075790ebba
A namespace may be detached from a controller, but a user may be holding a reference to it. Attaching a new namespace with the same NSID will create duplicate names when using the NSID to name the disk. This patch uses an IDA that is released only when the last reference is released instead of using the namespace ID. Signed-off-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Sagi Grimberg <sagig@mellanox.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Jens Axboe <axboe@fb.com>
1481 lines
36 KiB
C
1481 lines
36 KiB
C
/*
|
|
* NVM Express device driver
|
|
* Copyright (c) 2011-2014, Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pr.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/nvme_ioctl.h>
|
|
#include <linux/t10-pi.h>
|
|
#include <scsi/sg.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include "nvme.h"
|
|
|
|
#define NVME_MINORS (1U << MINORBITS)
|
|
|
|
static int nvme_major;
|
|
module_param(nvme_major, int, 0);
|
|
|
|
static int nvme_char_major;
|
|
module_param(nvme_char_major, int, 0);
|
|
|
|
static LIST_HEAD(nvme_ctrl_list);
|
|
DEFINE_SPINLOCK(dev_list_lock);
|
|
|
|
static struct class *nvme_class;
|
|
|
|
static void nvme_free_ns(struct kref *kref)
|
|
{
|
|
struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
|
|
|
|
if (ns->type == NVME_NS_LIGHTNVM)
|
|
nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
|
|
|
|
spin_lock(&dev_list_lock);
|
|
ns->disk->private_data = NULL;
|
|
spin_unlock(&dev_list_lock);
|
|
|
|
put_disk(ns->disk);
|
|
ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
|
|
nvme_put_ctrl(ns->ctrl);
|
|
kfree(ns);
|
|
}
|
|
|
|
static void nvme_put_ns(struct nvme_ns *ns)
|
|
{
|
|
kref_put(&ns->kref, nvme_free_ns);
|
|
}
|
|
|
|
static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
spin_lock(&dev_list_lock);
|
|
ns = disk->private_data;
|
|
if (ns && !kref_get_unless_zero(&ns->kref))
|
|
ns = NULL;
|
|
spin_unlock(&dev_list_lock);
|
|
|
|
return ns;
|
|
}
|
|
|
|
void nvme_requeue_req(struct request *req)
|
|
{
|
|
unsigned long flags;
|
|
|
|
blk_mq_requeue_request(req);
|
|
spin_lock_irqsave(req->q->queue_lock, flags);
|
|
if (!blk_queue_stopped(req->q))
|
|
blk_mq_kick_requeue_list(req->q);
|
|
spin_unlock_irqrestore(req->q->queue_lock, flags);
|
|
}
|
|
|
|
struct request *nvme_alloc_request(struct request_queue *q,
|
|
struct nvme_command *cmd, unsigned int flags)
|
|
{
|
|
bool write = cmd->common.opcode & 1;
|
|
struct request *req;
|
|
|
|
req = blk_mq_alloc_request(q, write, flags);
|
|
if (IS_ERR(req))
|
|
return req;
|
|
|
|
req->cmd_type = REQ_TYPE_DRV_PRIV;
|
|
req->cmd_flags |= REQ_FAILFAST_DRIVER;
|
|
req->__data_len = 0;
|
|
req->__sector = (sector_t) -1;
|
|
req->bio = req->biotail = NULL;
|
|
|
|
req->cmd = (unsigned char *)cmd;
|
|
req->cmd_len = sizeof(struct nvme_command);
|
|
req->special = (void *)0;
|
|
|
|
return req;
|
|
}
|
|
|
|
/*
|
|
* Returns 0 on success. If the result is negative, it's a Linux error code;
|
|
* if the result is positive, it's an NVM Express status code
|
|
*/
|
|
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
|
|
void *buffer, unsigned bufflen, u32 *result, unsigned timeout)
|
|
{
|
|
struct request *req;
|
|
int ret;
|
|
|
|
req = nvme_alloc_request(q, cmd, 0);
|
|
if (IS_ERR(req))
|
|
return PTR_ERR(req);
|
|
|
|
req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
|
|
|
|
if (buffer && bufflen) {
|
|
ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
blk_execute_rq(req->q, NULL, req, 0);
|
|
if (result)
|
|
*result = (u32)(uintptr_t)req->special;
|
|
ret = req->errors;
|
|
out:
|
|
blk_mq_free_request(req);
|
|
return ret;
|
|
}
|
|
|
|
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
|
|
void *buffer, unsigned bufflen)
|
|
{
|
|
return __nvme_submit_sync_cmd(q, cmd, buffer, bufflen, NULL, 0);
|
|
}
|
|
|
|
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
|
|
void __user *ubuffer, unsigned bufflen,
|
|
void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
|
|
u32 *result, unsigned timeout)
|
|
{
|
|
bool write = cmd->common.opcode & 1;
|
|
struct nvme_ns *ns = q->queuedata;
|
|
struct gendisk *disk = ns ? ns->disk : NULL;
|
|
struct request *req;
|
|
struct bio *bio = NULL;
|
|
void *meta = NULL;
|
|
int ret;
|
|
|
|
req = nvme_alloc_request(q, cmd, 0);
|
|
if (IS_ERR(req))
|
|
return PTR_ERR(req);
|
|
|
|
req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
|
|
|
|
if (ubuffer && bufflen) {
|
|
ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
|
|
GFP_KERNEL);
|
|
if (ret)
|
|
goto out;
|
|
bio = req->bio;
|
|
|
|
if (!disk)
|
|
goto submit;
|
|
bio->bi_bdev = bdget_disk(disk, 0);
|
|
if (!bio->bi_bdev) {
|
|
ret = -ENODEV;
|
|
goto out_unmap;
|
|
}
|
|
|
|
if (meta_buffer) {
|
|
struct bio_integrity_payload *bip;
|
|
|
|
meta = kmalloc(meta_len, GFP_KERNEL);
|
|
if (!meta) {
|
|
ret = -ENOMEM;
|
|
goto out_unmap;
|
|
}
|
|
|
|
if (write) {
|
|
if (copy_from_user(meta, meta_buffer,
|
|
meta_len)) {
|
|
ret = -EFAULT;
|
|
goto out_free_meta;
|
|
}
|
|
}
|
|
|
|
bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
|
|
if (IS_ERR(bip)) {
|
|
ret = PTR_ERR(bip);
|
|
goto out_free_meta;
|
|
}
|
|
|
|
bip->bip_iter.bi_size = meta_len;
