
|
}
|
|
|
|
/*
|
|
* Back up non-volatile regs -- BPF registers 6-10
|
|
* If we haven't created our own stack frame, we save these
|
|
* in the protected zone below the previous stack frame
|
|
*/
|
|
for (i = BPF_REG_6; i <= BPF_REG_10; i++)
|
|
if (bpf_is_seen_register(ctx, i))
|
|
PPC_BPF_STL(b2p[i], 1, bpf_jit_stack_offsetof(ctx, b2p[i]));
|
|
|
|
/* Setup frame pointer to point to the bpf stack area */
|
|
if (bpf_is_seen_register(ctx, BPF_REG_FP))
|
|
EMIT(PPC_RAW_ADDI(b2p[BPF_REG_FP], 1,
|
|
STACK_FRAME_MIN_SIZE + ctx->stack_size));
|
|
}
|
|
|
|
static void bpf_jit_emit_common_epilogue(u32 *image, struct codegen_context *ctx)
|
|
{
|
|
int i;
|
|
|
|
/* Restore NVRs */
|
|
for (i = BPF_REG_6; i <= BPF_REG_10; i++)
|
|
if (bpf_is_seen_register(ctx, i))
|
|
PPC_BPF_LL(b2p[i], 1, bpf_jit_stack_offsetof(ctx, b2p[i]));
|
|
|
|
/* Tear down our stack frame */
|
|
if (bpf_has_stack_frame(ctx)) {
|
|
EMIT(PPC_RAW_ADDI(1, 1, BPF_PPC_STACKFRAME + ctx->stack_size));
|
|
if (ctx->seen & SEEN_FUNC) {
|
|
PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
|
|
EMIT(PPC_RAW_MTLR(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
|
|
{
|
|
bpf_jit_emit_common_epilogue(image, ctx);
|
|
|
|
/* Move result to r3 */
|
|
EMIT(PPC_RAW_MR(3, b2p[BPF_REG_0]));
|
|
|
|
EMIT(PPC_RAW_BLR());
|
|
}
|
|
|
|
static void bpf_jit_emit_func_call_hlp(u32 *image, struct codegen_context *ctx,
|
|
u64 func)
|
|
{
|
|
#ifdef PPC64_ELF_ABI_v1
|
|
/* func points to the function descriptor */
|
|
PPC_LI64(b2p[TMP_REG_2], func);
|
|
/* Load actual entry point from function descriptor */
|
|
PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_2], 0);
|
|
/* ... and move it to LR */
|
|
EMIT(PPC_RAW_MTLR(b2p[TMP_REG_1]));
|
|
/*
|
|
* Load TOC from function descriptor at offset 8.
|
|
* We can clobber r2 since we get called through a
|
|
* function pointer (so caller will save/restore r2)
|
|
* and since we don't use a TOC ourself.
|
|
*/
|
|
PPC_BPF_LL(2, b2p[TMP_REG_2], 8);
|
|
#else
|
|
/* We can clobber r12 */
|
|
PPC_FUNC_ADDR(12, func);
|
|
EMIT(PPC_RAW_MTLR(12));
|
|
#endif
|
|
EMIT(PPC_RAW_BLRL());
|
|
}
|
|
|
|
static void bpf_jit_emit_func_call_rel(u32 *image, struct codegen_context *ctx,
|
|
u64 func)
|
|
{
|
|
unsigned int i, ctx_idx = ctx->idx;
|
|
|
|
/* Load function address into r12 */
|
|
PPC_LI64(12, func);
|
|
|
|
/* For bpf-to-bpf function calls, the callee's address is unknown
|
|
* until the last extra pass. As seen above, we use PPC_LI64() to
|
|
* load the callee's address, but this may optimize the number of
|
|
* instructions required based on the nature of the address.
|
|
*
|
|
* Since we don't want the number of instructions emitted to change,
|
|
* we pad the optimized PPC_LI64() call with NOPs to guarantee that
|
|
* we always have a five-instruction sequence, which is the maximum
|
|
* that PPC_LI64() can emit.
|
|
*/
|
|
for (i = ctx->idx - ctx_idx; i < 5; i++)
|
|
EMIT(PPC_RAW_NOP());
|
|
|
|
#ifdef PPC64_ELF_ABI_v1
|
|
/*
|
|
* Load TOC from function descriptor at offset 8.
|
|
* We can clobber r2 since we get called through a
|
|
* function pointer (so caller will save/restore r2)
|
|
* and since we don't use a TOC ourself.
|
|
*/
|
|
PPC_BPF_LL(2, 12, 8);
|
|
/* Load actual entry point from function descriptor */
|
|
PPC_BPF_LL(12, 12, 0);
|
|
#endif
|
|
|
|
EMIT(PPC_RAW_MTLR(12));
|
|
EMIT(PPC_RAW_BLRL());
|
|
}
|
|
|
|
static void bpf_jit_emit_tail_call(u32 *image, struct codegen_context *ctx, u32 out)
|
|
{
|
|
/*
|
|
* By now, the eBPF program has already setup parameters in r3, r4 and r5
|
|
* r3/BPF_REG_1 - pointer to ctx -- passed as is to the next bpf program
|
|
* r4/BPF_REG_2 - pointer to bpf_array
|
|
* r5/BPF_REG_3 - index in bpf_array
|
|
*/
|
|
int b2p_bpf_array = b2p[BPF_REG_2];
|
|
int b2p_index = b2p[BPF_REG_3];
|
|
|
|
/*
|
|
* if (index >= array->map.max_entries)
|
|
* goto out;
|
|
*/
|
|
EMIT(PPC_RAW_LWZ(b2p[TMP_REG_1], b2p_bpf_array, offsetof(struct bpf_array, map.max_entries)));
|
|
EMIT(PPC_RAW_RLWINM(b2p_index, b2p_index, 0, 0, 31));
|
|
EMIT(PPC_RAW_CMPLW(b2p_index, b2p[TMP_REG_1]));
|
|
PPC_BCC(COND_GE, out);
|
|
|
|
/*
|
|
* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
|
|
* goto out;
|
|
*/
|
|
PPC_BPF_LL(b2p[TMP_REG_1], 1, bpf_jit_stack_tailcallcnt(ctx));
|
|
EMIT(PPC_RAW_CMPLWI(b2p[TMP_REG_1], MAX_TAIL_CALL_CNT));
|
|
PPC_BCC(COND_GT, out);
|
|
|
|
/*
|
|
* tail_call_cnt++;
|
|
*/
|
|
