Nick Piggin beed33a816 [PATCH] sched: likely profiling
This likely profiling is pretty fun. I found a few possible problems
in sched.c.

This patch may be not measurable, but when I did measure long ago,
nooping (un)likely cost a couple of % on scheduler heavy benchmarks, so
it all adds up.

Tweak some branch hints:

- the 2nd 64 bits in the bitmask is likely to be populated, because it
  contains the first 28 bits (nearly 3/4) of the normal priorities.
  (ratio of 669669:691 ~= 1000:1).

- it isn't unlikely that context switching switches to another process. it
  might be very rapidly switching to and from the idle process (ratio of
  475815:419004 and 471330:423544). Let the branch predictor decide.

- preempt_enable seems to be very often called in a nested preempt_disable
  or with interrupts disabled (ratio of 3567760:87965 ~= 40:1)

Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Daniel Walker <dwalker@mvista.com>
Cc: Hua Zhong <hzhong@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-11 11:14:22 -07:00

37 lines
897 B
C

#ifndef _ASM_GENERIC_BITOPS_SCHED_H_
#define _ASM_GENERIC_BITOPS_SCHED_H_
#include <linux/compiler.h> /* unlikely() */
#include <asm/types.h>
/*
* Every architecture must define this function. It's the fastest
* way of searching a 140-bit bitmap where the first 100 bits are
* unlikely to be set. It's guaranteed that at least one of the 140
* bits is cleared.
*/
static inline int sched_find_first_bit(const unsigned long *b)
{
#if BITS_PER_LONG == 64
if (unlikely(b[0]))
return __ffs(b[0]);
if (likely(b[1]))
return __ffs(b[1]) + 64;
return __ffs(b[2]) + 128;
#elif BITS_PER_LONG == 32
if (unlikely(b[0]))
return __ffs(b[0]);
if (unlikely(b[1]))
return __ffs(b[1]) + 32;
if (unlikely(b[2]))
return __ffs(b[2]) + 64;
if (b[3])
return __ffs(b[3]) + 96;
return __ffs(b[4]) + 128;
#else
#error BITS_PER_LONG not defined
#endif
}
#endif /* _ASM_GENERIC_BITOPS_SCHED_H_ */