|
|
bip->bip_iter.bi_sector = meta_seed;
|
|
|
|
ret = bio_integrity_add_page(bio, virt_to_page(meta),
|
|
meta_len, offset_in_page(meta));
|
|
if (ret != meta_len) {
|
|
ret = -ENOMEM;
|
|
goto out_free_meta;
|
|
}
|
|
}
|
|
}
|
|
submit:
|
|
blk_execute_rq(req->q, disk, req, 0);
|
|
ret = req->errors;
|
|
if (result)
|
|
*result = (u32)(uintptr_t)req->special;
|
|
if (meta && !ret && !write) {
|
|
if (copy_to_user(meta_buffer, meta, meta_len))
|
|
ret = -EFAULT;
|
|
}
|
|
out_free_meta:
|
|
kfree(meta);
|
|
out_unmap:
|
|
if (bio) {
|
|
if (disk && bio->bi_bdev)
|
|
bdput(bio->bi_bdev);
|
|
blk_rq_unmap_user(bio);
|
|
}
|
|
out:
|
|
blk_mq_free_request(req);
|
|
return ret;
|
|
}
|
|
|
|
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
|
|
void __user *ubuffer, unsigned bufflen, u32 *result,
|
|
unsigned timeout)
|
|
{
|
|
return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
|
|
result, timeout);
|
|
}
|
|
|
|
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
|
|
{
|
|
struct nvme_command c = { };
|
|
int error;
|
|
|
|
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
|
|
c.identify.opcode = nvme_admin_identify;
|
|
c.identify.cns = cpu_to_le32(1);
|
|
|
|
*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
|
|
if (!*id)
|
|
return -ENOMEM;
|
|
|
|
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
|
|
sizeof(struct nvme_id_ctrl));
|
|
if (error)
|
|
kfree(*id);
|
|
return error;
|
|
}
|
|
|
|
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
|
|
{
|
|
struct nvme_command c = { };
|
|
|
|
c.identify.opcode = nvme_admin_identify;
|
|
c.identify.cns = cpu_to_le32(2);
|
|
c.identify.nsid = cpu_to_le32(nsid);
|
|
return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
|
|
}
|
|
|
|
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
|
|
struct nvme_id_ns **id)
|
|
{
|
|
struct nvme_command c = { };
|
|
int error;
|
|
|
|
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
|
|
c.identify.opcode = nvme_admin_identify,
|
|
c.identify.nsid = cpu_to_le32(nsid),
|
|
|
|
*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
|
|
if (!*id)
|
|
return -ENOMEM;
|
|
|
|
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
|
|
sizeof(struct nvme_id_ns));
|
|
if (error)
|
|
kfree(*id);
|
|
return error;
|
|
}
|
|
|
|
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
|
|
dma_addr_t dma_addr, u32 *result)
|
|
{
|
|
struct nvme_command c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.features.opcode = nvme_admin_get_features;
|
|
c.features.nsid = cpu_to_le32(nsid);
|
|
c.features.prp1 = cpu_to_le64(dma_addr);
|
|
c.features.fid = cpu_to_le32(fid);
|
|
|
|
return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
|
|
}
|
|
|
|
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
|
|
dma_addr_t dma_addr, u32 *result)
|
|
{
|
|
struct nvme_command c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.features.opcode = nvme_admin_set_features;
|
|
c.features.prp1 = cpu_to_le64(dma_addr);
|
|
c.features.fid = cpu_to_le32(fid);
|
|
c.features.dword11 = cpu_to_le32(dword11);
|
|
|
|
return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
|
|
}
|
|
|
|
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
|
|
{
|
|
struct nvme_command c = { };
|
|
int error;
|
|
|
|
c.common.opcode = nvme_admin_get_log_page,
|
|
c.common.nsid = cpu_to_le32(0xFFFFFFFF),
|
|
c.common.cdw10[0] = cpu_to_le32(
|
|
(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
|
|
NVME_LOG_SMART),
|
|
|
|
*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
|
|
if (!*log)
|
|
return -ENOMEM;
|
|
|
|
error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
|
|
sizeof(struct nvme_smart_log));
|
|
if (error)
|
|
kfree(*log);
|
|
return error;
|
|
}
|
|
|
|
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
|
|
{
|
|
u32 q_count = (*count - 1) | ((*count - 1) << 16);
|
|
u32 result;
|
|
int status, nr_io_queues;
|
|
|
|
status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
|
|
&result);
|
|
if (status)
|
|
return status;
|
|
|
|
nr_io_queues = min(result & 0xffff, result >> 16) + 1;
|
|
*count = min(*count, nr_io_queues);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
|
|
{
|
|
struct nvme_user_io io;
|
|
struct nvme_command c;
|
|
unsigned length, meta_len;
|
|
void __user *metadata;
|
|
|
|
if (copy_from_user(&io, uio, sizeof(io)))
|
|
return -EFAULT;
|
|
|
|
switch (io.opcode) {
|
|
case nvme_cmd_write:
|
|
case nvme_cmd_read:
|
|
case nvme_cmd_compare:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
length = (io.nblocks + 1) << ns->lba_shift;
|
|
meta_len = (io.nblocks + 1) * ns->ms;
|
|
metadata = (void __user *)(uintptr_t)io.metadata;
|
|
|
|
if (ns->ext) {
|
|
length += meta_len;
|
|
meta_len = 0;
|
|
} else if (meta_len) {
|
|
if ((io.metadata & 3) || !io.metadata)
|
|
return -EINVAL;
|
|
}
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.rw.opcode = io.opcode;
|
|
c.rw.flags = io.flags;
|
|
c.rw.nsid = cpu_to_le32(ns->ns_id);
|
|
c.rw.slba = cpu_to_le64(io.slba);
|
|
c.rw.length = cpu_to_le16(io.nblocks);
|
|
c.rw.control = cpu_to_le16(io.control);
|
|
c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
|
|
c.rw.reftag = cpu_to_le32(io.reftag);
|
|