EMIT(PPC_RAW_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1], 1));
|
|
PPC_BPF_STL(b2p[TMP_REG_1], 1, bpf_jit_stack_tailcallcnt(ctx));
|
|
|
|
/* prog = array->ptrs[index]; */
|
|
EMIT(PPC_RAW_MULI(b2p[TMP_REG_1], b2p_index, 8));
|
|
EMIT(PPC_RAW_ADD(b2p[TMP_REG_1], b2p[TMP_REG_1], b2p_bpf_array));
|
|
PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_1], offsetof(struct bpf_array, ptrs));
|
|
|
|
/*
|
|
* if (prog == NULL)
|
|
* goto out;
|
|
*/
|
|
EMIT(PPC_RAW_CMPLDI(b2p[TMP_REG_1], 0));
|
|
PPC_BCC(COND_EQ, out);
|
|
|
|
/* goto *(prog->bpf_func + prologue_size); */
|
|
PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_1], offsetof(struct bpf_prog, bpf_func));
|
|
#ifdef PPC64_ELF_ABI_v1
|
|
/* skip past the function descriptor */
|
|
EMIT(PPC_RAW_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1],
|
|
FUNCTION_DESCR_SIZE + BPF_TAILCALL_PROLOGUE_SIZE));
|
|
#else
|
|
EMIT(PPC_RAW_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1], BPF_TAILCALL_PROLOGUE_SIZE));
|
|
#endif
|
|
EMIT(PPC_RAW_MTCTR(b2p[TMP_REG_1]));
|
|
|
|
/* tear down stack, restore NVRs, ... */
|
|
bpf_jit_emit_common_epilogue(image, ctx);
|
|
|
|
EMIT(PPC_RAW_BCTR());
|
|
/* out: */
|
|
}
|
|
|
|
/* Assemble the body code between the prologue & epilogue */
|
|
static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
|
|
struct codegen_context *ctx,
|
|
u32 *addrs, bool extra_pass)
|
|
{
|
|
const struct bpf_insn *insn = fp->insnsi;
|
|
int flen = fp->len;
|
|
int i, ret;
|
|
|
|
/* Start of epilogue code - will only be valid 2nd pass onwards */
|
|
u32 exit_addr = addrs[flen];
|
|
|
|
for (i = 0; i < flen; i++) {
|
|
u32 code = insn[i].code;
|
|
u32 dst_reg = b2p[insn[i].dst_reg];
|
|
u32 src_reg = b2p[insn[i].src_reg];
|
|
s16 off = insn[i].off;
|
|
s32 imm = insn[i].imm;
|
|
bool func_addr_fixed;
|
|
u64 func_addr;
|
|
u64 imm64;
|
|
u32 true_cond;
|
|
u32 tmp_idx;
|
|
|
|
/*
|
|
* addrs[] maps a BPF bytecode address into a real offset from
|
|
* the start of the body code.
|
|
*/
|
|
addrs[i] = ctx->idx * 4;
|
|
|
|
/*
|
|
* As an optimization, we note down which non-volatile registers
|
|
* are used so that we can only save/restore those in our
|
|
* prologue and epilogue. We do this here regardless of whether
|
|
* the actual BPF instruction uses src/dst registers or not
|
|
* (for instance, BPF_CALL does not use them). The expectation
|
|
* is that those instructions will have src_reg/dst_reg set to
|
|
* 0. Even otherwise, we just lose some prologue/epilogue
|
|
* optimization but everything else should work without
|
|
* any issues.
|
|
*/
|
|
if (dst_reg >= BPF_PPC_NVR_MIN && dst_reg < 32)
|
|
bpf_set_seen_register(ctx, insn[i].dst_reg);
|
|
if (src_reg >= BPF_PPC_NVR_MIN && src_reg < 32)
|
|
bpf_set_seen_register(ctx, insn[i].src_reg);
|
|
|
|
switch (code) {
|
|
/*
|
|
* Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG
|
|
*/
|
|
case BPF_ALU | BPF_ADD | BPF_X: /* (u32) dst += (u32) src */
|
|
case BPF_ALU64 | BPF_ADD | BPF_X: /* dst += src */
|
|
EMIT(PPC_RAW_ADD(dst_reg, dst_reg, src_reg));
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU | BPF_SUB | BPF_X: /* (u32) dst -= (u32) src */
|
|
case BPF_ALU64 | BPF_SUB | BPF_X: /* dst -= src */
|
|
EMIT(PPC_RAW_SUB(dst_reg, dst_reg, src_reg));
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU | BPF_ADD | BPF_K: /* (u32) dst += (u32) imm */
|
|
case BPF_ALU | BPF_SUB | BPF_K: /* (u32) dst -= (u32) imm */
|
|
case BPF_ALU64 | BPF_ADD | BPF_K: /* dst += imm */
|
|
case BPF_ALU64 | BPF_SUB | BPF_K: /* dst -= imm */
|
|
if (BPF_OP(code) == BPF_SUB)
|
|
imm = -imm;
|
|
if (imm) {
|
|
if (imm >= -32768 && imm < 32768)
|
|
EMIT(PPC_RAW_ADDI(dst_reg, dst_reg, IMM_L(imm)));
|
|
else {
|
|
PPC_LI32(b2p[TMP_REG_1], imm);
|
|
EMIT(PPC_RAW_ADD(dst_reg, dst_reg, b2p[TMP_REG_1]));
|
|
}
|
|
}
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU | BPF_MUL | BPF_X: /* (u32) dst *= (u32) src */
|
|
case BPF_ALU64 | BPF_MUL | BPF_X: /* dst *= src */
|
|
if (BPF_CLASS(code) == BPF_ALU)
|
|
EMIT(PPC_RAW_MULW(dst_reg, dst_reg, src_reg));
|
|
else
|
|
EMIT(PPC_RAW_MULD(dst_reg, dst_reg, src_reg));
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU | BPF_MUL | BPF_K: /* (u32) dst *= (u32) imm */
|
|
case BPF_ALU64 | BPF_MUL | BPF_K: /* dst *= imm */
|
|
if (imm >= -32768 && imm < 32768)
|
|
EMIT(PPC_RAW_MULI(dst_reg, dst_reg, IMM_L(imm)));
|
|
else {
|
|
PPC_LI32(b2p[TMP_REG_1], imm);
|
|
if (BPF_CLASS(code) == BPF_ALU)
|
|
EMIT(PPC_RAW_MULW(dst_reg, dst_reg,
|
|
b2p[TMP_REG_1]));
|
|
else
|
|
EMIT(PPC_RAW_MULD(dst_reg, dst_reg,
|
|
b2p[TMP_REG_1]));
|
|
}
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU | BPF_DIV | BPF_X: /* (u32) dst /= (u32) src */
|
|
case BPF_ALU | BPF_MOD | BPF_X: /* (u32) dst %= (u32) src */
|
|
if (BPF_OP(code) == BPF_MOD) {
|
|
EMIT(PPC_RAW_DIVWU(b2p[TMP_REG_1], dst_reg, src_reg));
|
|
EMIT(PPC_RAW_MULW(b2p[TMP_REG_1], src_reg,
|
|
b2p[TMP_REG_1]));
|
|
EMIT(PPC_RAW_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]));
|
|
} else
|
|
EMIT(PPC_RAW_DIVWU(dst_reg, dst_reg, src_reg));
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */
|
|
case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */
|
|
if (BPF_OP(code) == BPF_MOD) {
|
|
EMIT(PPC_RAW_DIVDU(b2p[TMP_REG_1], dst_reg, src_reg));
|
|
EMIT(PPC_RAW_MULD(b2p[TMP_REG_1], src_reg,
|
|
b2p[TMP_REG_1]));
|
|
EMIT(PPC_RAW_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]));
|
|
} else
|
|
EMIT(PPC_RAW_DIVDU(dst_reg, dst_reg, src_reg));
|
|
break;
|
|
case BPF_ALU | BPF_MOD | BPF_K: /* (u32) dst %= (u32) imm */
|
|
case BPF_ALU | BPF_DIV | BPF_K: /* (u32) dst /= (u32) imm */
|
|
case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */
|
|
case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */
|
|
if (imm == 0)
|
|
return -EINVAL;
|
|
else if (imm == 1)
|
|
goto bpf_alu32_trunc;
|
|
|
|
PPC_LI32(b2p[TMP_REG_1], imm);
|
|
switch (BPF_CLASS(code)) {
|
|
case BPF_ALU:
|
|
if (BPF_OP(code) == BPF_MOD) {
|
|
EMIT(PPC_RAW_DIVWU(b2p[TMP_REG_2],
|
|
dst_reg,
|
|
b2p[TMP_REG_1]));
|
|
EMIT(PPC_RAW_MULW(b2p[TMP_REG_1],
|
|
b2p[TMP_REG_1],
|
|
b2p[TMP_REG_2]));
|
|
EMIT(PPC_RAW_SUB(dst_reg, dst_reg,
|
|
b2p[TMP_REG_1]));
|
|
} else
|
|
EMIT(PPC_RAW_DIVWU(dst_reg, dst_reg,
|
|
b2p[TMP_REG_1]));
|
|
break;
|
|
case BPF_ALU64:
|
|
if (BPF_OP(code) == BPF_MOD) {
|
|
EMIT(PPC_RAW_DIVDU(b2p[TMP_REG_2],
|
|
dst_reg,
|
|
b2p[TMP_REG_1]));
|
|
EMIT(PPC_RAW_MULD(b2p[TMP_REG_1],
|
|
b2p[TMP_REG_1],
|
|
b2p[TMP_REG_2]));
|
|
EMIT(PPC_RAW_SUB(dst_reg, dst_reg,
|
|
b2p[TMP_REG_1]));
|
|
} else
|
|
EMIT(PPC_RAW_DIVDU(dst_reg, dst_reg,
|
|
b2p[TMP_REG_1]));
|
|
break;
|
|
}
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU | BPF_NEG: /* (u32) dst = -dst */
|
|
case BPF_ALU64 | BPF_NEG: /* dst = -dst */
|
|
EMIT(PPC_RAW_NEG(dst_reg, dst_reg));
|
|
goto bpf_alu32_trunc;
|
|
|
|
/*
|
|
* Logical operations: AND/OR/XOR/[A]LSH/[A]RSH
|
|
*/
|
|
case BPF_ALU | BPF_AND | BPF_X: /* (u32) dst = dst & src */
|
|
case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
|
|
EMIT(PPC_RAW_AND(dst_reg, dst_reg, src_reg));
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU | BPF_AND | BPF_K: /* (u32) dst = dst & imm */
|
|
case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
|
|
if (!IMM_H(imm))
|
|
EMIT(PPC_RAW_ANDI(dst_reg, dst_reg, IMM_L(imm)));
|
|
else {
|
|
/* Sign-extended */
|
|
PPC_LI32(b2p[TMP_REG_1], imm);
|
|
EMIT(PPC_RAW_AND(dst_reg, dst_reg, b2p[TMP_REG_1]));
|
|
}
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
|
|
case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
|
|
EMIT(PPC_RAW_OR(dst_reg, dst_reg, src_reg));
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU | BPF_OR | BPF_K:/* dst = (u32) dst | (u32) imm */
|
|
case BPF_ALU64 | BPF_OR | BPF_K:/* dst = dst | imm */
|
|
if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
|
|
/* Sign-extended */
|
|
PPC_LI32(b2p[TMP_REG_1], imm);
|
|
EMIT(PPC_RAW_OR(dst_reg, dst_reg, b2p[TMP_REG_1]));
|
|
} else {
|
|
if (IMM_L(imm))
|
|
EMIT(PPC_RAW_ORI(dst_reg, dst_reg, IMM_L(imm)));
|
|
if (IMM_H(imm))
|
|
EMIT(PPC_RAW_ORIS(dst_reg, dst_reg, IMM_H(imm)));
|
|
}
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU | BPF_XOR | BPF_X: /* (u32) dst ^= src */
|
|
case BPF_ALU64 | BPF_XOR | BPF_X: /* dst ^= src */
|
|
EMIT(PPC_RAW_XOR(dst_reg, dst_reg, src_reg));
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU | BPF_XOR | BPF_K: /* (u32) dst ^= (u32) imm */
|
|
case BPF_ALU64 | BPF_XOR | BPF_K: /* dst ^= imm */
|
|
if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
|
|
/* Sign-extended */
|
|
PPC_LI32(b2p[TMP_REG_1], imm);
|
|
EMIT(PPC_RAW_XOR(dst_reg, dst_reg, b2p[TMP_REG_1]));
|
|
} else {
|
|
if (IMM_L(imm))
|
|
EMIT(PPC_RAW_XORI(dst_reg, dst_reg, IMM_L(imm)));
|
|
if (IMM_H(imm))
|
|
EMIT(PPC_RAW_XORIS(dst_reg, dst_reg, IMM_H(imm)));
|
|
}
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU | BPF_LSH | BPF_X: /* (u32) dst <<= (u32) src */
|
|