c.rw.apptag = cpu_to_le16(io.apptag);
|
|
c.rw.appmask = cpu_to_le16(io.appmask);
|
|
|
|
return __nvme_submit_user_cmd(ns->queue, &c,
|
|
(void __user *)(uintptr_t)io.addr, length,
|
|
metadata, meta_len, io.slba, NULL, 0);
|
|
}
|
|
|
|
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
|
|
struct nvme_passthru_cmd __user *ucmd)
|
|
{
|
|
struct nvme_passthru_cmd cmd;
|
|
struct nvme_command c;
|
|
unsigned timeout = 0;
|
|
int status;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
|
|
return -EFAULT;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.common.opcode = cmd.opcode;
|
|
c.common.flags = cmd.flags;
|
|
c.common.nsid = cpu_to_le32(cmd.nsid);
|
|
c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
|
|
c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
|
|
c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
|
|
c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
|
|
c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
|
|
c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
|
|
c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
|
|
c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
|
|
|
|
if (cmd.timeout_ms)
|
|
timeout = msecs_to_jiffies(cmd.timeout_ms);
|
|
|
|
status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
|
|
(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
|
|
&cmd.result, timeout);
|
|
if (status >= 0) {
|
|
if (put_user(cmd.result, &ucmd->result))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct nvme_ns *ns = bdev->bd_disk->private_data;
|
|
|
|
switch (cmd) {
|
|
case NVME_IOCTL_ID:
|
|
force_successful_syscall_return();
|
|
return ns->ns_id;
|
|
case NVME_IOCTL_ADMIN_CMD:
|
|
return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
|
|
case NVME_IOCTL_IO_CMD:
|
|
return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
|
|
case NVME_IOCTL_SUBMIT_IO:
|
|
return nvme_submit_io(ns, (void __user *)arg);
|
|
#ifdef CONFIG_BLK_DEV_NVME_SCSI
|
|
case SG_GET_VERSION_NUM:
|
|
return nvme_sg_get_version_num((void __user *)arg);
|
|
case SG_IO:
|
|
return nvme_sg_io(ns, (void __user *)arg);
|
|
#endif
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case SG_IO:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
return nvme_ioctl(bdev, mode, cmd, arg);
|
|
}
|
|
#else
|
|
#define nvme_compat_ioctl NULL
|
|
#endif
|
|
|
|
static int nvme_open(struct block_device *bdev, fmode_t mode)
|
|
{
|
|
return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
|
|
}
|
|
|
|
static void nvme_release(struct gendisk *disk, fmode_t mode)
|
|
{
|
|
nvme_put_ns(disk->private_data);
|
|
}
|
|
|
|
static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
/* some standard values */
|
|
geo->heads = 1 << 6;
|
|
geo->sectors = 1 << 5;
|
|
geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INTEGRITY
|
|
static void nvme_init_integrity(struct nvme_ns *ns)
|
|
{
|
|
struct blk_integrity integrity;
|
|
|
|
switch (ns->pi_type) {
|
|
case NVME_NS_DPS_PI_TYPE3:
|
|
integrity.profile = &t10_pi_type3_crc;
|
|
break;
|
|
case NVME_NS_DPS_PI_TYPE1:
|
|
case NVME_NS_DPS_PI_TYPE2:
|
|
integrity.profile = &t10_pi_type1_crc;
|
|
break;
|
|
default:
|
|
integrity.profile = NULL;
|
|
break;
|
|
}
|
|
integrity.tuple_size = ns->ms;
|
|
blk_integrity_register(ns->disk, &integrity);
|
|
blk_queue_max_integrity_segments(ns->queue, 1);
|
|
}
|
|
#else
|
|
static void nvme_init_integrity(struct nvme_ns *ns)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INTEGRITY */
|
|
|
|
static void nvme_config_discard(struct nvme_ns *ns)
|
|
{
|
|
u32 logical_block_size = queue_logical_block_size(ns->queue);
|
|
ns->queue->limits.discard_zeroes_data = 0;
|
|
ns->queue->limits.discard_alignment = logical_block_size;
|
|
ns->queue->limits.discard_granularity = logical_block_size;
|
|
blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
|
|
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
|
|
}
|
|
|
|
static int nvme_revalidate_disk(struct gendisk *disk)
|
|
{
|
|
struct nvme_ns *ns = disk->private_data;
|
|
struct nvme_id_ns *id;
|
|
u8 lbaf, pi_type;
|
|
u16 old_ms;
|
|
unsigned short bs;
|
|
|
|
if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
|
|
dev_warn(ns->ctrl->dev, "%s: Identify failure nvme%dn%d\n",
|
|
__func__, ns->ctrl->instance, ns->ns_id);
|
|
return -ENODEV;
|
|
}
|
|
if (id->ncap == 0) {
|
|
kfree(id);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
|
|
if (nvme_nvm_register(ns->queue, disk->disk_name)) {
|
|
dev_warn(ns->ctrl->dev,
|
|
"%s: LightNVM init failure\n", __func__);
|
|
kfree(id);
|
|
return -ENODEV;
|
|
}
|
|
ns->type = NVME_NS_LIGHTNVM;
|
|
}
|
|
|
|
if (ns->ctrl->vs >= NVME_VS(1, 1))
|
|
memcpy(ns->eui, id->eui64, sizeof(ns->eui));
|
|
if (ns->ctrl->vs >= NVME_VS(1, 2))
|
|
memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
|
|
|
|
old_ms = ns->ms;
|
|
lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
|
|
ns->lba_shift = id->lbaf[lbaf].ds;
|
|
ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
|
|
ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
|
|
|
|
/*
|
|
* If identify namespace failed, use default 512 byte block size so
|
|
* block layer can use before failing read/write for 0 capacity.
|
|
*/
|
|
if (ns->lba_shift == 0)
|
|
ns->lba_shift = 9;
|
|
bs = 1 << ns->lba_shift;
|
|
/* XXX: PI implementation requires metadata equal t10 pi tuple size */
|
|
pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
|
|
id->dps & NVME_NS_DPS_PI_MASK : 0;
|
|
|
|
blk_mq_freeze_queue(disk->queue);
|
|
if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
|
|
ns->ms != old_ms ||
|
|
bs != queue_logical_block_size(disk->queue) ||
|
|
(ns->ms && ns->ext)))
|
|
blk_integrity_unregister(disk);
|
|
|
|
ns->pi_type = pi_type;
|
|
blk_queue_logical_block_size(ns->queue, bs);
|
|
|
|
if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
|
|
nvme_init_integrity(ns);
|
|
if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
|
|
set_capacity(disk, 0);
|
|
else
|
|
set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
|
|
|
|
if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
|
|
nvme_config_discard(ns);
|
|
blk_mq_unfreeze_queue(disk->queue);
|
|
|
|
kfree(id);
|
|
return 0;
|
|
}
|
|
|
|
static char nvme_pr_type(enum pr_type type)
|
|
{
|
|
switch (type) {
|
|
case PR_WRITE_EXCLUSIVE:
|
|
return 1;
|
|
case PR_EXCLUSIVE_ACCESS:
|
|
return 2;
|
|
case PR_WRITE_EXCLUSIVE_REG_ONLY:
|
|
return 3;
|
|
case PR_EXCLUSIVE_ACCESS_REG_ONLY:
|
|
return 4;
|
|
case PR_WRITE_EXCLUSIVE_ALL_REGS:
|
|
return 5;
|
|
case PR_EXCLUSIVE_ACCESS_ALL_REGS:
|
|
return 6;
|
|
default:
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
|
|
u64 key, u64 sa_key, u8 op)
|
|
{
|
|
struct nvme_ns *ns = bdev->bd_disk->private_data;
|
|
struct nvme_command c;
|
|
u8 data[16] = { 0, };
|
|
|
|
put_unaligned_le64(key, &data[0]);
|
|
put_unaligned_le64(sa_key, &data[8]);
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.common.opcode = op;
|
|
c.common.nsid = cpu_to_le32(ns->ns_id);
|
|
c.common.cdw10[0] = cpu_to_le32(cdw10);
|
|
|
|
return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
|
|
}
|
|
|
|
static int nvme_pr_register(struct block_device *bdev, u64 old,
|
|
u64 new, unsigned flags)
|
|
{
|
|
u32 cdw10;
|
|
|
|
if (flags & ~PR_FL_IGNORE_KEY)
|
|
return -EOPNOTSUPP;
|
|
|
|
cdw10 = old ? 2 : 0;
|
|
cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
|
|
cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
|
|
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
|
|
}
|
|
|
|
static int nvme_pr_reserve(struct block_device *bdev, u64 key,
|
|
enum pr_type type, unsigned flags)
|
|
{
|
|
u32 cdw10;
|
|
|
|
if (flags & ~PR_FL_IGNORE_KEY)
|
|
return -EOPNOTSUPP;
|
|
|
|
cdw10 = nvme_pr_type(type) << 8;
|
|
cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
|
|
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
|
|
}
|
|
|
|
static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
|
|
enum pr_type type, bool abort)
|
|
{
|
|
u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
|
|
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
|
|
}
|
|
|
|
static int nvme_pr_clear(struct block_device *bdev, u64 key)
|
|
{
|
|
u32 cdw10 = 1 | (key ? 1 << 3 : 0);
|
|
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
|
|
}
|
|
|
|
static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
|
|
{
|
|
u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
|
|
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
|
|
}
|
|
|
|
static const struct pr_ops nvme_pr_ops = {
|
|
.pr_register = nvme_pr_register,
|
|
.pr_reserve = nvme_pr_reserve,
|
|
.pr_release = nvme_pr_release,
|
|
.pr_preempt = nvme_pr_preempt,
|
|
.pr_clear = nvme_pr_clear,
|
|
};
|
|
|
|
static const struct block_device_operations nvme_fops = {
|
|
.owner = THIS_MODULE,
|
|
.ioctl = nvme_ioctl,
|
|
.compat_ioctl = nvme_compat_ioctl,
|
|
.open = nvme_open,
|
|
.release = nvme_release,
|
|
.getgeo = nvme_getgeo,
|
|
.revalidate_disk= nvme_revalidate_disk,
|
|
.pr_ops = &nvme_pr_ops,
|
|
};
|
|
|
|
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
|
|
{
|
|
unsigned long timeout =
|
|
((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
|
|
u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
|
|
int ret;
|
|
|
|
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
|
|
if ((csts & NVME_CSTS_RDY) == bit)
|
|
break;
|
|
|
|
msleep(100);
|
|
if (fatal_signal_pending(current))
|
|
return -EINTR;
|
|
if (time_after(jiffies, timeout)) {
|
|
dev_err(ctrl->dev,
|
|
"Device not ready; aborting %s\n", enabled ?