/* slw clears top 32 bits */
|
|
EMIT(PPC_RAW_SLW(dst_reg, dst_reg, src_reg));
|
|
/* skip zero extension move, but set address map. */
|
|
if (insn_is_zext(&insn[i + 1]))
|
|
addrs[++i] = ctx->idx * 4;
|
|
break;
|
|
case BPF_ALU64 | BPF_LSH | BPF_X: /* dst <<= src; */
|
|
EMIT(PPC_RAW_SLD(dst_reg, dst_reg, src_reg));
|
|
break;
|
|
case BPF_ALU | BPF_LSH | BPF_K: /* (u32) dst <<== (u32) imm */
|
|
/* with imm 0, we still need to clear top 32 bits */
|
|
EMIT(PPC_RAW_SLWI(dst_reg, dst_reg, imm));
|
|
if (insn_is_zext(&insn[i + 1]))
|
|
addrs[++i] = ctx->idx * 4;
|
|
break;
|
|
case BPF_ALU64 | BPF_LSH | BPF_K: /* dst <<== imm */
|
|
if (imm != 0)
|
|
EMIT(PPC_RAW_SLDI(dst_reg, dst_reg, imm));
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_X: /* (u32) dst >>= (u32) src */
|
|
EMIT(PPC_RAW_SRW(dst_reg, dst_reg, src_reg));
|
|
if (insn_is_zext(&insn[i + 1]))
|
|
addrs[++i] = ctx->idx * 4;
|
|
break;
|
|
case BPF_ALU64 | BPF_RSH | BPF_X: /* dst >>= src */
|
|
EMIT(PPC_RAW_SRD(dst_reg, dst_reg, src_reg));
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_K: /* (u32) dst >>= (u32) imm */
|
|
EMIT(PPC_RAW_SRWI(dst_reg, dst_reg, imm));
|
|
if (insn_is_zext(&insn[i + 1]))
|
|
addrs[++i] = ctx->idx * 4;
|
|
break;
|
|
case BPF_ALU64 | BPF_RSH | BPF_K: /* dst >>= imm */
|
|
if (imm != 0)
|
|
EMIT(PPC_RAW_SRDI(dst_reg, dst_reg, imm));
|
|
break;
|
|
case BPF_ALU | BPF_ARSH | BPF_X: /* (s32) dst >>= src */
|
|
EMIT(PPC_RAW_SRAW(dst_reg, dst_reg, src_reg));
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU64 | BPF_ARSH | BPF_X: /* (s64) dst >>= src */
|
|
EMIT(PPC_RAW_SRAD(dst_reg, dst_reg, src_reg));
|
|
break;
|
|
case BPF_ALU | BPF_ARSH | BPF_K: /* (s32) dst >>= imm */
|
|
EMIT(PPC_RAW_SRAWI(dst_reg, dst_reg, imm));
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU64 | BPF_ARSH | BPF_K: /* (s64) dst >>= imm */
|
|
if (imm != 0)
|
|
EMIT(PPC_RAW_SRADI(dst_reg, dst_reg, imm));
|
|
break;
|
|
|
|
/*
|
|
* MOV
|
|
*/
|
|
case BPF_ALU | BPF_MOV | BPF_X: /* (u32) dst = src */
|
|
case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
|
|
if (imm == 1) {
|
|
/* special mov32 for zext */
|
|
EMIT(PPC_RAW_RLWINM(dst_reg, dst_reg, 0, 0, 31));
|
|
break;
|
|
}
|
|
EMIT(PPC_RAW_MR(dst_reg, src_reg));
|
|
goto bpf_alu32_trunc;
|
|
case BPF_ALU | BPF_MOV | BPF_K: /* (u32) dst = imm */
|
|
case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = (s64) imm */
|
|
PPC_LI32(dst_reg, imm);
|
|
if (imm < 0)
|
|
goto bpf_alu32_trunc;
|
|
else if (insn_is_zext(&insn[i + 1]))
|
|
addrs[++i] = ctx->idx * 4;
|
|
break;
|
|
|
|
bpf_alu32_trunc:
|
|
/* Truncate to 32-bits */
|
|
if (BPF_CLASS(code) == BPF_ALU && !fp->aux->verifier_zext)
|
|
EMIT(PPC_RAW_RLWINM(dst_reg, dst_reg, 0, 0, 31));
|
|
break;
|
|
|
|
/*
|
|
* BPF_FROM_BE/LE
|
|
*/
|
|
case BPF_ALU | BPF_END | BPF_FROM_LE:
|
|
case BPF_ALU | BPF_END | BPF_FROM_BE:
|
|
#ifdef __BIG_ENDIAN__
|
|
if (BPF_SRC(code) == BPF_FROM_BE)
|
|
goto emit_clear;
|
|
#else /* !__BIG_ENDIAN__ */
|
|
if (BPF_SRC(code) == BPF_FROM_LE)
|
|
goto emit_clear;
|
|
#endif
|
|
switch (imm) {
|
|
case 16:
|
|
/* Rotate 8 bits left & mask with 0x0000ff00 */
|
|
EMIT(PPC_RAW_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 16, 23));
|
|
/* Rotate 8 bits right & insert LSB to reg */
|
|
EMIT(PPC_RAW_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 24, 31));
|
|
/* Move result back to dst_reg */
|
|
EMIT(PPC_RAW_MR(dst_reg, b2p[TMP_REG_1]));
|
|
break;
|
|
case 32:
|
|
/*
|
|
* Rotate word left by 8 bits:
|
|
* 2 bytes are already in their final position
|
|
* -- byte 2 and 4 (of bytes 1, 2, 3 and 4)
|
|
*/
|
|
EMIT(PPC_RAW_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 0, 31));
|
|
/* Rotate 24 bits and insert byte 1 */
|
|
EMIT(PPC_RAW_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 0, 7));
|
|
/* Rotate 24 bits and insert byte 3 */
|
|
EMIT(PPC_RAW_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 16, 23));
|
|
EMIT(PPC_RAW_MR(dst_reg, b2p[TMP_REG_1]));
|
|
break;
|
|
case 64:
|
|
/*
|
|
* Way easier and faster(?) to store the value
|
|
* into stack and then use ldbrx
|
|
*
|
|
* ctx->seen will be reliable in pass2, but
|
|
* the instructions generated will remain the
|
|
* same across all passes
|
|
*/
|
|
PPC_BPF_STL(dst_reg, 1, bpf_jit_stack_local(ctx));
|
|
EMIT(PPC_RAW_ADDI(b2p[TMP_REG_1], 1, bpf_jit_stack_local(ctx)));
|
|
EMIT(PPC_RAW_LDBRX(dst_reg, 0, b2p[TMP_REG_1]));
|
|
break;
|
|
}
|
|
break;
|
|
|
|
emit_clear:
|
|
switch (imm) {
|
|
case 16:
|
|
/* zero-extend 16 bits into 64 bits */
|
|
EMIT(PPC_RAW_RLDICL(dst_reg, dst_reg, 0, 48));
|
|
if (insn_is_zext(&insn[i + 1]))
|
|
addrs[++i] = ctx->idx * 4;
|
|
break;
|
|
case 32:
|
|
if (!fp->aux->verifier_zext)
|
|
/* zero-extend 32 bits into 64 bits */
|
|
EMIT(PPC_RAW_RLDICL(dst_reg, dst_reg, 0, 32));
|
|
break;
|
|
case 64:
|
|
/* nop */
|
|
break;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* BPF_ST(X)
|
|
*/
|
|
case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src */
|
|
case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
|
|
if (BPF_CLASS(code) == BPF_ST) {
|
|
EMIT(PPC_RAW_LI(b2p[TMP_REG_1], imm));
|
|
src_reg = b2p[TMP_REG_1];
|
|
}
|
|
EMIT(PPC_RAW_STB(src_reg, dst_reg, off));
|
|
break;
|
|
case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
|
|
case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
|
|
if (BPF_CLASS(code) == BPF_ST) {
|
|
EMIT(PPC_RAW_LI(b2p[TMP_REG_1], imm));
|
|
src_reg = b2p[TMP_REG_1];
|
|
}
|
|
EMIT(PPC_RAW_STH(src_reg, dst_reg, off));
|
|
break;
|
|
case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
|
|
case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
|
|
if (BPF_CLASS(code) == BPF_ST) {
|
|
PPC_LI32(b2p[TMP_REG_1], imm);
|
|
src_reg = b2p[TMP_REG_1];
|
|
}
|
|
EMIT(PPC_RAW_STW(src_reg, dst_reg, off));
|
|
break;
|
|
case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
|
|
case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
|
|
if (BPF_CLASS(code) == BPF_ST) {
|
|
PPC_LI32(b2p[TMP_REG_1], imm);
|
|
src_reg = b2p[TMP_REG_1];
|
|
}
|
|
PPC_BPF_STL(src_reg, dst_reg, off);
|
|
break;
|
|
|
|
/*
|
|
* BPF_STX ATOMIC (atomic ops)
|
|
*/
|
|
case BPF_STX | BPF_ATOMIC | BPF_W:
|
|
if (insn->imm != BPF_ADD) {
|
|
pr_err_ratelimited(
|
|
"eBPF filter atomic op code %02x (@%d) unsupported\n",
|
|
code, i);
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
/* *(u32 *)(dst + off) += src */
|
|
|
|
/* Get EA into TMP_REG_1 */
|
|
EMIT(PPC_RAW_ADDI(b2p[TMP_REG_1], dst_reg, off));
|
|
tmp_idx = ctx->idx * 4;
|
|
/* load value from memory into TMP_REG_2 */
|
|
EMIT(PPC_RAW_LWARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0));
|
|
/* add value from src_reg into this */
|
|
EMIT(PPC_RAW_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg));
|
|
/* store result back */
|
|
EMIT(PPC_RAW_STWCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]));
|
|
/* we're done if this succeeded */
|
|
PPC_BCC_SHORT(COND_NE, tmp_idx);
|
|
break;
|
|
case BPF_STX | BPF_ATOMIC | BPF_DW:
|
|
if (insn->imm != BPF_ADD) {
|
|
pr_err_ratelimited(
|
|
"eBPF filter atomic op code %02x (@%d) unsupported\n",
|
|
code, i);
|
|
return -ENOTSUPP;
|
|
}
|
|
/* *(u64 *)(dst + off) += src */
|
|
|
|
EMIT(PPC_RAW_ADDI(b2p[TMP_REG_1], dst_reg, off));
|
|
tmp_idx = ctx->idx * 4;
|
|
EMIT(PPC_RAW_LDARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0));
|
|
EMIT(PPC_RAW_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg));
|
|
EMIT(PPC_RAW_STDCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]));
|
|
PPC_BCC_SHORT(COND_NE, tmp_idx);
|
|
break;
|
|
|
|
/*
|
|
* BPF_LDX
|
|
*/
|
|
/* dst = *(u8 *)(ul) (src + off) */
|
|
case BPF_LDX | BPF_MEM | BPF_B:
|
|
EMIT(PPC_RAW_LBZ(dst_reg, src_reg, off));
|
|
if (insn_is_zext(&insn[i + 1]))
|
|
addrs[++i] = ctx->idx * 4;
|
|
break;
|
|
/* dst = *(u16 *)(ul) (src + off) */
|
|
case BPF_LDX | BPF_MEM | BPF_H:
|
|
EMIT(PPC_RAW_LHZ(dst_reg, src_reg, off));
|
|
if (insn_is_zext(&insn[i + 1]))
|
|
addrs[++i] = ctx->idx * 4;
|
|
break;
|
|
/* dst = *(u32 *)(ul) (src + off) */
|
|
case BPF_LDX | BPF_MEM | BPF_W:
|
|
EMIT(PPC_RAW_LWZ(dst_reg, src_reg, off));
|
|
if (insn_is_zext(&insn[i + 1]))
|
|
addrs[++i] = ctx->idx * 4;
|
|
break;
|
|
/* dst = *(u64 *)(ul) (src + off) */
|
|
case BPF_LDX | BPF_MEM | BPF_DW:
|
|
PPC_BPF_LL(dst_reg, src_reg, off);
|
|
break;
|
|
|
|
/*
|
|
* Doubleword load
|
|
* 16 byte instruction that uses two 'struct bpf_insn'
|
|
*/
|
|
case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
|
|
imm64 = ((u64)(u32) insn[i].imm) |
|
|
(((u64)(u32) insn[i+1].imm) << 32);
|
|
/* Adjust for two bpf instructions */
|
|
addrs[++i] = ctx->idx * 4;
|
|
PPC_LI64(dst_reg, imm64);
|
|
break;
|
|
|
|
/*
|
|
* Return/Exit
|
|
*/
|
|
case BPF_JMP | BPF_EXIT:
|
|
/*
|
|
* If this isn't the very last instruction, branch to
|
|
* the epilogue. If we _are_ the last instruction,
|
|
* we'll just fall through to the epilogue.