|
|
"initialisation" : "reset");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If the device has been passed off to us in an enabled state, just clear
|
|
* the enabled bit. The spec says we should set the 'shutdown notification
|
|
* bits', but doing so may cause the device to complete commands to the
|
|
* admin queue ... and we don't know what memory that might be pointing at!
|
|
*/
|
|
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
|
|
{
|
|
int ret;
|
|
|
|
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
|
|
ctrl->ctrl_config &= ~NVME_CC_ENABLE;
|
|
|
|
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
|
|
if (ret)
|
|
return ret;
|
|
return nvme_wait_ready(ctrl, cap, false);
|
|
}
|
|
|
|
int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
|
|
{
|
|
/*
|
|
* Default to a 4K page size, with the intention to update this
|
|
* path in the future to accomodate architectures with differing
|
|
* kernel and IO page sizes.
|
|
*/
|
|
unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
|
|
int ret;
|
|
|
|
if (page_shift < dev_page_min) {
|
|
dev_err(ctrl->dev,
|
|
"Minimum device page size %u too large for host (%u)\n",
|
|
1 << dev_page_min, 1 << page_shift);
|
|
return -ENODEV;
|
|
}
|
|
|
|
ctrl->page_size = 1 << page_shift;
|
|
|
|
ctrl->ctrl_config = NVME_CC_CSS_NVM;
|
|
ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
|
|
ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
|
|
ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
|
|
ctrl->ctrl_config |= NVME_CC_ENABLE;
|
|
|
|
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
|
|
if (ret)
|
|
return ret;
|
|
return nvme_wait_ready(ctrl, cap, true);
|
|
}
|
|
|
|
int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
|
|
u32 csts;
|
|
int ret;
|
|
|
|
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
|
|
ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
|
|
|
|
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
|
|
if (ret)
|
|
return ret;
|
|
|
|
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
|
|
if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
|
|
break;
|
|
|
|
msleep(100);
|
|
if (fatal_signal_pending(current))
|
|
return -EINTR;
|
|
if (time_after(jiffies, timeout)) {
|
|
dev_err(ctrl->dev,
|
|
"Device shutdown incomplete; abort shutdown\n");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Initialize the cached copies of the Identify data and various controller
|
|
* register in our nvme_ctrl structure. This should be called as soon as
|
|
* the admin queue is fully up and running.
|
|
*/
|
|
int nvme_init_identify(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_id_ctrl *id;
|
|
u64 cap;
|
|
int ret, page_shift;
|
|
|
|
ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "Reading VS failed (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "Reading CAP failed (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
page_shift = NVME_CAP_MPSMIN(cap) + 12;
|
|
|
|
if (ctrl->vs >= NVME_VS(1, 1))
|
|
ctrl->subsystem = NVME_CAP_NSSRC(cap);
|
|
|
|
ret = nvme_identify_ctrl(ctrl, &id);
|
|
if (ret) {
|
|
dev_err(ctrl->dev, "Identify Controller failed (%d)\n", ret);
|
|
return -EIO;
|
|
}
|
|
|
|
ctrl->oncs = le16_to_cpup(&id->oncs);
|
|
atomic_set(&ctrl->abort_limit, id->acl + 1);
|
|
ctrl->vwc = id->vwc;
|
|
memcpy(ctrl->serial, id->sn, sizeof(id->sn));
|
|
memcpy(ctrl->model, id->mn, sizeof(id->mn));
|
|
memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
|
|
if (id->mdts)
|
|
ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
|
|
else
|
|
ctrl->max_hw_sectors = UINT_MAX;
|
|
|
|
if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
|
|
unsigned int max_hw_sectors;
|
|
|
|
ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
|
|
max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
|
|
if (ctrl->max_hw_sectors) {
|
|
ctrl->max_hw_sectors = min(max_hw_sectors,
|
|
ctrl->max_hw_sectors);
|
|
} else {
|
|
ctrl->max_hw_sectors = max_hw_sectors;
|
|
}
|
|
}
|
|
|
|
kfree(id);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_dev_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct nvme_ctrl *ctrl;
|
|
int instance = iminor(inode);
|
|
int ret = -ENODEV;
|
|
|
|
spin_lock(&dev_list_lock);
|
|
list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
|
|
if (ctrl->instance != instance)
|
|
continue;
|
|
|
|
if (!ctrl->admin_q) {
|
|
ret = -EWOULDBLOCK;
|
|
break;
|
|
}
|
|
if (!kref_get_unless_zero(&ctrl->kref))
|
|
break;
|
|
file->private_data = ctrl;
|
|
ret = 0;
|
|
break;
|
|
}
|
|
spin_unlock(&dev_list_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_dev_release(struct inode *inode, struct file *file)
|
|
{
|
|
nvme_put_ctrl(file->private_data);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
|
|
{
|
|
struct nvme_ns *ns;
|
|
int ret;
|
|
|
|
mutex_lock(&ctrl->namespaces_mutex);
|
|
if (list_empty(&ctrl->namespaces)) {
|
|
ret = -ENOTTY;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
|
|
if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
|
|
dev_warn(ctrl->dev,
|
|
"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
dev_warn(ctrl->dev,
|
|
"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
|
|
kref_get(&ns->kref);
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
|
|
ret = nvme_user_cmd(ctrl, ns, argp);
|
|
nvme_put_ns(ns);
|
|
return ret;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
struct nvme_ctrl *ctrl = file->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
switch (cmd) {
|
|
case NVME_IOCTL_ADMIN_CMD:
|
|
return nvme_user_cmd(ctrl, NULL, argp);
|
|
case NVME_IOCTL_IO_CMD:
|
|
return nvme_dev_user_cmd(ctrl, argp);
|
|
case NVME_IOCTL_RESET:
|
|
dev_warn(ctrl->dev, "resetting controller\n");
|
|
return ctrl->ops->reset_ctrl(ctrl);
|
|
case NVME_IOCTL_SUBSYS_RESET:
|
|
return nvme_reset_subsystem(ctrl);
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static const struct file_operations nvme_dev_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = nvme_dev_open,
|
|
.release = nvme_dev_release,
|
|
.unlocked_ioctl = nvme_dev_ioctl,
|
|
.compat_ioctl = nvme_dev_ioctl,
|
|
};
|
|
|
|
static ssize_t nvme_sysfs_reset(struct device *dev,
|
|
struct device_attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = ctrl->ops->reset_ctrl(ctrl);
|
|
if (ret < 0)
|
|
return ret;
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
|
|
|
|
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct nvme_ns *ns = dev_to_disk(dev)->private_data;
|
|
return sprintf(buf, "%pU\n", ns->uuid);
|
|
}
|
|
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
|
|
|
|
static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct nvme_ns *ns = dev_to_disk(dev)->private_data;
|
|
return sprintf(buf, "%8phd\n", ns->eui);
|
|
}
|
|
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
|
|
|
|
static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct nvme_ns *ns = dev_to_disk(dev)->private_data;
|
|
return sprintf(buf, "%d\n", ns->ns_id);
|
|
}
|
|
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
|
|
|
|
static struct attribute *nvme_ns_attrs[] = {
|
|
&dev_attr_uuid.attr,
|
|
&dev_attr_eui.attr,
|
|
&dev_attr_nsid.attr,
|
|
NULL,
|
|
};
|
|
|
|
static umode_t nvme_attrs_are_visible(struct kobject *kobj,
|
|
struct attribute *a, int n)
|
|
{
|
|
struct device *dev = container_of(kobj, struct device, kobj);
|
|
struct nvme_ns *ns = dev_to_disk(dev)->private_data;
|
|
|
|
if (a == &dev_attr_uuid.attr) {
|
|
if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
|
|
return 0;
|
|
}
|
|
if (a == &dev_attr_eui.attr) {
|
|
if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
|
|
return 0;
|
|
}
|
|
return a->mode;
|
|
}
|
|
|
|
static const struct attribute_group nvme_ns_attr_group = {
|
|
.attrs = nvme_ns_attrs,
|
|
.is_visible = nvme_attrs_are_visible,
|
|
};
|
|
|
|
#define nvme_show_function(field) \
|
|
static ssize_t field##_show(struct device *dev, \
|
|
struct device_attribute *attr, char *buf) \
|
|
{ \
|
|
struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
|
|
return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
|
|
} \
|
|
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
|
|
|
|
nvme_show_function(model);
|
|
nvme_show_function(serial);
|
|
nvme_show_function(firmware_rev);
|
|
|
|
static struct attribute *nvme_dev_attrs[] = {
|
|
&dev_attr_reset_controller.attr,
|
|
&dev_attr_model.attr,
|
|
&dev_attr_serial.attr,
|
|
&dev_attr_firmware_rev.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group nvme_dev_attrs_group = {
|
|
.attrs = nvme_dev_attrs,
|
|
};
|
|
|
|
static const struct attribute_group *nvme_dev_attr_groups[] = {
|
|
&nvme_dev_attrs_group,
|
|
NULL,
|
|
};
|
|
|
|
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
|
|
{
|
|
struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
|
|
struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
|
|
|
|
return nsa->ns_id - nsb->ns_id;
|
|
}
|
|
|
|
static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
lockdep_assert_held(&ctrl->namespaces_mutex);
|
|
|
|
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
|
if (ns->ns_id == nsid)
|
|
return ns;
|
|
if (ns->ns_id > nsid)
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
|
|
{
|
|
struct nvme_ns *ns;
|
|
struct gendisk *disk;
|
|
int node = dev_to_node(ctrl->dev);
|
|
|
|
lockdep_assert_held(&ctrl->namespaces_mutex);
|
|
|
|
ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
|
|
if (!ns)
|
|
return;
|
|
|
|
ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
|
|
if (ns->instance < 0)
|
|
goto out_free_ns;
|
|
|
|
ns->queue = blk_mq_init_queue(ctrl->tagset);
|
|
if (IS_ERR(ns->queue))
|
|
goto out_release_instance;
|
|
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
|
|
ns->queue->queuedata = ns;
|
|
ns->ctrl = ctrl;
|
|
|
|
disk = alloc_disk_node(0, node);
|
|
if (!disk)
|
|
goto out_free_queue;
|
|
|
|
kref_init(&ns->kref);
|
|
ns->ns_id = nsid;
|
|
ns->disk = disk;
|
|
ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
|
|
|
|
blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
|
|
if (ctrl->max_hw_sectors) {
|
|
blk_queue_max_hw_sectors(ns->queue, ctrl->max_hw_sectors);
|
|
blk_queue_max_segments(ns->queue,
|
|
(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1);
|
|
}
|
|
if (ctrl->stripe_size)
|
|
blk_queue_chunk_sectors(ns->queue, ctrl->stripe_size >> 9);
|
|
if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
|
|
blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
|
|
blk_queue_virt_boundary(ns->queue, ctrl->page_size - 1);
|
|
|
|
disk->major = nvme_major;
|
|
disk->first_minor = 0;
|
|
disk->fops = &nvme_fops;
|
|
disk->private_data = ns;
|
|
disk->queue = ns->queue;
|
|
disk->driverfs_dev = ctrl->device;
|
|
disk->flags = GENHD_FL_EXT_DEVT;
|
|
sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
|
|
|
|
if (nvme_revalidate_disk(ns->disk))
|
|
goto out_free_disk;
|
|
|
|
list_add_tail(&ns->list, &ctrl->namespaces);
|
|
kref_get(&ctrl->kref);
|
|
if (ns->type == NVME_NS_LIGHTNVM)
|
|
return;
|
|
|
|
add_disk(ns->disk);
|
|
if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
|
|
&nvme_ns_attr_group))
|
|
pr_warn("%s: failed to create sysfs group for identification\n",
|
|
ns->disk->disk_name);
|
|
return;
|
|
out_free_disk:
|
|
kfree(disk);
|
|
out_free_queue:
|
|
blk_cleanup_queue(ns->queue);
|
|
out_release_instance:
|
|
ida_simple_remove(&ctrl->ns_ida, ns->instance);
|
|
out_free_ns:
|
|
kfree(ns);
|
|
}
|
|
|
|
static void nvme_ns_remove(struct nvme_ns *ns)
|
|
{
|
|
bool kill = nvme_io_incapable(ns->ctrl) &&
|
|
!blk_queue_dying(ns->queue);
|
|
|
|
lockdep_assert_held(&ns->ctrl->namespaces_mutex);
|
|
|
|
if (kill) {
|
|
blk_set_queue_dying(ns->queue);
|
|
|
|
/*
|
|
* The controller was shutdown first if we got here through
|
|
* device removal. The shutdown may requeue outstanding
|
|
* requests. These need to be aborted immediately so
|
|
* del_gendisk doesn't block indefinitely for their completion.
|
|
*/
|
|
blk_mq_abort_requeue_list(ns->queue);
|
|
}
|
|
if (ns->disk->flags & GENHD_FL_UP) {
|
|
if (blk_get_integrity(ns->disk))
|
|
blk_integrity_unregister(ns->disk);
|
|
sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
|
|
&nvme_ns_attr_group);
|
|
del_gendisk(ns->disk);
|
|
}
|
|
if (kill || !blk_queue_dying(ns->queue)) {
|
|
blk_mq_abort_requeue_list(ns->queue);
|
|
blk_cleanup_queue(ns->queue);
|
|
}
|
|
list_del_init(&ns->list);
|
|
nvme_put_ns(ns);
|
|
}
|
|
|
|
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
ns = nvme_find_ns(ctrl, nsid);
|
|
if (ns) {
|
|
if (revalidate_disk(ns->disk))
|
|
nvme_ns_remove(ns);
|
|
} else
|
|
nvme_alloc_ns(ctrl, nsid);
|
|
}
|
|
|
|
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
|
|
{
|
|
struct nvme_ns *ns;
|
|
__le32 *ns_list;
|
|
unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
|
|
int ret = 0;
|
|
|
|
ns_list = kzalloc(0x1000, GFP_KERNEL);
|
|
if (!ns_list)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < num_lists; i++) {
|
|
ret = nvme_identify_ns_list(ctrl, prev, ns_list);
|
|
if (ret)
|
|
goto out;
|
|
|
|
for (j = 0; j < min(nn, 1024U); j++) {
|
|
nsid = le32_to_cpu(ns_list[j]);
|
|
if (!nsid)
|
|
goto out;
|
|
|
|
nvme_validate_ns(ctrl, nsid);
|
|
|
|
while (++prev < nsid) {
|
|
ns = nvme_find_ns(ctrl, prev);
|
|
if (ns)
|
|
nvme_ns_remove(ns);
|
|
}
|
|
}
|
|
nn -= j;
|
|
}
|
|
out:
|
|
kfree(ns_list);
|
|
return ret;
|
|
}
|
|
|
|
static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
|
|
{
|
|
struct nvme_ns *ns, *next;
|
|
unsigned i;
|
|
|
|
lockdep_assert_held(&ctrl->namespaces_mutex);
|
|
|
|
for (i = 1; i <= nn; i++)
|
|
nvme_validate_ns(ctrl, i);
|
|
|
|
list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
|
|
if (ns->ns_id > nn)
|
|
nvme_ns_remove(ns);
|
|
}
|
|
}
|
|
|
|
void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_id_ctrl *id;
|
|
unsigned nn;
|
|
|
|
if (nvme_identify_ctrl(ctrl, &id))
|
|
return;
|
|
|
|
mutex_lock(&ctrl->namespaces_mutex);
|
|
nn = le32_to_cpu(id->nn);
|
|
if (ctrl->vs >= NVME_VS(1, 1) &&
|
|
!(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