|
|
*/
|
|
if (i != flen - 1)
|
|
PPC_JMP(exit_addr);
|
|
/* else fall through to the epilogue */
|
|
break;
|
|
|
|
/*
|
|
* Call kernel helper or bpf function
|
|
*/
|
|
case BPF_JMP | BPF_CALL:
|
|
ctx->seen |= SEEN_FUNC;
|
|
|
|
ret = bpf_jit_get_func_addr(fp, &insn[i], extra_pass,
|
|
&func_addr, &func_addr_fixed);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (func_addr_fixed)
|
|
bpf_jit_emit_func_call_hlp(image, ctx, func_addr);
|
|
else
|
|
bpf_jit_emit_func_call_rel(image, ctx, func_addr);
|
|
/* move return value from r3 to BPF_REG_0 */
|
|
EMIT(PPC_RAW_MR(b2p[BPF_REG_0], 3));
|
|
break;
|
|
|
|
/*
|
|
* Jumps and branches
|
|
*/
|
|
case BPF_JMP | BPF_JA:
|
|
PPC_JMP(addrs[i + 1 + off]);
|
|
break;
|
|
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
case BPF_JMP | BPF_JSGT | BPF_K:
|
|
case BPF_JMP | BPF_JSGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_X:
|
|
true_cond = COND_GT;
|
|
goto cond_branch;
|
|
case BPF_JMP | BPF_JLT | BPF_K:
|
|
case BPF_JMP | BPF_JLT | BPF_X:
|
|
case BPF_JMP | BPF_JSLT | BPF_K:
|
|
case BPF_JMP | BPF_JSLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_X:
|
|
true_cond = COND_LT;
|
|
goto cond_branch;
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
case BPF_JMP | BPF_JSGE | BPF_K:
|
|
case BPF_JMP | BPF_JSGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_X:
|
|
true_cond = COND_GE;
|
|
goto cond_branch;
|
|
case BPF_JMP | BPF_JLE | BPF_K:
|
|
case BPF_JMP | BPF_JLE | BPF_X:
|
|
case BPF_JMP | BPF_JSLE | BPF_K:
|
|
case BPF_JMP | BPF_JSLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_X:
|
|
true_cond = COND_LE;
|
|
goto cond_branch;
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_K:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_X:
|
|
true_cond = COND_EQ;
|
|
goto cond_branch;
|
|
case BPF_JMP | BPF_JNE | BPF_K:
|
|
case BPF_JMP | BPF_JNE | BPF_X:
|
|
case BPF_JMP32 | BPF_JNE | BPF_K:
|
|
case BPF_JMP32 | BPF_JNE | BPF_X:
|
|
true_cond = COND_NE;
|
|
goto cond_branch;
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
|
case BPF_JMP32 | BPF_JSET | BPF_K:
|
|
case BPF_JMP32 | BPF_JSET | BPF_X:
|
|
true_cond = COND_NE;
|
|
/* Fall through */
|
|
|
|
cond_branch:
|
|
switch (code) {
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
case BPF_JMP | BPF_JLT | BPF_X:
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
case BPF_JMP | BPF_JLE | BPF_X:
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
case BPF_JMP | BPF_JNE | BPF_X:
|
|
case BPF_JMP32 | BPF_JGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_X:
|
|
case BPF_JMP32 | BPF_JNE | BPF_X:
|
|
/* unsigned comparison */
|
|
if (BPF_CLASS(code) == BPF_JMP32)
|
|
EMIT(PPC_RAW_CMPLW(dst_reg, src_reg));
|
|
else
|
|
EMIT(PPC_RAW_CMPLD(dst_reg, src_reg));
|
|
break;
|
|
case BPF_JMP | BPF_JSGT | BPF_X:
|
|
case BPF_JMP | BPF_JSLT | BPF_X:
|
|
case BPF_JMP | BPF_JSGE | BPF_X:
|
|
case BPF_JMP | BPF_JSLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_X:
|
|
/* signed comparison */
|
|
if (BPF_CLASS(code) == BPF_JMP32)
|
|
EMIT(PPC_RAW_CMPW(dst_reg, src_reg));
|
|
else
|
|
EMIT(PPC_RAW_CMPD(dst_reg, src_reg));
|
|
break;
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
|
case BPF_JMP32 | BPF_JSET | BPF_X:
|
|
if (BPF_CLASS(code) == BPF_JMP) {
|
|
EMIT(PPC_RAW_AND_DOT(b2p[TMP_REG_1], dst_reg,
|
|
src_reg));
|
|
} else {
|
|
int tmp_reg = b2p[TMP_REG_1];
|
|
|
|
EMIT(PPC_RAW_AND(tmp_reg, dst_reg, src_reg));
|
|
EMIT(PPC_RAW_RLWINM_DOT(tmp_reg, tmp_reg, 0, 0,
|
|
31));
|
|
}
|
|
break;
|
|
case BPF_JMP | BPF_JNE | BPF_K:
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
case BPF_JMP | BPF_JLT | BPF_K:
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
case BPF_JMP | BPF_JLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JNE | BPF_K:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_K:
|
|
case BPF_JMP32 | BPF_JGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JLE | BPF_K:
|
|
{
|
|
bool is_jmp32 = BPF_CLASS(code) == BPF_JMP32;
|
|
|
|
/*
|
|
* Need sign-extended load, so only positive
|
|
* values can be used as imm in cmpldi
|
|
*/
|
|
if (imm >= 0 && imm < 32768) {
|
|
if (is_jmp32)
|
|
EMIT(PPC_RAW_CMPLWI(dst_reg, imm));
|
|
else
|
|
EMIT(PPC_RAW_CMPLDI(dst_reg, imm));
|
|
} else {
|
|
/* sign-extending load */
|
|
PPC_LI32(b2p[TMP_REG_1], imm);
|
|
/* ... but unsigned comparison */
|
|
if (is_jmp32)
|
|
EMIT(PPC_RAW_CMPLW(dst_reg,
|
|
b2p[TMP_REG_1]));
|
|
else
|
|
EMIT(PPC_RAW_CMPLD(dst_reg,
|
|
b2p[TMP_REG_1]));
|
|
}
|
|
break;
|
|
}
|
|
case BPF_JMP | BPF_JSGT | BPF_K:
|
|
case BPF_JMP | BPF_JSLT | BPF_K:
|
|
case BPF_JMP | BPF_JSGE | BPF_K:
|
|
case BPF_JMP | BPF_JSLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_K:
|
|
{
|
|
bool is_jmp32 = BPF_CLASS(code) == BPF_JMP32;
|
|
|
|
/*
|
|
* signed comparison, so any 16-bit value
|
|
* can be used in cmpdi
|
|
*/
|
|
if (imm >= -32768 && imm < 32768) {
|
|
if (is_jmp32)
|
|
EMIT(PPC_RAW_CMPWI(dst_reg, imm));
|
|
else
|
|
EMIT(PPC_RAW_CMPDI(dst_reg, imm));
|
|
} else {
|
|
PPC_LI32(b2p[TMP_REG_1], imm);
|
|
if (is_jmp32)
|
|
EMIT(PPC_RAW_CMPW(dst_reg,
|
|
b2p[TMP_REG_1]));
|
|
else
|
|
EMIT(PPC_RAW_CMPD(dst_reg,
|
|
b2p[TMP_REG_1]));
|
|
}
|
|
break;
|
|
}
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
|
case BPF_JMP32 | BPF_JSET | BPF_K:
|
|
/* andi does not sign-extend the immediate */
|
|
if (imm >= 0 && imm < 32768)
|
|
/* PPC_ANDI is _only/always_ dot-form */
|
|
EMIT(PPC_RAW_ANDI(b2p[TMP_REG_1], dst_reg, imm));
|
|
else {
|
|
int tmp_reg = b2p[TMP_REG_1];
|
|
|
|
PPC_LI32(tmp_reg, imm);
|
|
if (BPF_CLASS(code) == BPF_JMP) {
|
|
EMIT(PPC_RAW_AND_DOT(tmp_reg, dst_reg,
|
|
tmp_reg));
|
|
} else {
|
|
EMIT(PPC_RAW_AND(tmp_reg, dst_reg,
|
|
tmp_reg));
|
|
EMIT(PPC_RAW_RLWINM_DOT(tmp_reg, tmp_reg,
|
|
0, 0, 31));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
PPC_BCC(true_cond, addrs[i + 1 + off]);
|
|
break;
|
|
|
|
/*
|
|
* Tail call
|
|
*/
|
|
case BPF_JMP | BPF_TAIL_CALL:
|
|
ctx->seen |= SEEN_TAILCALL;
|
|
bpf_jit_emit_tail_call(image, ctx, addrs[i + 1]);
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* The filter contains something cruel & unusual.
|
|
* We don't handle it, but also there shouldn't be
|
|
* anything missing from our list.
|
|
*/
|
|
pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n",
|
|
code, i);
|
|
return -ENOTSUPP;
|
|
}
|
|
}
|
|
|
|
/* Set end-of-body-code address for exit. */
|
|
addrs[i] = ctx->idx * 4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Fix the branch target addresses for subprog calls */
|
|
static int bpf_jit_fixup_subprog_calls(struct bpf_prog *fp, u32 *image,
|
|
struct codegen_context *ctx, u32 *addrs)
|
|
{
|
|
const struct bpf_insn *insn = fp->insnsi;
|
|
bool func_addr_fixed;
|
|
u64 func_addr;
|
|
u32 tmp_idx;
|
|
int i, ret;
|
|
|
|
for (i = 0; i < fp->len; i++) {
|
|
/*
|
|
* During the extra pass, only the branch target addresses for
|
|
* the subprog calls need to be fixed. All other instructions
|
|
* can left untouched.
|
|
*
|
|
* The JITed image length does not change because we already
|
|
* ensure that the JITed instruction sequence for these calls
|
|
* are of fixed length by padding them with NOPs.
|
|
*/
|
|
if (insn[i].code == (BPF_JMP | BPF_CALL) &&
|
|
insn[i].src_reg == BPF_PSEUDO_CALL) {
|
|
ret = bpf_jit_get_func_addr(fp, &insn[i], true,
|
|
&func_addr,
|
|
&func_addr_fixed);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* Save ctx->idx as this would currently point to the
|
|
* end of the JITed image and set it to the offset of
|
|
* the instruction sequence corresponding to the
|
|
* subprog call temporarily.
|
|
*/
|
|
tmp_idx = ctx->idx;
|
|
ctx->idx = addrs[i] / 4;
|
|
bpf_jit_emit_func_call_rel(image, ctx, func_addr);
|
|
|
|
/*
|
|
* Restore ctx->idx here. This is safe as the length
|
|
* of the JITed sequence remains unchanged.