|
|
if (!nvme_scan_ns_list(ctrl, nn))
|
|
goto done;
|
|
}
|
|
__nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
|
|
done:
|
|
list_sort(NULL, &ctrl->namespaces, ns_cmp);
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
kfree(id);
|
|
}
|
|
|
|
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns, *next;
|
|
|
|
mutex_lock(&ctrl->namespaces_mutex);
|
|
list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
|
|
nvme_ns_remove(ns);
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
}
|
|
|
|
static DEFINE_IDA(nvme_instance_ida);
|
|
|
|
static int nvme_set_instance(struct nvme_ctrl *ctrl)
|
|
{
|
|
int instance, error;
|
|
|
|
do {
|
|
if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
|
|
return -ENODEV;
|
|
|
|
spin_lock(&dev_list_lock);
|
|
error = ida_get_new(&nvme_instance_ida, &instance);
|
|
spin_unlock(&dev_list_lock);
|
|
} while (error == -EAGAIN);
|
|
|
|
if (error)
|
|
return -ENODEV;
|
|
|
|
ctrl->instance = instance;
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_release_instance(struct nvme_ctrl *ctrl)
|
|
{
|
|
spin_lock(&dev_list_lock);
|
|
ida_remove(&nvme_instance_ida, ctrl->instance);
|
|
spin_unlock(&dev_list_lock);
|
|
}
|
|
|
|
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
|
|
|
|
spin_lock(&dev_list_lock);
|
|
list_del(&ctrl->node);
|
|
spin_unlock(&dev_list_lock);
|
|
}
|
|
|
|
static void nvme_free_ctrl(struct kref *kref)
|
|
{
|
|
struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
|
|
|
|
put_device(ctrl->device);
|
|
nvme_release_instance(ctrl);
|
|
ida_destroy(&ctrl->ns_ida);
|
|
|
|
ctrl->ops->free_ctrl(ctrl);
|
|
}
|
|
|
|
void nvme_put_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
kref_put(&ctrl->kref, nvme_free_ctrl);
|
|
}
|
|
|
|
/*
|
|
* Initialize a NVMe controller structures. This needs to be called during
|
|
* earliest initialization so that we have the initialized structured around
|
|
* during probing.
|
|
*/
|
|
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
|
|
const struct nvme_ctrl_ops *ops, unsigned long quirks)
|
|
{
|
|
int ret;
|
|
|
|
INIT_LIST_HEAD(&ctrl->namespaces);
|
|
mutex_init(&ctrl->namespaces_mutex);
|
|
kref_init(&ctrl->kref);
|
|
ctrl->dev = dev;
|
|
ctrl->ops = ops;
|
|
ctrl->quirks = quirks;
|
|
|
|
ret = nvme_set_instance(ctrl);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
|
|
MKDEV(nvme_char_major, ctrl->instance),
|
|
dev, nvme_dev_attr_groups,
|
|
"nvme%d", ctrl->instance);
|
|
if (IS_ERR(ctrl->device)) {
|
|
ret = PTR_ERR(ctrl->device);
|
|
goto out_release_instance;
|
|
}
|
|
get_device(ctrl->device);
|
|
dev_set_drvdata(ctrl->device, ctrl);
|
|
ida_init(&ctrl->ns_ida);
|
|
|
|
spin_lock(&dev_list_lock);
|
|
list_add_tail(&ctrl->node, &nvme_ctrl_list);
|
|
spin_unlock(&dev_list_lock);
|
|
|
|
return 0;
|
|
out_release_instance:
|
|
nvme_release_instance(ctrl);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void nvme_stop_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
mutex_lock(&ctrl->namespaces_mutex);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
|
spin_lock_irq(ns->queue->queue_lock);
|
|
queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
|
|
spin_unlock_irq(ns->queue->queue_lock);
|
|
|
|
blk_mq_cancel_requeue_work(ns->queue);
|
|
blk_mq_stop_hw_queues(ns->queue);
|
|
}
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
}
|
|
|
|
void nvme_start_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
mutex_lock(&ctrl->namespaces_mutex);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
|
queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
|
|
blk_mq_start_stopped_hw_queues(ns->queue, true);
|
|
blk_mq_kick_requeue_list(ns->queue);
|
|
}
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
}
|
|
|
|
int __init nvme_core_init(void)
|
|
{
|
|
int result;
|
|
|
|
result = register_blkdev(nvme_major, "nvme");
|
|
if (result < 0)
|
|
return result;
|
|
else if (result > 0)
|
|
nvme_major = result;
|
|
|
|
result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
|
|
&nvme_dev_fops);
|
|
if (result < 0)
|
|
goto unregister_blkdev;
|
|
else if (result > 0)
|
|
nvme_char_major = result;
|
|
|
|
nvme_class = class_create(THIS_MODULE, "nvme");
|
|
if (IS_ERR(nvme_class)) {
|
|
result = PTR_ERR(nvme_class);
|
|
goto unregister_chrdev;
|
|
}
|
|
|
|
return 0;
|
|
|
|
unregister_chrdev:
|
|
__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
|
|
unregister_blkdev:
|
|
unregister_blkdev(nvme_major, "nvme");
|
|
return result;
|
|
}
|
|
|
|
void nvme_core_exit(void)
|
|
{
|
|
unregister_blkdev(nvme_major, "nvme");
|
|
class_destroy(nvme_class);
|
|
__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
|
|
}
|