|
|
*/
|
|
ctx->idx = tmp_idx;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct powerpc64_jit_data {
|
|
struct bpf_binary_header *header;
|
|
u32 *addrs;
|
|
u8 *image;
|
|
u32 proglen;
|
|
struct codegen_context ctx;
|
|
};
|
|
|
|
bool bpf_jit_needs_zext(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
|
|
{
|
|
u32 proglen;
|
|
u32 alloclen;
|
|
u8 *image = NULL;
|
|
u32 *code_base;
|
|
u32 *addrs;
|
|
struct powerpc64_jit_data *jit_data;
|
|
struct codegen_context cgctx;
|
|
int pass;
|
|
int flen;
|
|
struct bpf_binary_header *bpf_hdr;
|
|
struct bpf_prog *org_fp = fp;
|
|
struct bpf_prog *tmp_fp;
|
|
bool bpf_blinded = false;
|
|
bool extra_pass = false;
|
|
|
|
if (!fp->jit_requested)
|
|
return org_fp;
|
|
|
|
tmp_fp = bpf_jit_blind_constants(org_fp);
|
|
if (IS_ERR(tmp_fp))
|
|
return org_fp;
|
|
|
|
if (tmp_fp != org_fp) {
|
|
bpf_blinded = true;
|
|
fp = tmp_fp;
|
|
}
|
|
|
|
jit_data = fp->aux->jit_data;
|
|
if (!jit_data) {
|
|
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
|
|
if (!jit_data) {
|
|
fp = org_fp;
|
|
goto out;
|
|
}
|
|
fp->aux->jit_data = jit_data;
|
|
}
|
|
|
|
flen = fp->len;
|
|
addrs = jit_data->addrs;
|
|
if (addrs) {
|
|
cgctx = jit_data->ctx;
|
|
image = jit_data->image;
|
|
bpf_hdr = jit_data->header;
|
|
proglen = jit_data->proglen;
|
|
alloclen = proglen + FUNCTION_DESCR_SIZE;
|
|
extra_pass = true;
|
|
goto skip_init_ctx;
|
|
}
|
|
|
|
addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
|
|
if (addrs == NULL) {
|
|
fp = org_fp;
|
|
goto out_addrs;
|
|
}
|
|
|
|
memset(&cgctx, 0, sizeof(struct codegen_context));
|
|
|
|
/* Make sure that the stack is quadword aligned. */
|
|
cgctx.stack_size = round_up(fp->aux->stack_depth, 16);
|
|
|
|
/* Scouting faux-generate pass 0 */
|
|
if (bpf_jit_build_body(fp, 0, &cgctx, addrs, false)) {
|
|
/* We hit something illegal or unsupported. */
|
|
fp = org_fp;
|
|
goto out_addrs;
|
|
}
|
|
|
|
/*
|
|
* If we have seen a tail call, we need a second pass.
|
|
* This is because bpf_jit_emit_common_epilogue() is called
|
|
* from bpf_jit_emit_tail_call() with a not yet stable ctx->seen.
|
|
*/
|
|
if (cgctx.seen & SEEN_TAILCALL) {
|
|
cgctx.idx = 0;
|
|
if (bpf_jit_build_body(fp, 0, &cgctx, addrs, false)) {
|
|
fp = org_fp;
|
|
goto out_addrs;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Pretend to build prologue, given the features we've seen. This will
|
|
* update ctgtx.idx as it pretends to output instructions, then we can
|
|
* calculate total size from idx.
|
|
*/
|
|
bpf_jit_build_prologue(0, &cgctx);
|
|
bpf_jit_build_epilogue(0, &cgctx);
|
|
|
|
proglen = cgctx.idx * 4;
|
|
alloclen = proglen + FUNCTION_DESCR_SIZE;
|
|
|
|
bpf_hdr = bpf_jit_binary_alloc(alloclen, &image, 4,
|
|
bpf_jit_fill_ill_insns);
|
|
if (!bpf_hdr) {
|
|
fp = org_fp;
|
|
goto out_addrs;
|
|
}
|
|
|
|
skip_init_ctx:
|
|
code_base = (u32 *)(image + FUNCTION_DESCR_SIZE);
|
|
|
|
if (extra_pass) {
|
|
/*
|
|
* Do not touch the prologue and epilogue as they will remain
|
|
* unchanged. Only fix the branch target address for subprog
|
|
* calls in the body.
|
|
*
|
|
* This does not change the offsets and lengths of the subprog
|
|
* call instruction sequences and hence, the size of the JITed
|
|
* image as well.
|
|
*/
|
|
bpf_jit_fixup_subprog_calls(fp, code_base, &cgctx, addrs);
|
|
|
|
/* There is no need to perform the usual passes. */
|
|
goto skip_codegen_passes;
|
|
}
|
|
|
|
/* Code generation passes 1-2 */
|
|
for (pass = 1; pass < 3; pass++) {
|
|
/* Now build the prologue, body code & epilogue for real. */
|
|
cgctx.idx = 0;
|
|
bpf_jit_build_prologue(code_base, &cgctx);
|
|
bpf_jit_build_body(fp, code_base, &cgctx, addrs, extra_pass);
|
|
bpf_jit_build_epilogue(code_base, &cgctx);
|
|
|
|
if (bpf_jit_enable > 1)
|
|
pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
|
|
proglen - (cgctx.idx * 4), cgctx.seen);
|
|
}
|
|
|
|
skip_codegen_passes:
|
|
if (bpf_jit_enable > 1)
|
|
/*
|
|
* Note that we output the base address of the code_base
|
|
* rather than image, since opcodes are in code_base.
|
|
*/
|
|
bpf_jit_dump(flen, proglen, pass, code_base);
|
|
|
|
#ifdef PPC64_ELF_ABI_v1
|
|
/* Function descriptor nastiness: Address + TOC */
|
|
((u64 *)image)[0] = (u64)code_base;
|
|
((u64 *)image)[1] = local_paca->kernel_toc;
|
|
#endif
|
|
|
|
fp->bpf_func = (void *)image;
|
|
fp->jited = 1;
|
|
fp->jited_len = alloclen;
|
|
|
|
bpf_flush_icache(bpf_hdr, (u8 *)bpf_hdr + (bpf_hdr->pages * PAGE_SIZE));
|
|
if (!fp->is_func || extra_pass) {
|
|
bpf_prog_fill_jited_linfo(fp, addrs);
|
|
out_addrs:
|
|
kfree(addrs);
|
|
kfree(jit_data);
|
|
fp->aux->jit_data = NULL;
|
|
} else {
|
|
jit_data->addrs = addrs;
|
|
jit_data->ctx = cgctx;
|
|
jit_data->proglen = proglen;
|
|
jit_data->image = image;
|
|
jit_data->header = bpf_hdr;
|
|
}
|
|
|
|
out:
|
|
if (bpf_blinded)
|
|
bpf_jit_prog_release_other(fp, fp == org_fp ? tmp_fp : org_fp);
|
|
|
|
return fp;
|
|
}
|
|
|
|
/* Overriding bpf_jit_free() as we don't set images read-only. */
|
|
void bpf_jit_free(struct bpf_prog *fp)
|
|
{
|
|
unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
|
|
struct bpf_binary_header *bpf_hdr = (void *)addr;
|
|
|
|
if (fp->jited)
|
|
bpf_jit_binary_free(bpf_hdr);
|
|
|
|
bpf_prog_unlock_free(fp);
|
|
}
|